ЗЕМЛЕТРЯСЕНИЯ ЗАВЕТНЕНСКОЕ 2 мая 2012 г. с К_P=11.2, Мw_{per}=4.3, I₀^p=5 и ВОРОВСКОЛЕССКОЕ-II 15 декабря 2012 г. с К_P=10.8, Мw_{per}=4.2, I₀^p=4 (Ставропольский край) И.П. Габсатарова, Л.Н. Королецки, Л.Е. Иванова, Е.А. Селиванова

ФИЦ ЕГС РАН, г. Обнинск, ira@gsras.ru

Аннотация. Приводятся инструментальные и макросейсмические данные о двух землетрясениях Центрального Предкавказья: Заветненского 2 мая 2012 г. и Воровсколесского-II 15 декабря 2012 г. Эпицентры их располагались в Армавиро-Невинномысской и Нагутской зонах ВОЗ. Вблизи них и ранее (в XVIII–XX веках) неоднократно происходили ощутимые до 7 баллов землетрясения. Полученные по знакам *P*-волн на 35 и 23 станциях механизмы очага различны: первое – взбросо-сдвиг, второе – надвиг, что находится в соответствии с установленной кинематикой дизьюнктивных зон по данным Е.Е. Милановского. Вытянутость изосейст Заветненского землетрясения в запад–северо-западном направлении согласуется с простиранием плоскости *NP1* механизма очага и подтверждает выбор ее в качестве действующей плоскости. Спектральные исследования записей станций «Анапа», «Кисловодск» и «Сочи» позволили построить очаговые спектры, определить скалярный сейсмический момент и моментную магнитуду *Mw*. Результаты макросейсмического обследования эпицентральной зоны использованы для проверки известных значений параметров уравнения макросейсмического поля. Установлено, что для гипоцентральных расстояний $r \le 100 \, \kappa M$ не подходят коэффициенты уравнения b=1.6, v=3.1, c=2.2, применяемые ранее для Северного Кавказа, лучшее соответствие наблюденным данным найдено для параметров закона затухания b=1.5, v=3.5, c=2.6.

Abstract. The instrumental and macroseismic data on two earthquakes of the Central Ciscaucasia of Zavetnensky on May 2, 2012 and Vorovskolessky II on December 15, 2012 are given. The epicenters were located in the Armaviro-Nevinnomyssk and Nagutskaya zones of the Probably Expected Earthquakes. Near them, and earlier (in the XVIII-XX centuries), there were a number of significant earthquakes up to I=VII. The focal mechanisms obtained at the 35th and 23rd stations are different: the first Strike-slip, the second-Thrust, which is in accordance with the established kinematics of the disjunctive zones according to E.E. Milanovsky. The stretching of the isoseist of the Zavetnensky earthquake in the west-north-west direction is consistent with the strike of the plane *NP1* of the mechanism and confirms its choice as an operating plane. Spectral studies of the recordings of the station Anapa, Kislovodsk and Sochi made it possible to construct source spectrum, to determine the scalar seismic moment and the moment magnitude Mw. The results of the macroseismic field equation. It is established that the coefficients of the equation b=1.6, v=3.1, c=2.2, applied earlier for the North Caucasus, do not fit the hypocentral distances $r \le 100 \text{ km}$, the best correspondence to the observed data is found for the parameters of the damping law b=1.5, v=3.5, c=2.6.

В 2012 г. наблюдалась заметная активизация в северной части Эльбрусско-Минераловодского сейсмоактивного района [1] Северного Кавказа с проявлением двух ощутимых землетрясений: Заветненского 2 мая 2012 г. с расчетной магнитудой M^p =4.0, I_0 =5 баллов [2] с эпицентром вблизи с. Заветное Ставропольского края и Воровсколесского-II 15 декабря 2012 г. с M^p =3.8, I_0 =4 балла [2] вблизи станицы Воровсколесская, где уже ранее, 12.05.1895 г. в 13^h10^m,было известно 7-балльное землетрясение (Воровсколесское-I) с M^p =4.1 [3]. Расчет магнитуды M из класса K_P выполнялся по уравнению Т.Г. Раутиан [4]:

$M^{\rm p} = (K_{\rm P} - 4)/1.8.$

Инструментальные данные. Параметры названных выше землетрясений определены по данным региональных станций Северного Кавказа в Центральном отделении ГС РАН, а также в других сейсмологических центрах, все они собраны в табл. 1 и 2. Здесь кроме координат гипоцентров и магнитуд сообщаются характеристики используемой сети сейсмических станций: число станций; минимальное Δ_{\min} и максимальное Δ_{\max} расстояния; максимальный пустой азимутальный угол (Gap), характеризующий окружение эпицентра станциями. Сеть Северного Кавказа, используемая при Заветненском землетрясении, хорошо окружает эпицентр (Gap=113°), есть близкая станция «Невинномысск» ($\Delta_{\min} \leq 30 \ \kappa M$), это позволяет считать, что координаты гипоцентра определены с погрешностью не более 5 κM . Немного хуже ситуация с сетью при Воровсколесском-II землетрясении, так как ближайшая станция удалена от него на расстояние примерно в 50 κM . Как видно из рис. 1 и 2, из-за разных методик и состава сейсми-

ческих сетей разброс результатов локации велик, в пределах 30 км зоны. К макросейсмическим эпицентрам наиболее близки решения по региональным данным (табл. 1).

Агент-	<i>t</i> ₀ ,	δt_0 ,		Гипоцентр					Магнитуда Окружение эпи			е эпице	ентра
ство	ч мин с	С	φ°, N	δφ°	λ°, Ε	δλ°	h,	δh ,	/n	n	Δ_{\min} ,	$\Delta_{\rm max}$,	Gap,
							КМ	км		ст.	0	0	0
GS _{reg} [2]	00 44 19.60	0.5	44.75 _и	0.05	41.66 _и	0.05	7и	5	$K_{\rm P}=11.2/33, M^{\rm P}=4.0$	48	0.20	5.72	113
U			44.79 _м		41.70 _м				MPVA=5.0/23				
MOS [5]	00 44 17.90	1.03	44.9040	0.06	41.5580	0.03	10		MPSP=4.0/12	82			
IDC [6]	00 44 17.83	0.47	44.7311	0.07	41.6521	0.05	0.0f		$Ms=3.5/1, m_b=3.8/18$	31	3.8	83.85	80
									ML=3.8/9				
NEIC [6]	00 44 18.63	1.31	44.9310	0.06	41.7080	0.04	10f		$m_{\rm b}=3.8/14$	57	0.95	71.26	58
CSEM [7]	00 44 19.30	0.12	44.9634	0.05	41.6727	0.03	10		$m_{\rm b}$ =3.8/10, <i>ML</i> =4.7/4	109	0.97	71.10	60
ISC [6]	00 44 18.03	1.07	44.989	0.04	41.6776	0.03	9.8		$m_{\rm b} = 3.8/17$	282	0.97	71.19	40

Таблица 1. Основные параметры Заветненского землетрясения 2 мая 2012 г. с $K_{\rm P}$ =11.2 по данным ГС РАН (GS_{reg}) и других агентств

Таблица 2. Основные параметры Воровсколесского-II землетрясения 15 декабря 2012 г. с *К*_P=10.8 по данным ГС РАН (GS_{reg}) и других агентств

Агент-	<i>t</i> ₀ ,	δt_0 ,		Гипоцентр					Магнитуда/ <i>п</i>	Окру	/жени	е эпице	ентра
ство	ч мин с	С	φ°, Ν	δφ°	λ°, Ε	δλ°	h,	δh,	-	п	Δ_{\min} ,	Δ_{\max} ,	Gap,
							км	км			0	0	0
GS _{reg} [2]	05 51 33.70	0.5	44.37 _и	0.07	42.46 _и	0.07	14и	5	$K_{\rm P}=10.8/28, M^{\rm p}=3.8,$	35	0.43	4.83	76
U			44.32м		42.28 _м				MPVA=5.1/20				
IDC [6]	05 51 33.42	1.64	44.2869	0.15	42.3678	0.12	20	17	$m_{\rm b}$ =3.7/7, <i>ML</i> =4.1/4	31	0.41	72.0	93
TIF [6]	05 51 33.33	1.31	44.3688		42.4678		7.4			6	0.44		325
AZER [6]	05 51 31.56	1.23	44.6934		42.7408		2		<i>ML</i> =3.9/4	6	4.12	5.94	335
ISC [6]	05 51 32.43	1.02	44.4488	0.04	42.4823	0.02	10.2	8.0	$m_{\rm b} = 3.6/4$	118	0.41	71.83	53

Примечание. GS_{reg} – Сейсмологический бюллетень для территории Северного Кавказа, выпускаемый в ГС РАН на основании наблюдений станций Северного Кавказа; MOS – Сейсмологический бюллетень ГС РАН, составленный по телесейсмическим данным; NEIC – Национальный центр информации о землетрясениях Геологической службы США; IDC – Международный центр, Австрия, Вена; ISC – Международный Сейсмологический Центр; TIF – Центр сейсмического мониторинга Грузии, г. Тбилиси; AZER – Республиканский центр сейсмологической службы национальной академии наук Азербайджана, г. Баку; CSEM – Европейский Средиземноморский сейсмологический центр; f – фиксированная глубина h гипоцентра; n – число сейсмических станций, по которым вычислено сетевое значение.

1 – инструментальный эпицентр по региональным данным; 2 – данные различных сейсмологических служб. Механизмы очагов. Механизм очага Заветненского землетрясения 2 мая определен в [8] по знакам первого движения в *P*-волне на 35 станциях. Движение в очаге произошло при преобладании сил сжатия, направленных с юго-запада. Тип движения по обеим нодальным плоскостям – взбросо-сдвиг: по *NP1* – левосторонний, по *NP2* – правосторонний (табл. 3). Простирание плоскости *NP1* в запад–северо-западном направлении согласуется с вытянутостью изосейст, что позволяет выбрать ее в качестве действующей плоскости.

Механизм Воровсколесского-II землетрясения 15 декабря также определен по знакам первого движения в *P*-волне на 23 станциях [8]. Движение в очаге произошло при преобладании сил сжатия, направленных с юго-запада. Тип движения в очаге – взбросо-надвиг: по *NP1* – взброс с правосторонней сдвиговой компонентой, по *NP2* – надвиг с левосторонней сдвиговой компонентой (табл. 3).

N⁰	Дата,		Оси г	лавны	х напряж	ений		Нодальные плоскости						
	д м		Т		Ν	Р		NP1			NP2			
		PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
1	02.05	49	335	39	134	10	232	113	66	46	0	49	147	
2	15.12	62	70	9	321	26	227	296	21	63	147	71	100	

Таблица 3. Параметры механизмов очага Заветненского землетрясения 2 мая 2012 г. и Воровсколесского-II 15 декабря 2012 г. из [8]

Полученные механизмы хорошо сочетаются с кинематическими особенностями соответствующих локальных, региональных и сквозных дизъюнктивных систем рассматриваемого района по [1]. Эпицентр Заветненского землетрясения 2 мая находится в пределах диагональной Армавиро-Невинномысской зоны глубинных нарушений северо-западной ориентации сдвиговой киэпицентр землетрясения нематики, 15 декабря приурочен к субширотной Нагутской глубинной зоне взбросонадвиговых нарушений (рис. 3).

Спектральные параметры очагов Заветненского и Воровсколесского-II землетрясений получены по спектрам трех станций – «Анапа», «Кисловодск» и «Сочи». Для построения очаговых спектров использовалась методика, описанная в [9]. Станционные и сетевые спектральные параметры – максимальное значение спектральной плотности Ω_0 , скалярный сейсмический момент M_0 и магнитуда Канамори Mw – приведены в табл. 4.

Полученные значения спектральной магнитуды M_w превышают пересчетные из K_P значения магнитуды по поверхностной волне на 0.3–0.4 единицы M_w .

Рис. 3. Схема основных тектонических элементов Эльбрусско-Минераловодской области из [1]

 2 – зоны глубинных нарушений взбросо-надвигового (1) и сдвигового (2) типов; 3 – Эльбрусско-Минераловодская зона сбросо-сдвиговых нарушений. Буквы в кружках – названия зон: Н – Нагутская; Ч – Черкесская; Т – Тырныаузская зона сжатия; А-Н – Армавиро-Невинномысская; Н-Л – Нагутско-Лысогорская; М – Минераловодская; Д – Северо-Джинальская; К – Кабардинская зона правосдвиговых нарушений.

Дата	Стан- ция	Δ, °	Компо- нента	$\Omega_0, \ c \mathcal{M} \cdot c$	М ₀ , дн∙см	$Mw_{ m per}$	Дата	Стан- ция	Δ, °	Компо- нента	Ω ₀ , см·с	М ₀ , дн∙см	<i>М</i> w _{рег}
02.05	ANN	3.10	BHE	0.000551	$2.3 \cdot 10^{22}$	4.2	15.12	ANN	3.70	BHE	0.000444	$2.2 \cdot 10^{22}$	4.2
			BHN	0.000551	$2.3 \cdot 10^{22}$	4.2				BHN	0.000537	$2.7 \cdot 10^{22}$	4.2
	SOC	1.82	BHE	0.001760	$4.3 \cdot 10^{22}$	4.4		SOC	2.07	BHE	0.001130	$3.1 \cdot 10^{22}$	4.3
			BHN	0.001450	$3.5 \cdot 10^{22}$	4.3				BHN	0.001050	$2.9 \cdot 10^{22}$	4.3
	KIV	1.08	BHE	0.001860	$2.7 \cdot 10^{22}$	4.3		KIV	0.42	BHE	0.002040	$1.2 \cdot 10^{22}$	4.0
			BHN	0.003090	$4.5 \cdot 10^{22}$	4.4				BHN	0.002300	$1.3 \cdot 10^{22}$	4.0
	Cpe;	днее			$3.3 \cdot 10^{22}$	4.3		Cpe,	днее			$2.2 \cdot 10^{22}$	4.2
						±0.1							±0.2

Таблица 4. Спектральные параметры очагов Заветненского землетрясения 2 мая и Воровсколесского-II – 15 декабря 2012 г.

Тектоническая позиция. Общепринятое тектоническое районирование этой области отражает, прежде всего, основную субширотную зональность Кавказского складчатого сооружения [1].

Широтный тектонический план сочетается с поперечной (антикавказской) зональностью меридионального простирания. Главной меридиональной структурой района является Ставропольско-Минераловодское поднятие, включающее Минераловодский выступ, Южно-Ставропольский вал и Ставропольский свод – Северное звено Транскавказской зоны поперечных поднятий. В пределах этих меридиональных структур и произошли исследуемые землетрясения (рис. 4).

Рис. 4. Основные элементы тектонической структуры Эльбрусско-Минераловодской области Северного Кавказа по данным [10]

Звездами показаны эпицентры землетрясений 2 мая 2012 г. и 15 декабря 2012 г.

Макросейсмическое поле Заветненского землетрясения 2 мая. Оно ощущалось на территории Ставропольского края, а также восточной части Краснодарского края и северной части Карачаево-Черкесской Республики. Сведения о макросейсмических проявлениях были собраны Администраций муниципальных образований Ставропольского края по телефонному опросу. Ниже дано их описание в порядке уменьшения интенсивности сотрясений.

I=4 балла. Ощущалось в селах Заветное, Балахоновское, Кочубеевское и станице Барсуковская Кочубеевского района Ставропольского края, а также на хуторе Карс и в селе Маламино Успенского района Краснодарского края. Ощущали многие жители: слышали гул, громкий треск, похожий на взрыв, ощутили два толчка (первый резкий, второй колебательный), сотрясание домов продолжительностью $\tau = -7-15 c$. Многие спящие проснулись от гула и сотрясения – испугались, покинули помещения, подумали об аварии на химическом заводе. Звенела посуда, дребезжали стекла, качались люстры, в некоторых случаях падали фотографии в рамках, упала икона. Наиболее сильно землетрясение ощущалось селах Заветное и Балахоновское. Замечено незначительное движение мебели, видимые колебания стен. В некоторых магазинах сработала сигнализация. Разрушений нет.

І=3 балла. Ощущалось в селе Казьминское Кочубеевского района, городах Ставрополь, Невинномысск (Ставропольский край) и селе Успенское (Краснодарский край), аулах Апсуа и Адыге-Хабль (Адыге-Хабльский район Карачаево-Черкесской Республики). Ощутили некоторые люди. Слышали гул, как при движении тяжело нагруженной машины, звук, как хлопок, ощутили слабый толчок. Люди не пугались. Посуда, стекла и зеркала дрожали, звенели. В некоторых случаях дрожали металлические решетки на окнах.

I=2 балла. Ощущалось в городах Кисловодск, Ессентуки (Ставропольский край), Черкесск (Карачаево-Черкесская Республика), Армавир (Краснодарский край) – замечали только на верхних этажах: звенела посуда в шкафах, покачивались люстры, некоторые люди ощущали покачивание на кроватях, испуга не было.

N₂	Пункт	Δ, км	φ°, N	λ°, E	N⁰	Пункт	Δ, км	φ°, N	λ°, E
	4 балла				8	Успенское	25	44.831	41.392
1	<u>Годохоновокод</u>	6	11 777	41 780	9	Невинномысск	25	44.638	41.936
1	Далахоновская	10	44.///	41.760	10	Ставрополь	35	45.045	41.969
2	Заветное	10	44.748	41.595	11	Апсуа	39	44.450	41.796
3	Карс	10	44.748	41.575	12	Алыге-Хабль	54	44 333	41 935
4	Барсуковская	10	44.761	41.818	12		51	11.000	11.900
5	Кочубеевское	15	44.691	41.824		<u>2 балла</u>			
6	Маламино	15	44.829	41.516	13	Армавир	50	45.001	41.132
	3 балла				14	Черкесск	68	44.227	42.047
7	<u>c cumu</u>	22	44 590	41 676	15	Кисловодск	127	43.905	42.717
/	казьминское	22	44.589	41.0/0	16	Ессентуки	124	44.045	42.859

Таблица 5. Макросейсмические данные о Заветненском землетрясении 2 мая 2012 г. с К_Р=11.2

Примечание. Эпицентральные расстояния рассчитаны от макросейсмического эпицентра с ϕ_{M} =44.79°N, λ_{M} =41.70°E.

Макросейсмический эпицентр (ϕ =44.79°N, λ =41.70°E) определен как геометрический центр области, окруженной 4-балльной изосейстой, наиболее полно представленной данными пунктов-баллов (рис. 5). Можно говорить о хорошей согласованности эпицентров, так как инструментальный эпицентр смещен на юго-запад от макросейсмического лишь на 5 *км*, что соответствует оценке погрешности вычисления эпицентра по инструментальным данным. Проведение изосейст 3- и 2-балльных не может быть признано уверенным. Это относится и к геометрическим параметрам макросейсмического поля в табл. 6.

Таблица 6. Геометрические параметры макросейсмического поля Заветненского землетрясения 2 мая 2012 г. с *К*_Р=11.2

Ι,	Длі	ина осей изосейст	, КМ	AZM,	Отношение
балл	Продольная ℓ_a	Поперечная ℓ_{b}	Среднее $\overline{\ell}$	град	$\ell_{\rm a}/\ell_{\rm b}$
4	36.94	16.34	19.8	308	2.18
3	99.49	75.28	87.39	314	1.32
2	222.71	90.17	156.44	315	2.46

Примечание. Среднее $\overline{\ell}$ является средним геометрическим $\overline{\ell} = \sqrt{\ell_a \cdot \ell_b}$.

Макросейсмическое поле Воровсколесского-II землетрясения 15 декабря. Сведения о макросейсмических проявлениях этого землетрясения были собраны в лаборатории сейсмического мониторинга Кавказских Минеральных вод в основном по телефонному опросу пред-

ставителей глав администраций населенных пунктов. Ниже дано их описание в порядке уменьшения интенсивности сотрясений.

Рис. 5. Карта изосейст Заветненского землетрясения 2 мая 2012 г. с *К*_Р=11.2 и механизм его очага по [8].

I=4 балла. Землетрясение ощущалось с интенсивностью I=4 балла как на территории Ставропольского края: в станице Воровсколесская, селах Красноярское, Казинка, Курсавка, Водораздел, Куршава, Солуно-Дмитриевское, так и на территории Карачаево-Черкессии: в пгт Ударное, поселках Кавказский, Майский и Октябрьский, селах Мичуринское, Таллык, Знаменка, Счастливое, Ильичевское, Чапаевское, Николаевское, ауле Псыж.

I=3-4 *балла*. На таком уровне зафиксированы колебания в двух городах – *Черкесск*, *Учкекен*.

I=3 балла. На уровне 3 баллов колебания были отмечены в 12 населенных пунктах: в городе Усть-Джегута, ауле Новая Джегута (Карачаево-Черкесская Республика), в станицах Суворовская, Бекешевская, селах Крымгиреевское,

Султан, Янкуль, поселках Ясная Поляна, Новый Янкуль, Нежинский, городах Кисловодск, Ессентуки (Ставропольский край).

I=2 балла. Самый слабый макросейсмический эффект в 2 балла отмечен в двух городах – *Пятигорск* и *Невинномысск*.

Совокупность всех собранных по 35 пунктам сведений об ощутимости Воровсколесского-II землетрясений представлена в табл. 7.

	Пункт	Δ, км	φ°, N	λ°, E		Пункт	Δ, км	φ°, N	λ°, E
	<u>4 балла</u>					<u>3–4 балла</u>			
1	Мичуринский	5	44.278	42.317	20	Черкесск	37	44.227	42.047
2	Кавказский	7	44.269	42.230	21	Учкекен	48	43.939	42.515
3	Майский	11	44.305	42.410		3 балла			
4	Воровсколесская	12	44.377	42.408	22	Cypopoperag	24	11 108	42 650
5	Красноярское	15	44.444	42.363	22	Кримсиревское	27	14 543	42.030
6	Казинка	16	44.468	42.296	23	Гокошовокос	20	44.343	42.713
7	Ударный	18	44.349	42.503	24	Синтон	20	44.115	42.429
8	Октябрьский	18	44.257	42.488	25	Султан	29	44.309	42.000
9	Курсавка	23	44.453	42.493	20	Янкуль Полод Полено	33	44.005	42.342
10	Водораздел	23	44.515	42.362	27	Исная Поляна	45	44.020	42.754
11	Куршава	26	44.431	42.571	28	Повыи ликуль	40	44.778	42.512
12	Таллык	26	44.151	42.339	29	Ессентуки	48	44.045	42.859
13	Знаменка	26	44.147	42.057	30	Усть-Джегута	50	44.084	41.9/1
14	Счастливое	28	44.162	42.258	31	новая джегута	52	44.010	42.037
15	Ильичевское	32	44.187	42.148	32	Нежинскии	52	43.930	42.688
16	Чапаевское	33	44.283	42.066	33	Кисловодск	56	43.905	42.717
17	Солуно-	37	44.405	42.730		<u>2 балла</u>			
	Дмитриевское				34	Невинномысск	51	44.638	41.936
18	Николаевское	38	44.118	42.133	35	Пятигорск	61	44.039	43.071
19	Псыж	38	44.235	42.016					

Таблица 7. Макросейсмические данные о Воровсколесском-II землетрясении 15 декабря 2012 г. с *К*_Р=10.8

Примечание. Эпицентральные расстояния рассчитаны от макросейсмического эпицентра с ϕ_{M} =44.32°N, λ_{M} =42.28°E.

ЗЕМЛЕТРЯСЕНИЯ ЗАВЕТНЕНСКОЕ 2 мая 2012 г. и ВОРОВСКОЛЕССКОЕ-II 15 декабря 2012 г. (Ставропольский край) И.П. Габсатарова, Л.Н. Королецки, Л.Е. Иванова, Е.А. Селиванова

Карта изосейст Воровсколесского землетрясения с $K_{\rm P}$ =10.8, построенная по данным табл. 7, изображена на рис. 6.

Макросейсмический эпицентр определен как геометрический центр области, окруженной 4-балльной изосейстой, наиболее полно представленной данными пунктовбаллов (ф=44.32°N, λ =42.28°E) (рис. 6). Инструментальный эпицентр смещен на востоксеверо-восток от макросейсмического на 15 км, что несколько превышает оценку погрешности вычисления эпицентра по инструментальным данным. Проведение 3-балльной изосейзатруднено из-за недостаточности сты данных, поэтому она изображена штриховой линией. Геометрические параметры макросейсмического поля, представлены в табл. 8.

Рис. 6. Карта изосейст Воровсколесского-II землетрясения 15 декабря 2012 г. с *К*_Р=10.8 и механизм его очага по [8]

Таблица 8. Основные геометрические параметры макросейсмического поля Воровсколесского -II землетрясения 15 декабря 2012 г. с *К*_Р=10.8

Ι,		Геометрические параметры поля изосейст								
балл	ℓ_{a}	AZM	$\ell_{\rm b}$	$\overline{\ell}$	$\ell_{\rm a}/\ell_{\rm b}$					
4	67.52	49°	37.40	52.33/50.25	1.82	1982				
3	117.2	49°	97.2	106.73	1.20	8942				

Примечание. Среднее $\overline{\ell}$ является средним геометрическим $\overline{\ell} = \sqrt{\ell_a \cdot \ell_b}$.

Закон затухания. Собранные по двум землетрясениям макросейсмические данные позволили построить график затухания макросейсмического поля с гипоцентральным расстоянием в ближней зоне (рис. 8). Оказалось, что коэффициенты уравнения макросейсмического поля, предложенные в [11] для Северного Кавказа (b=1.6, v=3.1, c=2.2), не подходят для описания макросейсмического эффекта этих землетрясений. Лучшая аппроксимация установлена по формуле (коэффициенты: b=1.5, v=3.5, c=2.6) (рис. 7):

$$I_i = 1.5 \cdot Ms - 3.5 \cdot \log_{10} r + 2.6$$

А для Заветненского землетрясения отдельно лучшая аппроксимация установлена по формуле с коэффициентами: b=1.4, v=3.5, c=2.6. Расчетные значения интенсивности в эпицентре по этим формулам составили:

Рис. 7. График затухания макросейсмического поля с расстоянием в ближней зоне

Залитые черным круги – данные Заветненского землетрясения; полые круги – пункты-баллы Воровсколесского-II землетрясения; прерывистой линией показано затухание по формуле: *I*=1.5*Ms*-3.5 log₁₀ *r*+2.6.

 I_0^{3} =5 баллов для Заветненского землетрясения, I_0^{B} =4 балла для Воровсколесского-II землетрясения,

что отражено в названии этой статьи.

Историческая сейсмичность и зоны ВОЗ. Эльбрусско-Минераловодский район сейсмически активен и относится к 7- и 8-балльным зонам на карте ОСР-97 [12].

Как уже отмечалось, 12 мая 1895 г. по данным И.В. Ананьина [13] в станице Воровсколесской от толчка попадали печные трубы (*I*=6 баллов), толчки следовали в течение всего дня. В с. Казинка (Казинское), хуторе Суркуль, пос. Куршава ощущались колебания с интенсивностью *I*=5–6 баллов.

Кроме этого, в XX веке наиболее сильные семибалльные землетрясения происходили несколько южнее: Усть-Джегутинское 18 апреля 1909 г. в $10^{h}45^{m}$ с M=4.6; Пятигорское 4 июля 1912 г. с $M=4.7\pm0.5$ и $I_0=(6-7)\pm0.5$; Кисловодское 29 июня 1921 г. $11^{h}56^{m}$ с M=5.6 (по данным А.А. Никонова [14] $M=6\pm0.3$, $I_0=(7-8)\pm0.5$ и эпицентром в окрестностях г. Пятигорска) и Кавминводское 28 февраля 1978 г. $22^{h}58^{m}$ с M=4.5 [15]. Установлено, что эпицентральные зоны и их вытянутость у перечисленных землетрясений соотносятся с зонами разломов соответственно северо-западного и северо-восточного простирания, которые в этих условиях естественно считать сейсмогенерирующими и потенциально опасными.

Сейсмичность Центрального Предкавказья в 1992–2012 гг. показана на рис. 8, на фоне карты зон ВОЗ из [16]. Значительная часть эпицентров расположена вдоль Армавиро-Невинномысского глубинного разлома (Невинномысская зона ВОЗ (СЗ направление), значительно сгущаясь к Кисловодской зоне ВОЗ (СВ направление). Заметны скопления эпицентров в тектонических узлах, в пересечении зон ВОЗ: Бешпагирской и Нагутской, Калаузской и Нагутской, Кумской и Черкесской, но особенно в пересечении Черкесской и Кисловодской зон ВОЗ. Карачаевская зона ВОЗ наименее сейсмоактивна в 1992–2012 гг., несмотря на присвоенный ей высокий сейсмический потенциал. Она попадает в выделяемый ранее Е.Е. Милановским по материалам наблюдений до 1984 г. Эльбрусско-Бечасынский асейсмичный блок [1].

Рис. 8. Сейсмичность Кавминводского участка 1992–2012 гг. на фоне выделенных зон ВОЗ [16]

В последние годы наиболее заметными в рассматриваемой зоне были землетрясения:

– Верхне-Янкульское 19 октября 1999 г. с *М*=4.4 и интенсивностью 6–7 баллов в эпицентре [17];

- Суворовское 22 июля 2006 г. с M=4.1 и интенсивностью 5-6 баллов в эпицентре [18].

Литература

- 1. Милановский Е.Е., Расцветаев Л.М., Кухмазов С.У., Бирман А.С., Курдин Н.Н., Симако В.Г., Тверитинова Т.Ю. Новейшая геодинамика Эльбрусско-Минераловодской области Северного Кавказа // Геодинамика Кавказа. М.: Наука, 1989. С. 99–105.
- 2. Габсатарова И.П., Амиров С.Р., Девяткина Л.В., Цирихова Г.В. (отв. сост.), Александрова Л.И., Артёмова Е.В., Багаева С.С., Гамидова А.М., Гричуха К.В., Головкова Л.В., Иванова Л.Е., Калугина И.Ю., Королецки Л.Н., Косая В.В., Лещук Н.М., Мусалаева З.А., Перевозникова Я.Н., Петросян Э.Н., Сагателова Е.Ю., Селиванова Е.А. (сост.). Каталог землетрясений и взрывов Северного Кавказа за 2012 г. // Землетрясения Северной Евразии. – Вып. 21 (2012 г.). – Обнинск: ФИЦ ЕГС РАН, 2018. – Приложение на CD_ROM.
- 3. Бабаян Т.О., Кулиев Ф.Т., Папалашвили В.Г., Шебалин Н.В., Вандышева Н.В. (отв. сост.). II б. Кавказ [50–1974 гг., *M*≥4.0, *I*₀≥5] // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука, 1977. С. 69–170.
- 4. **Раутиан Т.Г.** Энергия землетрясений // Методы детального изучения сейсмичности. Труды ИФЗ АН СССР; № 9(176). М.: ИФЗ АН СССР, 1960. С. 75–114.
- Сейсмологический бюллетень (ежедекадный) за 2012 год [Электронный ресурс] / Отв. ред. О.Е. Старовойт. – Обнинск: ФИЦ ЕГС РАН, 2012–2013. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2012*
- 6. International Seismological Centre, Thatcham, Berkshire, United Kingdom, 2015 [Сайт]. URL: *http://www.isc.ac.uk/iscbulletin/search/bulletin/*
- 7. European-Mediterranean Seismological Centre (EMSC) [Сайт]. URL: http://www.emsc-csem.org
- 8. Габсатарова И.П., Малянова Л.С. (сост.). Каталог механизмов очагов землетрясений Северного Кавказа за 2012 г. // Землетрясения Северной Евразии. Вып. 21 (2012 г.). Обнинск: ФИЦ ЕГС РАН, 2018. Приложение на CD_ROM.
- Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии. – Вып. 21 (2012 г.). – Обнинск: ФИЦ ЕГС РАН, 2018. – С. 294–301.
- Летавин А.И., Орел В.Е., Чернышев С.М., Жорина З.И., Савельева Л.М., Масленникова Т.А., Кондратьев И.А., Коновалов В.И., Косарев В.С., Марков А.Н., Мирзоев Д.А., Мовшович Е.В., Станулис В.А., Хлуднев В.Ф., Шарафутдинов Ф.Г., Бакланов В.Г., Воцалевский З.С., Сидоров В.В. Тектоника и нефтегазоносность Северного Кавказа. – М.: Наука, 1987. – 96 с.
- Шебалин Н.В. Коэффициенты уравнения макросейсмического поля по регионам // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. – М.: Наука, 1977. – С. 30.
- 12. Уломов В.И., Шумилина Л.С. Комплект карт общего сейсмического районирования территории Российской Федерации ОСР-97. Масштаб 1:8000000. Объяснительная записка и список городов и населенных пунктов, расположенных в сейсмоопасных районах. М.: ОИФЗ, 1999. 57 с.
- 13. Ананьин И.В. Сейсмичность Северного Кавказа. М.: Наука, 1977. С. 84.
- 14. **Никонов А.А.** Значительные землетрясения и сейсмический потенциал района Кавказских Минеральных вод (по макросейсмическим данным) // Физика Земли. 1994. № 2. С. 10–18.
- 15. Казин Э.А. Кавминводское землетрясение 28 февраля 1978 г. // Сейсмологический бюллетень Кавказа, 1979 год. Тбилиси, 1982. С. 215–226.
- Лутиков А.И., Рогожин Е.А., Овсюченко А.Н. Методика оценки сейсмической опасности на стадии уточнения исходной сейсмичности // Современные методы обработки и интерпретации сейсмологических данных. Материалы Третьей Международной сейсмологической школы. – Обнинск: ГС РАН, 2008. – С. 81–86.
- 17. Фабрициус В.З., Фабрициус З.Е., Шавкань П.В., Габсатарова И.П., Михайлова Р.С. Верхне-Янкульское землетрясение 19 октября 1999 года с *MS*=4.4, I₀=6–7 (Северный Кавказ) // Землетрясения Северной Евразии в 1999 году. – Обнинск: ФОП. 2005.– С. 311–322.
- Габсатарова И.П., Девяткина Л.В., Иванова Л.Е., Селиванова Е.А. Суворовское землетрясение 22 июля 2006 года с K_P=11.3, I₀= 5−6 баллов (Ставропольский край) // Землетрясения Северной Евразии. 2006 год. – Обнинск: ГС РАН. 2012. – С. 340–350.