2023. – Вып. 26 (2018–2019 гг.). – С. 303–311. DOI: https://doi.org/10.35540/1818-6254.2023.26.27 EDN: YBJCIU Metadata in English is at the end of the article

УДК 550.348. (470.67)

ОЩУТИМЫЕ ЗЕМЛЕТРЯСЕНИЯ ДАГЕСТАНА в 2018-2019 гг.

З.А. Адилов, О.А. Асманов, Х.Д. Магомедов

Дагестанский филиал ФИЦ ЕГС РАН, г. Махачкала, Россия, adilov79@mail.ru

Аннотация. В статье приводятся инструментальные данные и описания макросейсмических проявлений двух ощутимых землетрясений, произошедших на территории Дагестана в 2018–2019 гг.: Закатальского 5 июня 2018 г. с K_P =14, Ms_{ISC} =5.1, I_0 =6 и Буйнакского-II 25 мая 2019 г. с K_P =11.8, mb_{ISC} =4.5, I_0 =6. Для каждого из этих событий составлены карты изосейст, определены макросейсмические эпицентры и интенсивность сотрясений в эпицентре.

Ключевые слова: Дагестан, землетрясение, макросейсмические и инструментальные данные, карта изосейст, карта разломов.

Для цитирования: Адилов З.А., Асманов О.А., Магомедов Х.Д. Ощутимые землетрясения Дагестана в 2018–2019 гг. // Землетрясения Северной Евразии. – 2023. – Вып. 26 (2018–2019 гг.). – С. 303– 311. DOI: https://doi.org/10.35540/1818-6254.2023.26.27 EDN: YBJCIU

Введение. За период с конца XIX века до начала XXI века на территории Дагестана известно свыше 20 землетрясений, макросейсмический эффект в эпицентре которых составил более 6 баллов. К наиболее сильным из них относятся 8–9-балльное Дагестанское землетрясение 09.03.1830 г. с Ms=6.3 и I_0 =8–9 баллов; Кумторкалинское землетрясение 05.08.1955 г. с Ms=4.8 и I_0 =6–7 баллов; форшок Дагестанского землетрясения 14.05.1970 г. с Ms=5.3 и I_0 =7–8 баллов; Дагестанское землетрясение 14.05.1970 г. с Ms=6.6 и I_0 =9 баллов, а также несколько его 7-балльных афтершоков [1]. Буйнакское-I землетрясение 09.01.1975 г. с Ms=5.3 сопровождалось многочисленными афтершоками. Опасность землетрясений Дагестана заключается в их мелкофокусном характере, в результате чего даже относительно слабые и умеренные землетрясения могут представлять опасность для населения.

Шестибалльные сотрясения ощущались в населенных пунктах Дагестана и в 2018–2019 гг. от двух землетрясений, произошедших 5 июня 2018 г. с $K_P=14$, $M_{SISC}=5.1$, $M_{WGCMT}=5.3$ в северозападном Азербайджане [2] (Закатальское землетрясение) и 24 мая 2019 г. с $K_P=11.8$, $mb_{ISC}=4.5$ на территории Дагестана в районе г. Буйнакска (Буйнакское-II). Центральный Дагестан является одним из самых сейсмоактивных районов Кавказа, где ежегодно регистрируется в среднем около 400 землетрясений с $K_P \ge 5$, при этом Буйнакская очаговая зона считается одной из высокосейсмичных.

Настоящая статья посвящена изучению инструментальных и макросейсмических данных Закатальского и Буйнакского-II землетрясений 2018–2019 гг.

Методика обработки макросейсмических данных. Для анализа макросейсмических проявлений рассматриваемых землетрясений использовалось уравнение макросейсмического поля Блейка-Шебалина [3]:

$$I_{i}=bM-v \lg \sqrt{\Delta_{i}^{2}+h^{2}}+C, \qquad (1)$$

или, для интенсивности сотрясений в эпицентре *I*₀:

$$I_0 = bM - v \, \lg h + C, \tag{2}$$

где I_i – интенсивность в конкретном населенном пункте на эпицентральном расстоянии Δ_i , определенная, как и I_0 , по шкале MSK-64 [4]; M – магнитуда землетрясения, определяемая по поверхностным волнам; h – глубина гипоцентра землетрясения в κm ; коэффициенты b, v и C для Дагестана и прилегающих районов в уравнениях (1) и (2) равны 1.5, 3.6, 3.1 соответственно согласно [3].

Формулы (1) и (2) не учитывают геометрических размеров очага, и изосейсты без учета анизотропии затухания являются концентрическими кругами.

Макросейсмический эпицентр находился как центр изосейсты высшего балла. Глубина по макросейсмическим данным определялась из уравнения (2).

Тектоническая позиция очагов. На рис. 1 приведена карта эпицентров исследуемых землетрясений, совмещенная с картой разломов [5]. Закатальское землетрясение оказалось в зоне пересечения Аджычай-Алятского и Шарур-Закатальского разломов. С Закатальской очаговой зоной связывают следующие наиболее сильные землетрясения: 19.01.1907 г. в $29^{h}10^{m}$ с Ms=5.0, $I_{0}=6-7$; 02.09.1936 г. в $10^{h}01^{m}$ с Ms=4.7, $I_{0}=6-7$; 29.06.1948 г. в $16^{h}06^{m}$ с Ms=6.1, $I_{0}=7$; 7.05.2012 г. в $04^{h}40^{m}$ с Ms=5.7, $I_{0}=7-8$ [6].

Рис. 1. Эпицентры ощутимых землетрясений 2018–2019 гг. – Закатальского 5 июня 2018 г. с *К*_P=14 (1) и Буйнакского 25 мая 2019 г. с *К*_P=11.8 (2) – на фоне карты разломов по [5]

Очаговая область Буйнакского-II землетрясения располагается в области влияния Владикавказского (Черногорского) разлома и с геологической позиции в крупном плане аналогична очаговой области Дагестанского землетрясения 14.05.1970 года. Оба очага расположены на геосинклинальном борту Терско-Каспийского краевого прогиба в области Дагестанского клина. Эпицентр Буйнакского-II землетрясения расположен в полосе развития майкопских отложений, образующих в данном месте плоскую опущенную равнину округлой формы, ограниченную с севера чокракскими гривками тепсилитауской синклинали, с востока и юга – невысокими платообразными четвертичными террасами.

В структурном отношении эпицентр землетрясения совпадает с предполагавшимся по данным геологической съемки пологим поднятием Чубар-Арка, не подверженным впоследствии бурению. Скорее всего, здесь следует ожидать формирование слабо наклоненной к северу мульды, поскольку район эпицентра является зоной сочленения далеких погружений Талги, Заузанбашской и Хадумских антиклиналей на фоне региональной меловой моноклинали. Примыкающие непосредственно с юга и севера окончания Буйнакской и Тепсилитауской синклиналей отчленены от него системой дизъюнктивов. Осадочная толща в очаговой области полностью не вскрыта, по изученной части разреза здесь можно ожидать ее суммарную мощность порядка 7–8 км. Примерно такие же глубины залегания палеозойского субстрата рассчитаны по гравиметрическим данным [7].

Закатальское землетрясение. Эпицентр землетрясения, произошедшего 5 июня 2018 г. в 18^h40^m, находился на территории северо-западного Азербайджана, ближайшим к эпицентру населенным пунктом был г. Закаталы, по названию которого и наименовано это землетрясение.

Инструментальные данные. Закатальское землетрясение записано 2091 сейсмической станцией мировой сети. Его кинематические и динамические параметры представлены в табл. 1 по данным Дагестанского филиала ФИЦ ЕГС РАН [2] (сеть DRS) в сопоставлении с решениями международных сейсмологических центров, представленными в бюллетене ISC [8],

и сети OBGSR, используемой при составлении регионального бюллетеня ФИЦ ЕГС РАН по Северному Кавказу с центром обработки в г. Обнинске [9]. Положение эпицентра по данным DRS и разных сейсмологических служб показано на рис. 2.

AFEUTOTRO	t_0 ,	St. a			Гипот	центр		Магнитуда/	Истонник	
Анспіство	ч мин с	010, 0	φ°, Ν	δφ°	λ°, Ε	$\delta\lambda^{\circ}$	һ, км	δh, км	число станций	петотник
DRS	18 40 27.09	-	41.433	_	46.588	-	57.0	_	$K_{\rm P}=14$	[2]
OBGSR	18 40 26.80	0.70	41.440	0.06	46.710	0.08	9.0	7	$K_{\rm P}=14.1, MPVA_{\rm reg}=6.3$	[9]
MOS	18 40 26.40	-	41.440	_	46.713	-	9.0	0.2	$M_{\rm s}$ =5.0/38, $m_{\rm b}$ =5.6/53	[8]
AZER	18 40 27.41	-	41.498	_	46.672	-	10.3	_	ml=5.5	[8]
ISC	18 40 28.88	0.32	41.505	0.02	46.743	0.01	15.9	1.73	$M_{\rm s}=5.1/144, m_{\rm b}=5.4/446,$	[8]
									$h_{ m pP}$ =16 км	
NEIC	18 40 28.30	-	41.534	_	46.805		30.5	—	$m_{\rm b}$ =5.4/520, Mww =5.3	[8]
TIF	18 40 27.90	-	41.408	_	46.649	-	15.6	0.8	—	[8]
IDC	18 40 26.31	0.34	41.491	0.07	46.728	0.06	0.0f	_	$m_{\rm b}$ =5.1/31, $M_{\rm s}$ =4.9/71	[8]

Таблица 1. Основные параметры Закатальского землетрясения 5 июня 2018 г. по данным Дагестанского филиала ФИЦ ЕГС РАН в сопоставлении с определениями других агентств

Примечание. DRS – Дагестанский филиал ФИЦ ЕГС РАН; OBGSR – сеть, используемая при составлении регионального бюллетеня ФИЦ ЕГС РАН по Северному Кавказу с центром обработки в г. Обнинске; MOS – сеть телесейсмических станций ФИЦ ЕГС РАН, Обнинск, Россия; AZER – Республиканский сейсмологический центр Национальной академии наук Азербайджана; ISC – International Seismological Center, UK; NEIC – National Earthquake Information Center, USA; TIF – Институт наук о Земле Национального центра сейсмического мониторинга, Тбилиси, Грузия; IDC – International Data Centre, Comprehensive Nuclear-Test-Ban Treaty (СТВТО), Austria.

Рис. 2. Решения эпицентра Закатальского землетрясения 5 июня 2018 г. по данным разных сейсмологических центров (табл. 1)

Как видно из табл. 1 и рис. 2, решения для эпицентра близки по данным разных служб, особенно AZER, IDC, ISC, хотя разброс глубин значительный – от 0 до 57 км. При этом наиболее надежной глубиной является $h_{\rm pP}=16$ км, определенная в ISC по отраженной от земной поверхности *P*-волне.

Макросейсмические данные. Максимальная интенсивность сотрясений по данным Республиканского Центра AZER Сейсмологической Службы при Национальной Академии Наук Азербайджана в эпицентральной зоне составила $I_0=6$ баллов по шкале MSK-64. Эта оценка близка к расчетному значению $I_0=6.265$, определенному по формуле (2) при Ms=5.0, $h_{\rm pP}=16$ км из табл. 1. В средствах массовой информации сообщалось, что землетрясение ощущали в столице Грузии г. Тбилиси, где интенсивность сотрясений достигла 3 баллов, в областях Армении: Тавушской – 3-4 балла, в Лорийской – 3 балла, в Ширакской, Койтешской, Аратской и в г. Ереване – 2–3 балла. В Чеченской Республике в Гудермесском районе сила сотрясений достигла 2-3 баллов.

Сбор макросейсмической информации в Дагестане осуществлен путем заочного опроса и анкетирования населения. Собраны и проанализированы данные по населенным пунктам и в северо-западном Азербайджане. Оценки интенсивности сотрясений в населенных пунктах в баллах шкалы MSK-64 приведены в табл. 2, а соответствующая карта макросейсмических проявлений Закатальского землетрясения показана на рис. 3. Номера населенных пунктов на карте соответствуют нумерации в табл. 2. В населенных пунктах, в которых получены неоднозначные оценки интенсивности, использовались средние значения.

Интенсивность сотрясений в 6 баллов в Закатальском районе Азербайджана отмечена в населенных пунктах Мухах, Гюллюк, Закаталы, Муганли, Катех, Алибейли. При эпицентральных расстояниях до 20 км, землетрясение отчетливо ощущалось всеми жителями. Их реакция варьировала от испуга до паники: некоторые жители в спешке покинули помещения. Отдельные люди, находившиеся в момент землетрясения на открытом воздухе, ощущали толчки. Повреждения зданий сводились главным образом к трещинам в штукатурке и выпадению отдельных ее кусков. Макросейсмические проявления имели характер сильных колебаний мебели, падения незакрепленных предметов на столах и полках, звона и дребезжания посуды в шкафах, сильного раскачивания висящих предметов.

Интенсивность сотрясений в 5 баллов наблюдалась на эпицентральных расстояниях до 60 км. В населенных пунктах, расположенных в зоне пятибалльных сотрясений, также землетрясение ощущалось всеми жителями, находившимися в помещениях. В зданиях отмечено появление тонких трещин в штукатурке, прочие макросейсмические эффекты сводились к дрожанию и раскачиванию мебели, падению или смещению незакрепленных предметов, раскачиванию висящих предметов. Многие очевидцы описывают землетрясение как резкий, сильный толчок: «будто тяжелая машина ударила в стену дома».

В населенных пунктах Кусур и Цахур юго-западной части Дагестана интенсивность сотрясений достигла 5–6 баллов.

В населенных пунктах Рутул и Тлярата землетрясение ощущалось всеми жителями, и по нашим оценкам его интенсивность составила 4–5 баллов, а в селах Цуриб, Кумух и Ахты – 4 балла.

Интенсивность сотрясений в 4 балла отмечалась на расстояниях до 114 *км* от эпицентра. Землетрясение отчетливо ощущалось жителями сельских населенных пунктов. Макросейсмические проявления сводились к скрипу полов и стен, дребезжанию посуды и оконных стекол, а также раскачивание висящих предметов.

Область ощутимых макросейсмических эффектов при Закатальском землетрясении охватила большую часть территории Дагестана. Максимальные расстояния, на которых оно ощущалось с интенсивностью сотрясений до двух баллов, составляли более 250 км.

Данные о проявлениях Закатальского землетрясения в населенных пунктах (табл. 2) аппроксимированы изосейстами равного балла I=3, 4, 5, 6 (рис. 3). По изосейсте высшего балла определены координаты макросейсмического эпицентра: $\varphi = 41.49^{\circ}$, $\lambda = 46.75^{\circ}$. От него отсчитаны эпицентральные расстояния, представленные в табл. 2.

№	Пункт	φ°, Ν	λ°, E	$\Delta^*, \kappa M$	N⁰	Пункт	φ°, N	λ°, E	Δ, κм	
	Макросейсмический эпицентр	41.49	46.75	_		<u>3–4</u>	балла			
	6 баллов				22	Гуниб	42.38	46.96	101	
1	Гюллюк	41.50	46.76	2	23	Уркарах	42.16	47.63	104	
2	Myxax	41.56	46.70	9	24	Ляхля	41.88	47.87	103	
3	Закаталы	41.63	46.64	18	25	Хунзах	42.54	46.70	117	
4	Муганли	41.47	46.48	22	26	Газах	41.09	45.35	124	
5	Алибейли	41.37	46.82	14	27	Маджалис	42.12	47.83	114	
6	Катех	41.65	46.54	25	28	Кедабек	40.56	45.82	130	
	<u>5—6 баллов</u>				29	Ботлих	42.66	46.21	138	
7	Илису	41.46	47.05	25	30	Губа	41.35	48.49	146	
8	Балакан	39	<u>З балла</u>							
	5 баллов	31	Сергокала	42.45	47.66	131				
9	Кусур	41.78	46.95	37	32	Кошчу-Айрум	41.09	45.10	139	
10	Цахур	41.65	47.13	37	33	Иджеван	40.88	45.15	150	
11	Карадаглы	41.17	47.01	41	34	Дербент	42.07	48.30	144	
12	Кудула	41.15	47.04	45	35	Избербаш	42.56	47.87	151	
13	Шеки	41.19	47.18	49	36	Тбилиси	41.71	44.80	164	
	<u>4—5 баллов</u>				37	Худат	41.63	48.68	162	
14	Рутул	41.53	47.43	57	38	Шамахы	40.64	48.64	184	
15	Тлярата	42.10	46.35	76	2-3 балла					
	4 балла				39	Дылым	43.07	46.63	176	
16	Цуриб	42.24	46.83	84	40	Махачкала	42.97	47.49	176	
17	Кумух	42.17	47.11	81	41	Хасавюрт	43.24	46.58	196	
18	Мингечевир	40.77	47.06	84	42	Гудермес	43.35	46.10	214	
19	Ахты	41.46	47.75	83	43	Ереван	40.18	44.52	238	
20	Кировабад (Гянжа)	40.64	46.32	101		-				
21	Куткашен (Габала)	40.98	47.85	108						

Таблица 2. Макросейсмические сведения о Закатальском землетрясении 5 июня 2018 г. с Кр=14

* Эпицентральные расстояния рассчитаны от макросейсмического эпицентра: φ=41.49°, λ=46.75.

Рис. 3. Карта изосейст Закатальского землетрясения

1, 2 – макросейсмический и инструментальный эпицентры соответственно; 3 – интенсивность сотрясений в баллах по шкале MSK-64; 4 – изосейста; 5 – государственная граница.

Буйнакское-II землетрясение произошло 24 мая 2019 г. в 22^h34^m вблизи г. Буйнакск. Данное землетрясение названо Буйнакским-II землетрясением, так как ему предшествовало Буйнакское-I землетрясение 9 января 1975 г. с *Ms*=4.3 [6], интенсивность сотрясений в эпицентре которого составляла *I*₀=8 баллов.

Инструментальные данные. По данным ISC [7], Буйнакское-II землетрясение записали 743 сейсмических станции мировой сети. Кинематические и динамические параметры Буйнакского-II землетрясения, определенные региональной сетью сейсмических станций Дагестанского филиала ФИЦ ЕГС РАН, приведены в табл. 3 в сопоставлении с решениями других сейсмологических служб, а положение эпицентра по данным разных центров показано на рис. 4.

Как видно из табл. 3 и рис. 4, решения разных агентств для эпицентра и глубины гипоцентра Буйнакского-II землетрясения близки, в отличие от решений для Закатальского землетрясения 5 июня 2018 года.

Рис. 4. Решения разных сейсмологических центров для эпицентра Буйнакского-II землетрясения 24 мая 2019 г.

Агент-	t_0 ,	δt_0 ,	Гипоцентр Магнитуда/				Uamauuuu			
ство	ч мин с	С	φ°, Ν	δφ°	λ°, Ε	δλ°	һ, км	δh, км	число станций	источник
DRS	22 34 04.10	_	42.850	_	47.050	_	18.0	—	K _P =11.8	[2]
OBGSR	22 34 03.30	0.7	42.83	0.06	47.10	0.08	10.0	7	<i>K</i> _P =11.5, <i>MPVA</i> =5.2	[9]
MOS	22 34 03.30	—	42.830	—	47.101	—	10.3	0.2	$m_{\rm b}$ =4.6/32	[8]
ISC	22 34 04.82	0.58	42.879	0.02	47.115	0.02	9.3	3.78	$m_{\rm b}$ =4.5/127, $M_{\rm s}$ =3.5/19	[8]
NEIC	22 34 05.64	1.64	42.847	0.11	47.183	0.10	10.0f	_	$m_{\rm b}$ =4.5/140	[8]
TIF	22 34 04.40	—	42.836	—	47.067	—	3.5	1.5	_	[8]
NORS	22 34 03.20	-	42.795	-	47.063	-	2.3	0.2	MPVA=5.2	[8]
IDC	22 34 03.19	0.40	42.859	0.08	47.052	0.06	0.0f	_	$m_{\rm b}$ =4.2/27, $M_{\rm s}$ =3.4	[8]

Таблица 3. Основные параметры Буйнакского-II землетрясения 24 мая 2019 г. с *К*_P=11.8, *М*_s=4.3 по данным Дагестанского филиала ФИЦ ЕГС РАН в сопоставлении с определениями других агентств

Примечание. (См. табл. 2).

Макросейсмические сведения о проявлениях Буйнакского-II землетрясения были получены путем телефонного опроса сотрудниками Дагестанского филиала ФИЦ ЕГС РАН без выезда, а также от станционных работников региональной сети. Интенсивность сотрясений в населенных пунктах эпицентральной зоны достигала 6 баллов по шкале MSK-64. В результате землетрясения наиболее пострадали город Буйнакск, селения Халимбекаул, Кафиркумух и Атланаул, где интенсивность подземных толчков составила 6 баллов. Землетрясение проявилось в виде резкого вертикального толчка, как бы взрыва, перешедшего в горизонтальные колебания широтного направления. Люди просыпались в страхе, выбегали из домов. Внутри помещений падали неустойчиво стоящие предметы. В домах появились трещины на стенах, осыпалась штукатурка. В городе Буйнакск в учебных заведениях имеются заметные трещины на потолках и стенах. В табл. 4 приводятся сведения об интенсивности сотрясений в 37 населенных пунктах.

В четырех селениях (табл. 4), где интенсивность сотрясения достигала *I*=5–6 баллов, в большинстве жилых глинобитных домов образовались тонкие трещины в стенах и увеличились старые.

В трех населенных пунктах Буйнакского района, расположенных на расстоянии от 13 до 20 км от макросейсмического эпицентра, землетрясение проявилось с интенсивностью *I*=5 баллов. В этой зоне в отдельных, преимущественно старых глинобитных домах образовались тонкие трещины в штукатурке стен, произошло раскрытие и увеличение старых трещин в стенах.

Четырехбалльные сотрясения от Буйнакского-II землетрясения ощущались на расстояниях 26-34 км.

Карта изосейст Буйнакского-II землетрясения (рис. 5) построена на основании собранного макросейсмического материала (табл. 4).

№	Пункт	φ°, Ν	λ°, E	$\Delta, \kappa M$	N⁰	Пункт	φ°, N	λ°, Ε	Δ , κM		
	Макросейсмич. эпицентр 42.83 47.13 0					3—4 балла					
	<u>6 баллов</u>		19	Карабудахкент	42.70	47.56	38				
1	Буйнакск	42.82	47.11	1	20	Махачкала	42.98	47.50	34		
2	Халимбек-Аул	42.84	47.14	2	21	Каспийск	42.88	47.64	41		
3	Кафыр-Кумух	42.83	47.15	2	22	Леваши	42.42	47.32	47		
4	Атланаул	42.80	47.15	3	23	Хунзах	42.54	46.70	47		
	<u>5—6 баллов</u>			24	Кизилюрт	43.19	46.85	47			
5	Нижнее Казанище	42.76	47.16	8	25	Дылым	43.06	46.63	49		
6	Буглен	42.75	47.19	10		3 балла					
7	Верхнее Казанище	42.72	47.13	10	26	Манаскент	42.73	47.69	47		
8	Такалай	42.89	47.16	9	27	Гуниб	42.38	46.96	51		
	<u>5 баллов</u>	28	Мехельта	42.78	46.50	52					
9	Эрпели	42.80	46.97	12	29	Сергокала	42.45	47.66	60		

Таблица 4. Макросейсмические сведения о Буйнакском-II землетрясении 24 мая 2019 г. с К_Р=11.8

ОЩУТИМЫЕ ЗЕМЛЕТРЯСЕНИЯ ДАГЕСТАНА в 2018–2019 гг. З.А. Адилов, О.А. Асманов, Х.Д. Магомедов

		1								
№	Пункт	φ°, Ν	λ°, Ε	$\Delta, \kappa M$	N⁰	Пункт	φ°, Ν	λ°, Ε	$\Delta, \kappa M$	
10	Верхний Дженгутай 42.68 47.23 19				2—3 балла					
11	Чиркей	42.95	46.97	19	30 Сулак 43.27 47.51				59	
4–5 баллов						Избербаш	42.56	47.87	67	
12	Верхний Каранай	42.82	46.90	18	32	Хасавюрт	43.23	46.58	64	
13	Параул	42.73	47.35	21	33	Цуриб	42.23	46.83	70	
14	Кака-Шура	42.65	47.38	29	34	Кумух	42.16	47.11	73	
4 балла						Ботлих	42.66	46.21	76	
15	Ленинкент	42.96	47.35	24	36	Уркарах	42.15	47.62	85	
16	Аракани	42.60	46.99	27	37	Новокаякент	42.38	47.98	86	
17	Унцукуль	42.71	46.78	31						
18	Дубки	43.02	46.83	32						

Рис. 5. Карта изосейст Буйнакского-ІІ землетрясения 24 мая 2019 г.

1, 2 – инструментальный и макросейсмический эпицентр соответственно; 3 – интенсивность сотрясений по MSK-64 [3]; 4 – изосейста; 5 – государственная граница.

Изосейсты высших баллов вытянуты с юго-востока на северо-запад, а плейстосейстовая зона в основном охватывает Буйнакский, Унцукульский, Коркмаскалинский и Казбековский районы. Расстояние между инструментальным и макросейсмическим эпицентрами приблизительно составляет 6 *км*.

Координаты макросейсмического эпицентра (ϕ =42.83°N, λ =47.13°E) определены как центр тяжести плейстосейстовой зоны, окруженной шестибалльной изосейстой, ориентировочная конфигурация которой определена устойчивым положением 5-балльной изосейсты. 5-балльная изосейста представляет собой квазиэллипс, отношение большой и малой полуосей которого равно l_a/l_b =1.32, площади, оконтуренные изосейстами, равны: S_6 =65 км²; S_5 =3100 км²; S_4 =13700 км²; S_3 =39800 км².

Попробуем оценить интенсивность в эпицентре Буйнакского-II землетрясения с помощью инструментальных данных разных агентств (табл. 3). Магнитуду определим по формуле

Т.Г. Раутиан [10]: M=(K-4)/1.8=4.3, глубину примем равной $h=10 \ \kappa m$, что соответствует данным OBGSR, MOS, ISC, и получим $I_0=5.95$ баллов.

Заключение. Проанализированы инструментальные и макросейсмические данные о двух ощутимых землетрясениях, произошедших на территории Дагестана в 2018–2019 гг.: Закатальском 5 июня 2018 г. с K_P =14, M_{SISC} =5.1 и Буйнакском-II 25 мая 2019 г. с K_P =11.8, mb_{ISC} =4.5. Для каждого из них составлены карты изосейст, определены координаты эпицентров по макросейсмическим данным и оценена интенсивность сотрясений в эпицентре.

Описанные сейсмические события вполне вписываются в общую схему сейсмотектонической активности рассматриваемой территории, а результаты их изучения расширяют представление о подобных событиях и их последствиях, позволяя уточнить сейсмическую опасность на территории Дагестана.

Литература

- 1. Общий каталог землетрясений на территории Дагестана. Макросейсмические и инструментальные данные о землетрясениях за период с VII в.н.э. до 2005 года. – Махачкала: Эпоха, 1997. – 394 с.
- Адилов З.А., Асекова З.О., Гамидова А.М., Мусалаева З.А., Павличенко И.Н., Сагателова Е.Ю., Шахмарданова С.Г. // Каталог (оригинал) землетрясений Дагестана за 2018–2019 гг. – Махачкала: Фонды ДФ ФИЦ ЕГС РАН, 2018–2019 гг. – 33 с.
- Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. // Под ред. Н.В. Кондорской, Н.В. Шебалина. – М.: Наука, 1977. – 536 с.
- 4. Медведев С.В. Международная шкала сейсмической интенсивности // Сейсмическое районирование СССР М.: Наука, 1968. С. 151–162.
- 5. Черкашин В.И., Сабанаев К.А., Гаврилов Ю.О., Панов Д.И. Тектоническая карта Дагестана // Труды ИГ ДНЦ РАН (Тектоника Дагестана (объяснительная записка); Вып. 60). Махачкала: АЛЕФ, 2012. С. 86.
- Етирмишли Г.Д., Гаравелиев Э.Г., Адилов З.А., Асманов О.А., Даниялов М.Г. Двусторонний анализ сильных Закатальских землетрясений 2012 г. // Современные методы обработки и интерпретации сейсмологических данных. Материалы Девятой Международной сейсмологической школы. – Обнинск: ГС РАН, 2014. – С. 126–131.
- Левкович Р.А., Асманов О.А., Крамынин П.И., Мусалаева З.А., Гамидова А.М. Буйнакское землетрясение 9 января 1975 г. // Сейсмологический бюллетень Кавказа 1975 г. – Тбилиси: «Мецниереба», 1977. – С. 171–192.
- 8. International Seismological Centre. (2023). On-line Bulletin. https://doi.org/10.31905/D808B830
- Королецки Л.Н., Габсатарова И.П., Адилов З.А., Багаева С.С., Иванова Л.Е. Каталог землетрясений и взрывов Северного Кавказа за 2018–2019 гг. // Землетрясения Северной Евразии. – 2023. – Вып. 26 (2018–2019 гг.). – [Электронное приложение]. – URL: http://www.gsras.ru/zse/app-26.html
- Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности. (Труды ИФЗ АН СССР; № 9 (176)). – М.: ИФЗ АН СССР, 1960. – С. 75–114.

TANGIBLE EARTHQUAKES in DAGESTAN in 2018–2019

Z.A. Adilov, O.A. Asmanov, Kh.Dzh. Magomedov

Dagestan branch of Geophysical Survey of the Russian Academy of Sciences, Makhachkala, adilov79@mail.ru

Abstract. The article provides instrumental data and description of macroseismic manifestations of two tangible earthquakes that occurred on the territory of Azerbaijan in 2018 (Zakatala earthquake of June 5 with K_{R} =14, M_{SISC} =5.1) and in 2019 (Buinaksk of May 25 with K_{R} =11.8, m_{DISC} =4.5, I_{0} =6). For each of these events, isoseist maps were compiled, macroseismic epicenters and shaking intensities at the epicenter were determined.

Key words: Dagestan, earthquake, macroseismic and instrumental data, isoseist map, fault map.

For citation: Adilov, Z.A., Asmanov, O.A., & Magomedov, Kh.D. (2023). [Tangible earthquakes in Dagestan in 2018–2019]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], *26*(2018–2019), 303–311. (In Russ.). DOI: https://doi.org/10.35540/1818-6254.2023.26.27 EDN: YBJCIU

References

- 1. Obshchiy katalog zemletryaseniy na territorii Dagestana. Makroseysmicheskiye i instrumental'nyye dannyye o zemletryaseniyakh za period s VII v.n.e. do 2005 goda [General catalog of earthquakes in the territory of Dagestan. Macroseismic and instrumental data on earthquakes for the period from the VII-th century until 2005]. (1997). Makhachkala, Russia: Epocha Publ., 394 p. (In Russ.).
- Adilov, Z.A., Asekova, Z.O., Hamidova, A.M., Musalaeva, Z.A., Pavlichenko, I.N., Sagatelova, E.Yu., & Shakhmardanova, S.G. (2018). *Katalog (original) zemletryaseniy Dagestana za 2018–2019 gg.* [Catalog (original) of the earthquakes of Dagestan for 2018–2019]. Makhachkala, Russia: Funds DF GS RAS Publ., 33 p. (In Russ.).
- 3. Kondorskaya, N.V., & Shebalin, N.V. (1977). [New catalog of strong earthquakes in the USSR from ancient times through 1975]. Moscow, Russia: Nauka Publ., 536 p. (In Russ.).
- 4. Medvedev, S.V. (1968). [International scale of seismic intensity]. In *Seysmicheskoye rayonirovaniye SSSR* [Seismic zoning of the USSR] (pp. 151–162). Moscow, Russia: Nauka Publ. (In Russ.).
- 5. Cherkashin, V.I., Sabanaev, K.A., Gavrilov, Yu.O., & Panov, D.I. (2012). [Tectonic map of Dagestan]. *Trudy IG DNTS RAN* [Proceedings of the IG DSC RAS]. Makhachkala, Russia: ALEF Publ., 86 p. (In Russ.).
- 6. Etirmishli, G.D., Garaveliev, E.G., Adilov, Z.A., Asmanov, O.A., & Daniyalov, M.G. (2014). Dvustoronniy analiz sil'nykh Zakatal'skikh zemletryaseniy 2012 g. [Bilateral analysis of strong Zakatala earthquakes in 2012]. In Sovremennye metody obrabotki i interpretacii sejsmologicheskih dannyh. Materialy Devyatoj Mezhdunarodnoj sejsmologicheskoj shkoly [Modern methods of processing and interpretation of seismological data. Materials of the 9th International Seismological School] (pp. 126–131). Obninsk, Russia: GS RAS Publ. (In Russ.).
- Levkovich, R.A., Asmanov, O.A., Kramynin, P.I., Musalaeva, Z.A., & Gamidova, A.M. (1977). [The Buinaksk earthquake on January 9, 1975]. In *Seysmicheskiy byulleten' Kavkaza 1975 g.* [Seismic Bulletin of the Caucasus 1975] (pp. 171–192). Tbilisi, Georgia: Mecniereba Publ. (In Russ.).
- International Seismological Centre. (2023). On-line Bulletin. Retrieved from https://doi.org/10.31905/ D808B830
- Koroletsky, L.N., Gabsatarova, I.P., Adilov, Z.A., Bagaeva, S.S., & Ivanova, L.E. (2023). [Catalog of earthquakes and explosions in the North Caucasus for 2018–2019]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], 26(2018–2019). Electronic supplement. Retrieved from http://www.gsras.ru/zse/app-26.html (In Russ.).
- 10. Rautian, T.G. (1960). [Earthquake energy]. *Trudy IFZ AN SSSR* [Proceedings of the IPF of the USSR Academy of Sciences], 9(176), 75–114.