СЕЙСМИЧНОСТЬ на ТЕРРИТОРИИ БЕЛАРУСИ в 2016–2017 гг. Т.И. Аронова, Г.А. Аронов, Т.А. Протасовицкая, А.Г. Аронов

Центр геофизического мониторинга Национальной академии наук Беларуси, г. Минск, Беларусь, centr@cgm.org.by

Аннотация. Представлен обзор сейсмичности территории Беларуси в 2016–2017 гг. на основе данных 17 цифровых станций. В 2016 г. зарегистрировано 64 события с K_d =4.7–8.3, а в 2017 г. – 42 события с K_d =5.2–8.6. Все землетрясения проявились в южной части зоны ответственности, включающей Солигорский горнопромышленный район. Сравнение параметров N(K) и ΣE с долговременными средними оценками показало, что уровень выделившейся сейсмической энергии в 2016 г. и 2017 гг. остается пониженным. Число событий за анализируемый период соответствует средним долговременным фоновым значениям. За долговременный период 1983–2017 гг. наблюдается отсутствие устойчивой корреляции между выделенной энергии и числом событий.

Ключевые слова: сейсмическая станция, землетрясение, каталог, эпицентр, энергетический класс, расчетная магнитуда.

DOI: 10.35540/1818-6254.2022.25.18 EDN: BTXEAR

Для цитирования: Аронова Т.И., Аронов Г.А., Протасовицкая Т.А., Аронов А.Г. Сейсмичность на территории Беларуси в 2016–2017 гг. // Землетрясения Северной Евразии. – 2022. – Вып. 25 (2016–2017 гг.). – С. 206–212. DOI: 10.35540/1818-6254.2022.25.18. EDN: BTXEAR

Введение. Территория Беларуси расположена на западе древней Восточно-Европейской платформы и, в соответствии с сейсмотектоническим районированием, относится к слабоактивному региону [1]. Наблюдения за сейсмическими процессами проводит Центр геофизического мониторинга НАН Беларуси. В тектоническом плане сейсмические события, зарегистрированные в 2016–2017 гг., приурочены к зоне сочленения северо-западной части Припятского прогиба и Белорусской антеклизы, включая Солигорский горнопромышленный регион [2]. Старобинское месторождение в Беларуси – крупнейшее в Европе месторождение калийных солей – было открыто в 1949 г. и начало разрабатываться с начала шестидесятых годов прошлого столетия. Учитывая происходящие в течение длительного времени изменения напряженного состояния геологической среды, вызванные выемкой, перемещением горных пород и их складированием в соляных отвалах, можно предположить, что Солигорские землетрясения связаны с наведенной сейсмичностью и имеют техногенный характер. Однако проявления сейсмичности за пределами зоны промышленных выработок служат признаком того, что с определенного времени сейсмический процесс начинает контролироваться в основном региональными геодинамическими факторами и в меньшей степени зависит от горнодобывающей деятельности [3]. Ярким проявлением геодинамической активизации недр на территории Старобинского месторождения калийных солей, вызвавшим интерес к этой проблеме, стало землетрясение 10 мая 1978 г. с эпицентром в д. Кулаки Солигорского района. Регулярные непрерывные наблюдения в Солигорском горнопромышленном регионе начались в 1983 году.

Сеть сейсмических станций. В 2016–2017 гг. наблюдения проводились на станциях «Минск» (МІК) и «Нарочь» (NAR), где установлены регистраторы сейсмических сигналов цифровых станций «SDAS» (Seismic digital acquisition station) российского производства, изготовленные фирмой «Геотех+» (г. Обнинск) [4] с широкополосными сейсмодатчиками СМ-3-ОС. Продолжили работу восемь станций Солигорской локальной сети: «Волоты» (VOL), «Тесово» (TES), «Устронь» (UST), «Чижовка» (CHJ), Копацевичи (КАР), Новый луг (NVL), «Махновичи» (MAH), «Листопадовичи» (LST) и семь станций Островецкой локальной сети: «Градовщизна» (GRD), «Вадатишки» (VDT), «Бояры» (BOR), «Селище» (SEL), «Горная Каймина» (GRK), «Воробьи» (VRB), «Литвяны» (LTV). Широкополосная сейсмическая станция «Нарочь» (NAR) расположена в 45 км к северо-востоку от Островецкой локальной сети.

На Солигорской и Островецкой локальных сетях непрерывные наблюдения проводились аппаратурой, состоящей из регистраторов сейсмических сигналов «Дельта-03» (изготовитель – фирма «ГЕОТЕХ», Россия [5]) и короткопериодных сейсмоприемников «Le 3DLite» (изготовитель –

фирма «LENNARTZ», Германия [6]). Все цифровые станции работали в режиме on-line с непрерывной передачей информации через мобильную сеть в центр сбора информации в г. Минск.

Расположение всех сейсмических станций показано на рис. 1. Сведения обо всех станциях и параметрах регистрирующей аппаратуры приведены в электронном приложении [7] к настоящему выпуску журнала.

Рис. 1. Сеть сейсмических станций Беларуси в 2016–2017 гг., внешняя рамка карты соответствует границе зоны ответственности территории Беларуси

1 – сейсмическая станция; 2 – город; 3 – г. Минск; 4 – государственная граница.

Методика обработки записей сейсмических событий. Обработка землетрясений осуществлялась с помощью современных стандартных компьютерных программ, подробно изложенных в [8]. Телесейсмические и региональные землетрясения обрабатывались с использованием программы WSG (система обработки сейсмических данных), разработанной в ГС РАН [9], и пакета компьютерных программ из [10], разработанных и адаптированных в Центре геофизического мониторинга НАН Беларуси (IdSeism – идентификация сейсмических явлений: выделение телесейсмических, региональных, местных (локальных) событий и взрывов;

UniViewer – визуальное отображение сейсмических данных из различных файлов: файлов станций «SDAS» и файлов типа DDB со станций «Дельта-03»; EmulEq – решение прямой задачи распространения сейсмических волн).

Программа HYPOSAT была адаптирована и использовалась в Центре для локации местных сейсмических событий станциями Солигорской локальной сети. По времени вступлений *P*- и *S*волн вычислялись: время t_0 возникновения землетрясения и положение гипоцентра (φ , λ , h), а также погрешности – как общая погрешность δt_0 по времени t_0 в очаге и погрешности $\delta \varphi^{\circ}$, $\delta \lambda^{\circ}$, δh по положению гипоцентра (φ , λ , h), так и ошибка каждого отдельного вступления. Наряду с региональным годографом [11], в программе предусмотрено применение мирового годографа IASPEI [12].

Энергетический класс сейсмических событий K_d определялся по длительности колебаний на записи, где τ – длительность записи от начала колебаний до момента слияния с микросейсмами [8, 13]. Соотношение (1) между длительностью записи τ (*c*) и энергетическим классом $K_P=K_d$ было получено экспериментально [8] в виде:

$$K_{\rm P} = K_{\rm d} = 7.2 \, \rm lg\tau - 6.8.$$
 (1)

Определение расчетных магнитуд получено традиционно [8, 14] пересчетом из энергетических классов K_d по формуле Т.Г. Раутиан из [15], в предположении о возможности ее использования и для классов K_d :

$$M = (K_d - 4)/1.8.$$
 (2)

Каталог землетрясений. На территории Беларуси сейсмическими станциями в 2016–2017 гг. было зарегистрировано 106 землетрясений с K_d =4.7–8.6 и с определением всех параметров [16].

В 2016 г. произошло 64 землетрясения с K_d =4.7–8.3. Максимальное землетрясение с K_d =8.3 отмечено 2 марта в 04^h39^m в 20 км к северо-востоку от г. Солигорска и в 3 км к юго-западу от д. Дарасино. В 2017 г. зарегистрировано 42 землетрясения с K_d =5.2–8.6. Самое сильное землетрясение с K_d =8.6 произошло 7 июля в 15^h48^m в 5 км к северо-востоку от г. Старобин и в 6 км к юго-западу от г. Солигорска. Сведений об ощутимости сотрясений от указанных землетрясений не поступало.

Анализ пространственного распределения сейсмичности на территории Беларуси показал, что эпицентры землетрясений располагаются в ее южной части (рис. 2). На западе, севере, востоке и в центральной части Беларуси не было зарегистрировано ни одного землетрясения.

Рис. 2. Карта эпицентров землетрясений в Беларуси за 2016–2017 гг.

1 – энергетический класс *K*_d; 2 – город.

Распределение числа сейсмических событий по энергетическим классам *K*_d и суммарной выделившейся сейсмической энергии по месяцам за 2016 г. представлено в табл. 1, а за 2017 г. – в табл. 2.

Месяц			$K_{\rm d}$	λĭ	ΣE ,		
	5	6	7	8	9	IVΣ	10 ⁹ Дж
Ι	3	2	2	-	_	7	0.0334
II	_	7	2	-	_	9	0.0657
III	-	4	3	4	_	11	0.5932
IV	_	2	4	1	_	7	0,2271
V	_	3	5	_	_	8	0,1228
VI	_	2	2	1	_	5	0.1358
VII	_	—	1	1	_	2	0.0916
VIII	_	1	4	1	_	6	0.1403
IX	-	1	-	2	_	3	0.2761
X	_	—	2	_	_	2	0.0423
XI	_	1	1	-	_	2	0.0064
XII	_	1	1	-	_	2	0.0198
Всего	3	24	27	10	_	64	1.7544

Таблица 1. Распределение числа землетрясений по энергетическим классам *K*_d и суммарная сейсмическая энергия Σ*E* за январь–декабрь 2016 г.

Месяц			$K_{\rm d}$	N	ΣE ,		
	5	6	7	8	9	IV_{Σ}	10 ⁹ Дж
Ι	-	_	4	-	-	4	0.0969
II	_	2	—	1	-	3	0.1468
III	_		2	_	_	2	0.0286
IV	-	1	3	-	-	4	0,0548
V	1	2	1	-	-	4	0,0213
VI	_	4	1	_	_	5	0.0339
VII	-	—	2	1	1	4	0.6601
VIII	-	1	1	-	-	2	0.0137
IX	_	2	3	_	_	5	0.0648
Х	-	—	2	-	-	2	0.0140
XI	_	1	1	1	_	3	0.0847
XII	_	_	1	3	_	4	0.2878
Всего	1	13	21	6	1	42	1.5073

Таблица 2. Распределение числа землетрясений по энергетическим классам *K*_d и суммарная сейсмическая энергия Σ*E* за январь–декабрь 2017 г.

Рассматривая ход сейсмического процесса в течение 2016–2017 гг., можно отметить, что он развивался неравномерно. Максимум высвобождения сейсмической энергии в 2016 г. приходится на март ($\Sigma E=0.5932 \cdot 10^9 \ \mbox{$Dextstyme}$), в 2017 г. – на июль ($\Sigma E=0.6601 \cdot 10^9 \ \mbox{$Dextstyme}$). Максимум числа событий в 2016 г. наблюдался в марте (11), а в 2017 г. – в июне и сентябре (5).

Распределение землетрясений по интервалам глубин в 2016–2017 гг. показано в табл. 3. Как видно из таблицы, большинство землетрясений лоцировано в слоях земной коры с $h=11-30 \ \kappa m$. Погрешность определения глубин гипоцентров находится в пределах $\delta=\pm(0,21-9,94) \ \kappa m$ [16]. Приуроченность максимума числа событий к средним этажам глубин земной коры ($h=11-30 \ \kappa m$) свидетельствует в пользу тектонической, а не техногенной природы зарегистрированных сейсмических событий.

Таблица 3. Распределение числа землетрясений по интервалам глубин h в 2016-2017 гг.

h1-h2, км	0–10	11-20	21-30	31–40	N_{Σ}
N(h)	12	31	39	24	106

График повторяемости землетрясений, характеризующий представительность регистрации на рассматриваемой территории, построен за период 2016–2017 гг. и представлен на рис. 3. Излом графика приходится на K_d =7, что позволяет считать землетрясения с K_d =7–8 представительными на рассматриваемой территории в указанный период. Для представительных землетрясений с K_d =7–8 получено уравнение:

$$lgN = 5.02 - 0.48K_d$$
 (3)

с наклоном графика повторяемости у=-0.48.

Сопоставление данных за 2016 г. и 2017 г. с долговременными среднегодовыми оценками N_{Σ} и ΣE за период 1983–2015 гг. [14] показано в табл. 4.

за 1985-2015 и 1985-2010 11.								
Гол			λĭ	ΣE ,				
ТОД	4	5	6	7	8	9	IVΣ	10 ⁹ Дж
2015	_	7	37	32	4	—	80	1.059
Сумма за 1983–2015 гг.	5	178	420	473	379	4	1459	74.956
Среднее за 33 года	0.15	5.39	12.73	14.33	11.48	0.12	44.21	2.271
2016	Ι	3	24	27	10	_	64	1.754
Сумма за 1983–2016 гг.	5	181	444	500	389	4	1523	76.711
Среднее за 34 года	0.15	5.32	13.06	14.71	11.44	0.12	44.79	2.256
2017	Ι	1	13	21	6	1	42	1.507

Таблица 4. Годовые значения N числа сейсмических событий разных энергетических классов K_d и их суммарной сейсмической энергии ΣE на территории Беларуси за 2015, 2016 и 2017 гг. в сравнении с суммарными и средними значениями за 1983–2015 и 1983–2016 гг

Сравнение параметров N_{Σ} и ΣE за 2016 г. ($\Sigma E=1.754 \cdot 10^9 \ \mbox{$D$$\mathcal{D}$$\mathcal{K}$}, N_{\Sigma}=64$) и 2017 г. ($\Sigma E=1.507 \cdot 10^9 \ \mbox{$D$$\mathcal{D}$$\mathcal{K}$}, N_{\Sigma}=42$) с долговременными средними оценками показало, что уровень выделившейся сейсмической энергии остается пониженным. Число событий за анализируемый период близко к среднему долговременному фоновому значению ($N_{\Sigma}\cong44$).

В целом по региону после 1999 г. наблюдался спад суммарной сейсмической энергии от $\Sigma E=7.227 \cdot 10^9 \ \ensuremath{\mathcal{A}}\ \ensuremath{\mathcal{K}}\ \ensuremath{\mathcal{B}}\ \ensuremath{\mathcal{B}}\ \ensuremath{\mathcal{A}}\ \ensuremath{\mathcal{K}}\ \ensuremath{\mathcal{B}}\ \ensuremath{\mathcal{A}}\ \ensuremath{\mathcal{K}}\ \ensuremath{\mathcal{B}}\ \ensuremath{\mathcal{A}}\ \ensuremath{\mathcal{B}}\ \ensuremath{\mathcal{A}}\ \ensuremath{\mathcal{A}}\ \ensuremath{\mathcal{A}}\ \ensuremath{\mathcal{B}}\ \ensuremath{\mathcal{A}}\ \en$

Заключение. Обзор сейсмичности территории Беларуси за 2016–2017 гг. представлен на основе анализа данных 17 цифровых станций. Все станции работали в режиме on-line с непрерывной передачей информации через мобильную сеть в центр сбора информации. Обработка зафиксированных сейсмических событий осуществлялась с помощью современных стандартных компьютерных программ.

В 2016 г. на территории Беларуси зарегистрировано 64 землетрясения с *K*_d=4.7–8.3, в 2017 г. – 42 землетрясения с *K*_d=5.2–8.6. Анализ показал, что в 2016–2017 гг. уровень выделившейся сейсмической энергии продолжал повышение, начавшееся в 2013 г., но все еще оставался ниже среднего за много лет.

По-прежнему природная сейсмическая активность наблюдается в южной части территории, включая Солигорский горнопромышленный район. Происходящие здесь сейсмические события относятся к индуцированной сейсмичности и являются следствием как горнодобывающей деятельности, так и естественных деформационных процессов в регионе. Они также несут важную информацию о пространственном расположении активно деформирующихся областей горного массива Солигорского горнопромышленного региона.

Литература

- 1. Аронов А.Г., Сероглазов Р.Р., Аронова Т.И. Сейсмичность и сейсмотектоника // Сейсмотектоника плит древних платформ в области четвертичного оледенения / Под ред. Р.Г. Гарецкого, С.А. Несмеянова. М.: «Книга и Бизнес», 2009. С. 122–137.
- 2. Геология Беларуси / Под общ. ред. А.С. Махнача [и др.]. Минск: ИГН НАН Беларуси, 2001. 815 с.
- 3. Aronov A.G., Mukhamediev Sh.A., Aronova T.I. Stress state of the Earth's crust and seismicity in a potassium salt mining region in Belarus // Acta Geodaetica et Geophysica. 2014. V. 49, N 2. p. 125–134.
- Результаты проведения комплексных сейсмологических и геофизических наблюдений и обработки данных на базе стационарных и мобильных сейсмических сетей // Отчет ЦОМЭ ГС РАН за 1999 год под общей ред. Д.Ю. Мехрюшева. – Обнинск: Фонды ГС РАН, 2000. – 87 с.
- 5. Регистратор сейсмических сигналов «Дельта-03». Руководство по эксплуатации. ИТЛЯ. 416611.004 РЭ. М.: 2007. 20 с.
- Техническая документация фирмы «Lennartz electronic GmbH». LE-xD Seismometer Family, DN: 990-0073. – Tübingen, Germany, 2012. – 30 с.
- 7. Аронов А.Г., Аронов Г.А. Сейсмические станции Беларуси в 2016–2017 гг. // Землетрясения Северной Евразии. 2022. Вып. 25 (2016–2017 гг.). [Электронное приложение]. URL: http://www.gsras.ru/zse/app-25.html
- Аронов А.Г., Сероглазов Р.Р., Аронова Т.И., Колковский В.М., Аронов В.А., Ацута О.Н., Аронов Г.А. Беларусь // Землетрясения Северной Евразии. – Вып. 21 (2012 г.). – Обнинск: ФИЦ ЕГС РАН, 2018. – С. 218–227.
- 9. Акимов А.П., Красилов С.А. Программный комплекс WSG «Система обработки сейсмических данных» / Свидетельство о государственной регистрации программы для ЭВМ № 2020664678 от 16.11.2020 г.
- Специальные работы по геофизическому мониторингу опасных геодинамических явлений и процессов за 2014 год // Отчет Центра геофизического мониторинга НАН Беларуси. – Минск: Фонды ЦГМ НАНБ, 2015. – 424 с.
- 11. Аронов А.Г. Региональные годографы сейсмических волн запада Восточно-Европейской платформы // Сейсмологический бюллетень. – Минск: ОКЖИОП, 1996. – С. 136–149.
- 12. Kennet B.L.N. IASPEI 1991 Seismological Tables. Sydney, Australia: Research School of Earth Sciences Australian National University, 1991. 167 p.
- Маламуд А.С. Использование длительности колебаний для энергетической классификации землетрясений // Магнитуда и энергетическая классификация землетрясений, Т. II. – М.: АН СССР, 1974. – С. 180–194.
- Аронова Т.И., Аронов Г.А., Протасовицкая Т.А., Аронов А.Г. Сейсмичность на территории Беларуси в 2015 г. // Землетрясения Северной Евразии. – 2021. – Вып. 24 (2015 г.). – С. 192–199. doi: 10.35540/1818-6254.2021.24.18
- 15. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности (Труды ИФЗ АН СССР, № 9 (176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- Аронова Т.И., Килляр О.Н., Аронов В.А. Каталог землетрясений Беларуси за 2016–2017 гг. // Землетрясения Северной Евразии. 2022. Вып. 25 (2016–2017 гг.). [Электронное приложение]. URL: http://www.gsras.ru/zse/app-25.html

SEISMICITY of the TERRITORY of BELARUS in 2016–2017 T.I. Aronova, G.A. Aronov, T.A. Protasovitskaya, A.G. Aronov

Centre of Geophysical Monitoring of the National Academy of Sciences of Belarus, Minsk, Belarus, centr@cgm.org.by

Abstract. A review of seismicity in the territory of Belarus for 2016–2017 based on the data of 17 digital stations is presented. 64 events with K_d =4.7–8.3 and 42 events with K_d =5.2–8.6 were recorded for 2016 and 2017 respectively. All events were confined to the southern part of the territory, including the Soligorsk mining area. A comparison of N_{Σ} and ΣE for 2016 and 2017 with the long-term average values shows that the level of the seismic energy released in 2016 and 2017 was reduced. The number of events for 2016–2017 corresponds to the long-term average background values. There is no stable correlation between the released seismic energy and the number of earthquakes for the long-term period of 1983–2017.

Keywords: seismic station, earthquake, catalogue, epicenter, energy class, magnitude.

DOI: DOI: 10.35540/1818-6254.2022.25.18 **EDN:** BTXEAR

For citation: Aronova, T.I., Aronov, G.A., Protasovitskaya, T.A., & Aronov, A.G. (2022). [Seismicity of the territory of Belarus in 2016–2017]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], 25(2016–2017), 206–212. (In Russ.). DOI: 10.35540/1818-6254.2022.25.18. EDN: BTXEAR

References

- 1. Aronov, A.G., Seroglazov, R.R., & Aronova, T.I. (2009). [Seismicity and seismotectonics]. In *Seismotektonika plit drevnikh platform v oblasti chetvertichnogo oledeneniia* [Seismotectonics of the Plates of the Old Platforms within an Area of the Quarternary Glaciation] (pp. 122–137). Moscow, Russia: Kniga i Biznes Publ. (In Russ.).
- Makhnach, A.S., Goretsky, G.I., Matvejeva, A.V., & Anoshko, J.I. (2001). *Geologiya Belarusi* [Geology of Belarus]. Minsk, Belarus: The Institute of Geological Science Publ., 815 p. (In Russ.).
- 3. Aronov, A.G., Mukhamediev, Sh.A., & Aronova, T.I. (2014). Stress state of the Earth's crust and seismicity in a potassium salt mining region in Belarus. *Acta Geodaetica et Geophysica*, 49(2), 125–134.
- 4. Mehrjushev, D.Ju. (2000). [Results of complex seismological and geophysical observations and data processing on the basis of the stationary and mobile seismic networks]. In *Otchet COME GS RAN za 1999 god* [Report of CEME GS RAS for 1999]. Obninsk, Russia: Funds of GS RAS, 87 p. (In Russ.).
- 5. Registrator seismicheskikh signalov "Delta-03". Rukovodstvo po ekspluatatsii ITLIA.416611.004 RE. [Seismic signal recorder "Delta-03". Operations Manual]. (2007). Moscow, Russia, 20 p. (In Russ.).
- 6. Technical Documentation «Lennartz electronic GmbH». (2012). LE-xD Seismometer Family, DN: 990-0073. Tübingen, Germany, 30 p. (In Russ.).
- Aronov, A.G., & Aronov, G.A. (2022). [Seismic Stations of Belarus in 2016–2017]. Zemletriaseniia Severnoi Evrazii [Earthquakes in Northern Eurasia], 25(2016–2017). Electronic supplement. Retrieved from http://www.gsras.ru/zse/app-25.html (In Russ.).
- Aronov, A.G., Seroglazov, R.R., Aronova, T.I., Kolkovsky, V.M., Aronov, V.A., Atsuta, O.N., & Aronov, G.A. (2018). [Belarus]. Zemletriaseniia Severnoi Evrazii [Earthquakes in Northern Eurasia], 21(2012), 218–227. (In Russ.).
- 9. Akimov, A.P., & Krasilov, S.A. (2020). [WSG software package "Seismic data processing system"]. Certificate of state registration of a computer program No. 2020664678. (In Russ.).
- [Special works on geophysical monitoring of dangerous geodynamic phenomena and processes in 2014]. (2015). In *Otchet Tsentra geofizicheskogo monitoringa NAN Belarusi* [Report of the Centre of Geophysical Monitoring of the NAS of Belarus]. Minsk, Belarus: Funds of CGM NASB, 424 p. (In Russ.).
- 11. Aronov, A.G. (1996). [Regional Travel-Time Curves of Seismic Waves of the East European Platform West]. Seismologicheskii biulleten' [Seismological Bulletin] (pp. 136–149). Minsk, Belarus. (In Russ.).
- 12. Kennet, B.L.N. (1991). IASPEI 1991 Seismological Tables. Sydney, Australia: Research School of Earth Sciences Australian National University, 167 p.
- Malamud, A.S. (1974). [The use of the oscillation duration for the energy classification of earthquakes]. In *Magnituda i energeticheskaya klassifikaciya zemletrjasenij, T. II* [Magnitude and the energy classification of the earthquakes, V. II] (pp. 180–194). Moscow, Russia: USSR Academy of Sciences Publ. (In Russ.).
- Aronova, T.I., Aronov, G.A., Protasovitskaya, T.A., & Aronov, A.G. (2021). [Seismicity of the territory of Belarus in 2015]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], 24(2015), 192–199. (In Russ.). doi: 10.35540/1818-6254.2021.24.18
- 15. Rautian, T.G. (1960). [Energy of earthquakes]. In *Metody detal'nogo izucheniya seismichnosti (Trudy IFZ AN SSSR, № 9(176))* [Methods of Detail Study of Seismicity] (pp. 75–114). Moscow, Russia: Inst. Fiz. Zemli Akad. Nauk SSSR Publ. (In Russ.).
- Aronova, T.I., Killiar O.N., & Aronov, V.A. (2022). [Catalogue of the Earthquakes of Belarus in 2016–2017]. *Zemletriaseniia Severnoi Evrazii* [Earthquakes in Northern Eurasia], 25(2016–2017). Electronic supplement. Retrieved from http://www.gsras.ru/zse/app-25.html (In Russ.).