2023. – Вып. 26 (2018–2019 гг.). – С. 217–224. DOI: https://doi.org/10.35540/1818-6254.2023.26.18 EDN: SNZIXK Metadata in English is at the end of the article

УДК 550.348 (476)

СЕЙСМИЧНОСТЬ на ТЕРРИТОРИИ БЕЛАРУСИ в 2018-2019 гг.

Т.И. Аронова, Г.А. Аронов, О.В. Захаревич, А.Г. Аронов

Центр геофизического мониторинга Национальной академии наук Беларуси, г. Минск, Беларусь, info@cgm.by

Аннотация. Представлен обзор сейсмичности территории Беларуси в 2018–2019 гг. на основе данных 17 цифровых станций. В 2018 г. зарегистрировано 72 события с K_d =4.9–8.6, а в 2019 г. – 69 событий с K_d =4.9–8.2. Все землетрясения локализованы в южной части зоны ответственности, включающей Солигорский горнопромышленный район. Сравнение параметров N_{Σ} и ΣE за 2018 г. и 2019 г. с долговременными среднегодовыми оценками показало, что уровень выделившейся сейсмической энергии в 2018 г. и 2019 г. оставался пониженным, тогда как число событий за анализируемые периоды превышало фоновые значения. За долговременный период 1983–2019 гг. наблюдается отсутствие устойчивой корреляции между выделенной энергии и числом событий.

Ключевые слова: сейсмическая станция, землетрясение, каталог, эпицентр, энергетический класс, расчетная магнитуда.

Для цитирования: Аронова Т.И., Аронов Г.А., Захаревич О.В., Аронов А.Г. Сейсмичность на территории Беларуси в 2018–2019 гг. // Землетрясения Северной Евразии. – 2023. – Вып. 26 (2018–2019 гг.). – С. 217–224. DOI: https://doi.org/10.35540/1818-6254.2023.26.18 EDN: SNZIXK

Введение. Территория Беларуси расположена на западе древней Восточно-Европейской платформы и, в соответствии с сейсмотектоническим районированием, относится к слабоактивному региону [1]. Наблюдения за сейсмическими процессами проводит Центр геофизического мониторинга НАН Беларуси. В тектоническом плане сейсмические события, зарегистрированные в 2018–2019 гг., приурочены к зоне сочленения северо-западной части Припятского прогиба и Белорусской антеклизы, включающей Солигорский горнопромышленный регион [2]. Старобинское месторождение в Беларуси – крупнейшее в Европе месторождение калийных солей – было открыто в 1949 г. и начало разрабатываться с начала шестидесятых годов прошлого столетия. Учитывая происходящие в течение длительного времени изменения напряженного состояния геологической среды, вызванные выемкой, перемещением горных пород и их складированием в соляных отвалах, можно предположить, что Солигорские землетрясения связаны с наведенной сейсмичностью и имеют техногенный характер. Однако проявления сейсмичности за пределами зоны промышленных выработок служат признаком того, что с определенного времени сейсмический процесс начинает контролироваться в основном региональными геодинамическими факторами и в меньшей степени зависит от горнодобывающей деятельности [3]. Ярким проявлением геодинамической активизации недр на территории Старобинского месторождения калийных солей, вызвавшим интерес к этой проблеме, стало землетрясение 10 мая 1978 г. с эпицентром в д. Кулаки Солигорского района. Регулярные непрерывные наблюдения в Солигорском горнопромышленном регионе начались в 1983 году.

В настоящей статье представлены сведения о сейсмичности на территории Беларуси в 2018–2019 гг. Основными задачами исследования являлись: сводная обработка результатов мониторинга землетрясений, составление каталогов сейсмических событий и параметров аппаратуры на регистрирующих станциях, интерпретация полученных материалов и описание сейсмичности территории Беларуси в 2018–2019 гг.

Сеть сейсмических станций. В 2018–2019 гг. наблюдения проводились на станциях Минск (MIK) и Нарочь (NAR), где установлены регистраторы сейсмических сигналов цифровых станций SDAS (Seismic digital acquisition station) российского производства, изготовленные фирмой «Геотех+» (г. Обнинск) [4], с широкополосными сейсмодатчиками СМ-3-ОС. На сейсмических станциях произошли следующие изменения: 15 августа 2018 г. на станции Минск (MIK) и 8 сентября 2019 г. на станции Нарочь (NAR) были сняты цифровые станции SDAS, т.к. физический износ аппаратуры не позволил их дальнейшую эксплуатацию. 15 июля 2018 г. на станции Минск (MIK) и 14 августа 2019 г. на станции Нарочь (NAR) были установлены цифровые станции

Centaur [5] с широкополосными сейсмометрами Trillium 120 (модель T120-QA-SV1) производства «Nanometrics», Канада [6]. На чувствительности белорусской сейсмологической сети эти изменения не сказались.

Продолжили работу восемь сейсмических станций Солигорской локальной сети: Волоты (VOL), Тесово (TES), Устронь (UST), Чижовка (CHJ), Копацевичи (KAP), Новый луг (NVL), Махновичи (MAH), Листопадовичи (LST) и семь сейсмических станций Островецкой локальной сети: Градовщизна (GRD), Вадатишки (VDT), Бояры (BOR), Селище (SEL), Горная Каймина (GRK), Воробьи (VRB), Литвяны (LTV). Широкополосная сейсмическая станция Нарочь (NAR) расположена в 45 км к северо-востоку от Островецкой локальной сети.

На Солигорской и Островецкой локальных сетях непрерывные наблюдения проводились аппаратурой, состоящей из регистраторов сейсмических сигналов Дельта-03 (изготовитель – фирма «ГЕОТЕХ», Россия [7]) и короткопериодных сейсмоприемников Le 3DLite (изготовитель – фирма «LENNARTZ», Германия [8]). Все цифровые станции работали в режиме on-line с непрерывной передачей информации через мобильную сеть в центр сбора информации в г. Минске.

Расположение сейсмических станций показано на рис. 1. Сведения обо всех станциях и параметрах регистрирующей аппаратуры приведены в электронном приложении [9] к настоящему выпуску ежегодника.

Рис. 1. Сеть сейсмических станций Беларуси в 2018–2019 гг., внешняя рамка карты соответствует границе зоны ответственности территории «Беларусь»

1 – сейсмическая станция; 2 – город; 3 – г. Минск; 4 – государственная граница.

Методика обработки записей сейсмических событий. Обработка землетрясений осуществлялась с помощью современных стандартных компьютерных программ, подробно изложенных в [10]. Телесейсмические и региональные землетрясения обрабатывались с использованием программы WSG (система обработки сейсмических данных), разработанной в ФИЦ ЕГС РАН [11], и пакета компьютерных программ из [12], разработанных и адаптированных в Центре геофизического мониторинга НАН Беларуси (IdSeism – идентификация сейсмических явлений: выделение телесейсмических, региональных, местных (локальных) событий и взрывов; UniViewer – визуальное отображение сейсмических данных из различных файлов: файлов станций SDAS и Centaur, файлов типа DDB со станций Дельта-03; EmulEq – решение прямой задачи распространения сейсмических волн).

Программа HYPOSAT была адаптирована и использовалась в Центре для локации местных сейсмических событий станциями Солигорской локальной сети. По времени вступлений *P*- и *S*- волн вычислялись: время t_0 возникновения землетрясения и положение гипоцентра (ϕ , λ , h), а также погрешности – как общая погрешность δt_0 по времени t_0 в очаге и погрешности

Энергетический класс сейсмических событий K_d определялся по длительности колебаний на записи, где τ – длительность записи от начала колебаний до момента слияния с микросейсмами [10, 15]. Соотношение (1) между длительностью записи τ (*сек*) и энергетическим классом $K_P = K_d$ было получено экспериментально [10] в виде:

$$K_{\rm P} = K_{\rm d} = 7.2 \, \rm lg\tau - 6.8.$$
 (1)

Определение расчетных магнитуд получено традиционно [10, 16] пересчетом из энергетических классов K_d по формуле Т.Г. Раутиан из [17], в предположении о возможности ее использования и для классов K_d :

$$M = (K_d - 4)/1.8.$$
 (2)

Каталог землетрясений. На территории Беларуси сейсмическими станциями в 2018–2019 гг. было зарегистрировано 141 землетрясение с K_d =4.9–8.6 и определены их параметры [18].

В 2018 г. произошло 72 землетрясения с K_d =4.9–8.6. Самое слабое событие с K_d =4.9 зафиксировано 18 сентября в 02^h59^m, а максимальное землетрясение с K_d =8.6 отмечено 17 января в 15^h59^m. Оно произошло в 5 км к востоку от д. Зажевичи и в 12 км к юго-востоку от г. Солигорска. Сведений об ощутимости сотрясений от этого землетрясения не поступало.

В 2019 г. произошло 69 землетрясений с K_d =4.9–8.2. Самое слабое землетрясение с K_d =4.9 зафиксировано 7 сентября в 20^h59^m, а максимальное событие с K_d =8.2 отмечено 5 июля в 04^h39^m. Оно локализовано в 4 *км* к западу от д. Рачень и в 17 *км* к юго-востоку от г. Солигорска. Сведений об ощутимости сотрясений от этого землетрясения не поступало.

Анализ пространственного распределения сейсмичности на территории Беларуси показал, что эпицентры землетрясений располагались в ее южной части (рис. 2). На западе, севере, востоке и в центральной части Беларуси не было зарегистрировано ни одного землетрясения.

Рис. 2. Карта эпицентров землетрясений в Беларуси за 2018–2019 гг.

1 – энергетический класс *K*_d; 2 – город.

Распределение числа сейсмических событий по энергетическим классам *K*_d и суммарной выделившейся сейсмической энергии по месяцам за 2018 г. представлено в табл. 1, а за 2019 г. – в табл. 2.

Месяц			$K_{ m d}$	N	ΣE ,		
	5	6	7	8	9	IV_{Σ}	10 ⁹ Дж
Ι	-	2	2	-	1	5	0.4797
II	-	_	1	-	-	1	0.0069
III	-	1	2	2	_	5	0.5475
IV	_	3	—	—	_	3	0.0067
V	-	5	1	-	_	6	0.0204
VI	2	5	—	-	—	7	0.0104
VII	2	3	2	1	-	8	0.0802
VIII	1	3	—	-	_	4	0.0076
IX	1	5	2	_	_	8	0.0284
Х	-	6	1	2	_	9	0.2832
XI	1	3	3	-	_	7	0.0629
XII	—	6	3	_	—	9	0.0530
Всего	7	42	17	5	1	72	1.5869

Таблица 1. Распределение числа землетрясений по энергетическим классам *K*_d и суммарная сейсмическая энергия Σ*E* за январь–декабрь 2018 г.

Таблица 2. Распределение числа землетрясений по энергетическим классам *K*_d и суммарная сейсмическая энергия Σ*E* за январь–декабрь 2019 г.

Месяц		$K_{ m d}$					ΣE ,	
	5	6	7	8	9	$IV\Sigma$	10 ⁹ Дж	
Ι	1	6	_	-	_	7	0.0097	
II	—	3	1	1	—	5	0.0565	
III	-	4	—	-	_	4	0.0092	
IV	—	3	2	—	—	5	0.0411	
V	-	5	1	-	_	6	0.0272	
VI	—	6	2	—	—	8	0.0441	
VII	-	2	4	2	_	8	0.2569	
VIII	2	4	1	—	—	7	0.0186	
IX	2	3	2	-	_	7	0.0313	
Х	1	4	1	_	_	6	0.0209	
XI	—	1	—	—	—	1	0.0032	
XII	_	3	2	_	_	5	0.0383	
Всего	6	44	16	3	_	69	0.5571	

Рассматривая ход сейсмического процесса в течение 2018–2019 гг., можно отметить, что он неравномерен во времени. Максимум высвобождения сейсмической энергии в 2018 г. приходится на март ($\Sigma E=0.5475 \cdot 10^9 \ \squaremmode \square mmode \square mmode)$, а в 2019 г. – на июль ($\Sigma E=0.2569 \cdot 10^9 \ \squaremmode \square mmode \square mmode)$. Максимум числа событий в 2018 г. наблюдался в октябре и декабре (N=9), а в 2019 г. – в июне и июле (N=8).

Распределение землетрясений по интервалам глубин в 2018–2019 гг. показано в табл. 3. Как видно из таблицы, большинство землетрясений (114) приурочено к промежутку земной коры с $h=11-30 \ \kappa m$. Погрешность определения глубин гипоцентров находится в пределах $\delta=\pm(1.20-10.13) \ \kappa m$ [18].

Приуроченность максимума числа толчков к средним глубинам земной коры ($h=11-30 \ \kappa m$) свидетельствует в пользу тектонической, а не техногенной природы зарегистрированных сейсмических событий.

Таблица 3. Распределение числа землетрясений по интервалам глубин *h*₁-*h*₂ в 2018–2019 гг.

h1-h2, км	0–10	11-20	21-30	31–40	N_{Σ}
N(h)	14	62	52	13	141

График повторяемости землетрясений, характеризующий представительность регистрации землетрясений на рассматриваемой территории, построен за период 2018–2019 гг. и представлен на рис. 3. Для его линейной части получено уравнение:

$$\lg N = 5.062 - 0.5157 \cdot K_d.$$
 (3)

Угол наклона графика повторяемости составил по модулю $\gamma = |0.52|$ в диапазоне $K_d = 6-8$, а точка перегиба на $K_d = 6$ позволяет считать, что представительными для региона были землетрясения с энергетическими классами $K_d \ge 6$.

Рис. 3. График повторяемости землетрясении Беларуси за 2018–2019 гг.

Сопоставление данных за 2018 г. и 2019 г. со среднегодовыми долговременными оценками N_{Σ} и ΣE за предшествуюшие 35 лет [16] показано в табл. 4. Сравнение числа землетрясений N_Σ и выделившейся сейсмической энергии ΣЕ за 2018 г. (*N*_Σ=72, *ΣE*=1.587·10⁹ Дж) и 2019 г. $(N_{\Sigma}=69, \Sigma E=0.557 \cdot 10^9 \ Дж)$ со средними долговременными оценками (N₂=44.71, $\Sigma E=2.217 \cdot 10^9 \ \square m$) показало, что уровень выделившейся сейсмической энергии оставался несколько пониженным, тогда как событий как в 2018 г., так число и в 2019 г. возросло относительно их долговременных фоновых значений.

Таблица 4. Годовые значения числа N сейсмических событий разных энергетических классов K_d и их суммарной сейсмической энергии ΣE на территории Беларуси за 2017, 2018 и 2019 гг., суммарные и средние значения за 1983–2017 гг.

Гал	K _d						λĭ	ΣΕ,
ТОД	4	5	6	7	8	9	IV_{Σ}	10 ⁹ Дж
2017	_	1	13	21	6	1	42	1.507
Сумма за 1983–2017 гг.	5	182	457	521	395	5	1565	78.218
Среднее за 35 лет	0.14	5.20	13.06	14.89	11.29	0.14	44.71	2.235
2018	_	7	42	17	5	1	72	1.587
2019	_	6	44	16	3	_	69	0.557

В целом по региону после 1999 г. наблюдался спад суммарной сейсмической энергии от $\Sigma E=7.227 \cdot 10^9 \ \ensuremath{\mathcal{A}}\math{\mathcal{K}}\mbox{ в 1999 г. до }\Sigma E=0.249 \cdot 10^9 \ \ensuremath{\mathcal{A}}\mbox{ \mathcal{K}}\mbox{ в 2012 г., а также почти монотонный спад суммарного числа землетрясений с 2002 г. (<math>N_{\Sigma}=90$) по 2012 г. ($N_{\Sigma}=17$) (рис. 4). В 2013–2014 гг. отмечался рост значений выделившейся за год суммарной сейсмической энергии и суммарного годового числа землетрясений. В 2018 г. выделившаяся сейсмическая энергия возросла относительно 2017 г., а в 2019 г. отмечен ее спад. В 2018 г. отмечен также рост суммарного числа землетрясений относительно предыдущего года, а в 2019 г.– небольшое снижение.

Следует отметить отсутствие устойчивой корреляции между этими двумя параметрами как в 2018–2019 гг., так и за длительный период, 1983–2019 гг.

Рис. 4. Распределение числа сейсмических событий (а) и суммарной выделившейся энергии (б) по годам с 1983 г. по 2019 г.

Заключение. Обзор сейсмичности территории Беларуси за 2018–2019 гг. представлен на основе анализа работы данных 17 цифровых станций. Все цифровые станции работали в режиме on-line с непрерывной передачей информации через мобильную сеть в центр сбора информации в г. Минске. Обработка зафиксированных сейсмических событий осуществлялась с помощью современных стандартных компьютерных программ.

В 2018 г. на территории Беларуси зарегистрировано 72 землетрясения с K_d =4.9–8.6, в 2019 г. – 69 землетрясений с K_d =4.9–8.2. Уровень выделившейся сейсмической энергии в 2018–2019 гг. оставался повышенным относительно его минимальных значений в 2010– 2012 гг., но все еще не достигал среднего уровня за много лет. Число событий за анализируемый период, наоборот, превышает средние долговременные фоновые значения.

Природная сейсмичность по-прежнему наблюдалась в южной части территории, включая Солигорский горнопромышленный район. Происходящие здесь сейсмические события относятся к индуцированной сейсмичности и являются следствием как горнодобывающей деятельности, так и естественных деформационных процессов в регионе. Они также несут важную информацию о пространственном расположении активно деформирующихся областей горного массива Солигорского горнопромышленного региона.

Литература

- 1. Аронов А.Г., Сероглазов Р.Р., Аронова Т.И. Сейсмичность и сейсмотектоника // Сейсмотектоника плит древних платформ в области четвертичного оледенения / Под ред. Р.Г. Гарецкого, С.А. Несмеянова. М.: «Книга и Бизнес», 2009. С. 122–137.
- 2. Геология Беларуси / Под общ. ред. А.С. Махнача [и др.]. Минск: ИГН НАН Беларуси, 2001. 815 с.
- 3. Aronov A.G., Mukhamediev Sh.A., Aronova T.I. Stress state of the Earth's crust and seismicity in a potassium salt mining region in Belarus // Acta Geodaetica et Geophysica. 2014. V. 49, N 2. P. 125–134.
- Результаты проведения комплексных сейсмологических и геофизических наблюдений и обработки данных на базе стационарных и мобильных сейсмических сетей // Отчет ЦОМЭ ГС РАН за 1999 год / Под общ. ред. Д.Ю. Мехрюшева. – Обнинск: Фонды ГС РАН, 2000. – 87 с.
- 5. Руководство пользователя. Регистратор сейсмических сигналов Centauer. Nanometrics Inc., Canada, 2017. 111 р.
- 6. Руководство по эксплуатации и обслуживанию сейсмометра Trillium 120/QA. Nanometrics Inc., Canada, 2017. – 47 p.
- 7. Регистратор сейсмических сигналов Дельта-03. Руководство по эксплуатации. ИТЛЯ. 416611.004 РЭ. М.: 2007. 20 с.
- Техническая документация фирмы Lennartz electronic GmbH. LE-xD Seismometer Family, DN: 990-0073. – Tübingen, Germany, 2012. – 30 p.
- 9. Аронов А.Г., Аронов Г.А. Сейсмические станции Беларуси в 2018–2019 гг. // Землетрясения Северной Евразии. 2023. Вып. 26 (2018–2019 гг.). [Электронное приложение]. URL: http://www.gsras.ru/zse/app-26.html
- Аронов А.Г., Сероглазов Р.Р., Аронова Т.И., Колковский В.М., Аронов В.А., Ацута О.Н., Аронов Г.А. Беларусь // Землетрясения Северной Евразии. – Вып. 21 (2012 г.). – Обнинск: ФИЦ ЕГС РАН, 2018. – С. 218–227.
- 11. Акимов А.П., Красилов С.А. Программный комплекс WSG «Система обработки сейсмических данных» / Свидетельство о государственной регистрации программы для ЭВМ № 2020664678 от 16.11.2020 г.
- 12. Специальные работы по геофизическому мониторингу опасных геодинамических явлений и процессов за 2014 год // Отчет Центра геофизического мониторинга НАН Беларуси. Минск: Фонды ЦГМ НАНБ, 2015. 424 с.
- Аронов А.Г. Региональные годографы сейсмических волн запада Восточно-Европейской платформы // Сейсмологический бюллетень. – Минск: ОКЖИОП, 1996. – С. 136–149.
- Kennet B.L.N. IASPEI 1991 Seismological Tables. Sydney, Australia: Research School of Earth Sciences Australian National University, 1991. – 167 p.
- Маламуд А.С. Использование длительности колебаний для энергетической классификации землетрясений // Магнитуда и энергетическая классификация землетрясений, Т. II. – М.: АН СССР, 1974. – С. 180–194.

- Аронова Т.И., Аронов Г.А., Протасовицкая Т.А., Аронов А.Г. Сейсмичность на территории Беларуси в 2016–2017 г. // Землетрясения Северной Евразии. – 2022. – Вып. 25 (2016–2017 гг.). – С. 206–212. DOI: https://doi.org/10.35540/1818-6254.2022.25.18. EDN: BTXEAR
- 17. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности (Труды ИФЗ АН СССР, № 9 (176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- Аронова Т.И., Захаревич О.В., Аронов В.А. Каталог землетрясений Беларуси за 2018–2019 гг. // Землетрясения Северной Евразии. – 2023. – Вып. 26 (2018–2019 гг.). – [Электронное приложение]. – URL: http://www.gsras.ru/zse/app-26.html

SEISMICITY of the TERRITORY of BELARUS in 2018–2019

T.I. Aronova, G.A. Aronov, O.V. Zaharevich, A.G. Aronov

Centre of Geophysical Monitoring of the National Academy of Sciences of Belarus, Minsk, Belarus, centr@cgm.org.by

Abstract. A review of seismicity in the territory of Belarus within 2018–2019 based on the data of 17 digital stations is presented. A total of 72 events with K_d =4.9–8.6 were recorded in 2018 and 69 events with K_d =4.9–8.2 – in 2019. All of the events were confined to the southern part of the territory, the Soligorsk mining area included. The comparison of N_{Σ} and ΣE annual estimations for 2018 and 2019 with the long-term average values shows that the level of the seismic energy released in 2018 and 2019 remains low, but a number of the events for the periods under consideration are higher than the long-term average background values. There is no the stable correlation between the released seismic energy and the number of events for a long-term period of 1983–2019.

Keywords: seismic station, earthquake, catalogue, epicenter, energy class, magnitude.

For citation: Aronova, T.I., Aronov, G.A., Zaharevich, O.V., & Aronov, A.G. (2023). [Seismicity of the territory of Belarus in 2018–2019]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], *26*(2018–2019), 217–224. (In Russ.). DOI: https://doi.org/10.35540/1818-6254.2023.26.18 EDN: SNZIXK

References

- 1. Aronov, A.G., Seroglazov, R.R., & Aronova, T.I. (2009). [Seismicity and seismotectonics]. In *Seismotektonika plit drevnikh platform v oblasti chetvertichnogo oledeneniia* [Seismotectonics of the Plates of the Old Platforms within an Area of the Quarternary Glaciation] (pp. 122–137). Moscow, Russia: Kniga i Biznes Publ. (In Russ.).
- 2. Makhnach, A.S., Goretsky, G.I., Matvejeva, A.V., & Anoshko, J.I. (2001). *Geologiya Belarusi* [Geology of Belarus]. Minsk, Belarus: The Institute of Geological Science Publ., 815 p. (In Russ.).
- 3. Aronov, A.G., Mukhamediev, Sh.A., & Aronova, T.I. (2014). Stress state of the Earth's crust and seismicity in a potassium salt mining region in Belarus. *Acta Geodaetica et Geophysica*, 49(2), 125–134.
- 4. Mehrjushev, D.Ju. (2000). [Results of complex seismological and geophysical observations and data processing on the basis of the stationary and mobile seismic networks]. In *Otchet COME GS RAN za 1999 god* [Report of CEME GS RAS for 1999]. Obninsk, Russia: Funds of GS RAS, 87 p. (In Russ.).
- 5. Rukovodstvo pol'zovatelia. Registrator seismicheskikh signalov Centauer [User's Manual. Seismic signal recorder Centauer]. (2017). Nanometrics Inc., Canada, 111 p. (In Russ.).
- 6. *Rukovodstvo po ekspluatatsii i obsluzhivaniyu seismometra Trillium 120/QA* [Trillium 120/QA Seismometer Operations and Maintenance Manual]. (2017). *Nanometrics Inc., Canada*, 47 p. (In Russ.).
- 7. Registrator seismicheskikh signalov Delta-03. Rukovodstvo po ekspluatatsii ITLIA.416611.004 RE [Seismic signal recorder Delta-03. Operations Manual]. (2007). Moscow, Russia, 20 p. (In Russ.).
- 8. Technical Documentation Lennartz electronic GmbH. (2012). LE-xD Seismometer Family, DN: 990-0073. Tübingen, Germany, 30 p. (In Russ.).
- Aronov, A.G., & Aronov, G.A. (2023). [Seismic Stations of Belarus in 2018–2019]. Zemletriaseniia Severnoi Evrazii [Earthquakes in Northern Eurasia], 26(2018–2019). Electronic supplement. Retrieved from http://www.gsras.ru/zse/app-26.html (In Russ.).
- Aronov, A.G., Seroglazov, R.R., Aronova, T.I., Kolkovsky, V.M., Aronov, V.A., Atsuta, O.N., & Aronov, G.A. (2018). [Belarus]. Zemletriaseniia Severnoi Evrazii [Earthquakes in Northern Eurasia], 21(2012), 218–227. (In Russ.).
- 11. Akimov, A.P., & Krasilov, S.A. (2020). [WSG software package "Seismic data processing system"]. Certificate of state registration of a computer program No. 2020664678. (In Russ.).

- [Special works on geophysical monitoring of dangerous geodynamic phenomena and processes in 2014].
 (2015). In *Otchet Tsentra geofizicheskogo monitoringa NAN Belarusi* [Report of the Centre of Geophysical Monitoring of the NAS of Belarus]. Minsk, Belarus: Funds of CGM NASB, 424 p. (In Russ.).
- 13. Aronov, A.G. (1996). [Regional Travel-Time Curves of Seismic Waves of the East European Platform West]. In *Seismologicheskii biulleten'* [Seismological Bulletin] (pp. 136–149). Minsk, Belarus. (In Russ.).
- 14. Kennet, B.L.N. (1991). IASPEI 1991 Seismological Tables. Sydney, Australia: Research School of Earth Sciences Australian National University, 167 p.
- 15. Malamud, A.S. (1974). [The use of the oscillation duration for the energy classification of earthquakes]. In *Magnituda i energeticheskaya klassifikaciya zemletrjasenij*, *T. II* [Magnitude and the energy classification of the earthquakes, V. II] (pp. 180–194). Moscow, Russia: USSR Academy of Sciences Publ. (In Russ.).
- Aronova, T.I., Aronov, G.A., Protasovitskaya, T.A., & Aronov, A.G. (2022). [Seismicity of the territory of Belarus in 2016–2017]. Zemletriaseniia Severnoi Evrazii [Earthquakes in Northern Eurasia], 25(2016–2017), 206–212. (In Russ.). DOI: https://doi.org/10.35540/1818-6254.2022.25.18. EDN: BTXEAR
- 17. Rautian, T.G. (1960). [Energy of earthquakes]. In *Metody detal'nogo izucheniya seismichnosti (Trudy IFZ AN SSSR, № 9(176))* [Methods of Detail Study of Seismicity] (pp. 75–114). Moscow, Russia: Inst. Fiz. Zemli Akad. Nauk SSSR Publ. (In Russ.).
- Aronova, T.I., Zaharevich, O.V., & Aronov, V.A. (2023). [Catalogue of the Earthquakes of Belarus in 2018–2019]. Zemletriaseniia Severnoi Evrazii [Earthquakes in Northern Eurasia], 26(2018–2019). Electronic supplement. Retrieved from http://www.gsras.ru/zse/app-26.html (In Russ.).