СПЕКТРАЛЬНЫЕ и ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ СЕВЕРНОГО КАВКАЗА Л.С. Малянова, И.П. Габсатарова

ФИЦ ЕГС РАН, г. Обнинск, Imal@gsras.ru, ira@gsras.ru

Аннотация. Приведены динамические параметры очагов 19 землетрясений Северного Кавказа за 2012 г. с К_Р=8.2-14.1, определенные по 52 амплитудным спектрам S-волн. Использованы записи трех региональных цифровых сейсмических станций - «Анапа», «Кисловодск» и «Сочи», удаленных от очагов не более, чем на 300 км. Впервые такое исследование выполнено для сильного землетрясения и его семи афтершоков, произошедших в Восточном Черноморье, в шельфовой части Абхазии. Они дополнили ряд землетрясений, повысили устойчивость зависимости log M₀ и K_P. Значения скалярного сейсмического момента M_0 и Mw для землетрясений 23 декабря 2012 г. в $13^h 31^m$ и 25 декабря в $22^h 44^m$, полученные по станции «Кисловодск», несколько завышены относительно данных международных центров GCMT и NEIC - примерно на 0.2-0.3 Мw. Для относительно сильного Су-Псехского землетрясения 10 декабря с K_P=11.5 в Анапском районе проведено сравнение со спектральными и динамическими параметрами, полученными Крымской сетью сейсмических станций. Значения скалярного сейсмического момента и магнитуды Канамори близки. Несмотря на расхождения по сброшенному и кажущемуся напряжениям, отрицательные значения радиационного трения показали, что и в том, и в другом случаях землетрясение представлено сложным очагом с шероховатыми плоскостями скольжения по разрыву из-за наличия многочисленных неоднородностей. Построена зависимость log M₀ и K_P, которая согласуется с аналогичным уравнением для Черноморско-Анапской зоны, полученным по данным станций Крыма.

Abstract. Dynamic parameters of the foci of 19 earthquakes in the North Caucasus for 2012 with $K_{\rm P}$ =8.2–14.1, determined from 52 amplitude spectra of S-waves, are given. The records of three regional digital seismic stations – "Anapa", "Kislovodsk" and "Sochi", remote from the foci no more than 300 km, were used. Such research was carried out for a strong earthquake and its seven aftershocks, which occurred in the East Black Sea Coast, in the shelf part of Abkhazia, for the first time. They supplemented a number of earthquakes, increased the stability of log M_0 and $K_{\rm P}$. The values of the scalar seismic moment and Mw for earthquakes on December 23, 2012 at $13^{\rm h}31^{\rm m}$ and 25th of December at $22^{\rm h}44^{\rm m}$, received at the Kislovodsk station, are slightly overestimated with respect to the data of the international centers GCMT and NEIC – by approximately 0.2–0.3 Mw. A comparison for a relatively strong Su-Psekh earthquake on December 10, with $K_{\rm P}$ =11.5 in the Anapa region was made with the spectral and dynamic parameters obtained by the Crimean network of seismic stations. The values of the scalar seismic moment and Kanamori magnitude are close. The negative values of radiation friction showed that in both cases, the earthquake is represented by a complex focus with rough slip planes due to the fault due to the presence of numerous inhomogeneities despite the divergency over the ejected and apparent stresses. The dependence of log M_0 and $K_{\rm P}$ is constructed and agrees with the analogous equation for the Black Sea-Anapa zone, obtained from the data of the Crimean stations.

Для 19 землетрясений Северного Кавказа (табл. 1) построены спектры по записям станций «Кисловодск» широкополосным сейсмографом STS-1, «Анапа» и «Сочи» – широкополосными приборами CM3-OC с использованием методики [1], примененной ранее [2–8] в этом же регионе. Для исследования были выбраны наиболее сильные (K_P =9.2–14.1) землетрясения, эпицентры которых удалены не более чем на 300 км от станций. Положение эпицентров землетрясений приводится на рис. 1. Для всех землетрясений определен сейсмический момент и рассчитана магнитуда Канамори M_W , значения которой для двух событий сравнены с данными других сейсмологических центров: NEIC, GCMT (из ISC [9]), они также приводятся ниже в табл. 3.

N₂	Дата,	<i>t</i> ₀ ,	Эпицентр		Эпицентр		Эпицентр		h,	$K_{ m P}$	MPVA	$M_{ m pac4}$	Район
	дм	ч мин с	φ°, N	λ°, E	КМ								
1	13.02	08 53 04.9	45.65	37.89	11	9.2	3.7	2.9	Краснодарский край, Приазовье				
2	23.04	15 50 19.0	42.29	45.21	10	10.8	4.8	3.8	Грузия				
3	30.05	07 58 21.9	43.40	39.58	6	10.6	4.8	3.7	Чёрное море				

Таблица 1. Список землетрясений Северного Кавказа из [10], для которых рассчитаны спектры

СПЕКТРАЛЬНЫЕ и ОЧАГОВ	ЫЕ ПАРАМЕТРЫ	ЗЕМЛЕТРЯСЕНИЙ	СЕВЕРНОГО	КАВКАЗА
Л.С. Малянова, И.П. Габсата	рова			

№	Дата,	t_0 ,	Эпиг	центр	h,	$K_{ m P}$	MPVA	$M_{\rm pac4}$	Район
	дм	ч мин с	φ°, Ν	λ°, E	КМ				
4	02.06	00 32 22.1	43.11	46.27	80	11.3	5.0	4.1	Чечня
5	26.06	21 33 53.3	43.42	39.58	6	10.1	4.4	3.4	Чёрное море
6	05.07	08 49 04.4	43.47	45.87	10	10.7	4.7	3.7	Чечня
7	19.07	03 34 23.3	43.06	45.87	21	10.1	4.6	3.4	Чечня
8	20.07	13 51 09.7	42.51	44.04	2	11.1	5.0	3.9	Грузия
9	17.10	19 06 35.4	44.68	36.36	20	10.0	4.4	3.3	Чёрное море
10	15.11	01 36 36.8	43.80	39.26	8	10.3	4.7	3.5	Чёрное море
11	10.12	16 56 56.4	44.81	37.54	31	11.5	5.3	4.2	Краснодарский край
12	23.12.	13 31 36.5	42.49	41.07	7	14.1	6.6	5.6	Чёрное море
13	23.12	14 18 47.3	42.51	41.07	11	10.3	4.7	3.5	Чёрное море
14	23.12.	15 18 34.9	42.48	41.11	9	10.8	4.9	3.8	Чёрное море
15	24.12	12 25 16.3	42.50	41.14	9	10.3	4.6	3.5	Чёрное море
16	25.12	04 33 58.3	42.49	41.01	4	10.1	3.9	3.4	Чёрное море
17	25.12.	22 44 32.1	42.51	41.03	8	13.0		5.0	Чёрное море
18	25.12	22 55 48.1	42.52	41.02	7	11.9	4.1	4.4	Чёрное море
19	27.12	05 15 48.3	42.50	41.04	9	10.8	4.1	3.8	Чёрное море

Примечание. *МРVA* – магнитуда по продольной волне *P* с использованием калибровочной функции Кавказа [11]; *М*_{расч} – расчетная магнитуда по формуле Т.Г. Раутиан [12] *К*=4+1.8 *К*_P.

12 землетрясений произошли в Чёрном море (№ 3, № 5, №№ 9–10, №№ 12–19 в табл. 1 и на рис. 1), часть из них – в шельфовой зоне Абхазии: сильное землетрясение 23 декабря 2012 г. в 13^h31^m и его афтершоки (№ 12– № 19 в табл. 1 и рис. 1).

1 – энергетический класс *K*_P; 2 – сейсмическая станция. Коды и названия станций: KIV – «Кисловодск»; ANN – «Анапа»; SOC – «Сочи».

Так как спектр записи реального землетрясения в точке наблюдения является суперпозицией эффектов самого источника, амплитудно-частотной характеристики регистрирующего прибора, среды на пути очаг–станция и направленности излучения, то была применена методика учета всех этих факторов при переходе от станционного спектра к спектру источника, которая подробно изложена в работах [13–15]. Значение сейсмического момента в очаге землетрясения M_0 получено по формуле из [14]:

$$M_0 = \Omega_0 (4\pi\rho \,\upsilon^3) / R_{\theta_0} \cdot G(\Delta, h) \cdot C(\omega), \tag{1}$$

где Ω_0 – максимальное значение спектральной плотности при $\omega \rightarrow 0$; υ и ρ – скорость распространения волны и плотность пород в окрестности очага; $R_{\theta\phi}$ – функция, характеризующая направленность излучения из очага на станцию; $G(\Delta, h)$ – поправка за геометрическое расхождение; $C(\omega)$ – частотная характеристика земной коры под станцией.

Учет направленности излучения проводился с использованием среднего значения $R_{\theta\phi}=0.6$ [16]. Функция геометрического расхождения $G(\Delta, h)$ для близких землетрясений на расстояниях от станции регистрации $r<1000 \ \kappa m$ может быть оценена как 1/r [17], где r – гипоцентральное расстояние. Частотная характеристика земной коры под станцией принимается в среднем равной $C(\omega)=2$.

В станционные спектры были введены поправки S(f) за неупругое затухание волны в мантии, которая рассчитывается по формуле (2) из [15]:

$$S_m(f) = e^{-t_s^* \pi f}, \qquad (2)$$

где t_s^* – отношение времени t_s пробега *S*-волны до станции регистрации к средней добротности среды Q_{cp} вдоль луча по [15] равно:

$$s_{S}^{*} = t_{S}/Q_{cp}.$$
 (3)

Значение Q_{cp} для *S*-волн Северо-Западного Кавказа по записям станций «Анапа», «Сочи» и «Кисловодск» определено О.В. Павленко [18–20] и находится для полосы частот $\Delta f=1-8 \ \Gamma u$ из зависимости $Q(f) \sim 90 \ f^{0.7} - для$ «Анапы», $Q(f) \sim 80 \ f^{0.9} - для$ «Сочи» и $Q(f) \sim 85 \ f^{0.9} - для$ «Кисловодска».

Для построения спектров выбирался фрагмент записи *S*-волны от начала вступления до момента, когда амплитуда этой группы волн достигла примерно $1/3 A_{S max}$ [17] (примеры записей землетрясений на горизонтальных компонентах станций «Кисловодск» и «Анапа» представлены на рис. 2). В зависимости от удаленности станции от очага землетрясения длительность τ записи выбранных фрагментов варьировала от 60 до 100 *с* от вступления *S*-волны.

Рис. 2. Записи землетрясения 30 мая 2012 г. в 07^h58^m с K_P=10.6 на горизонтальных компонентах широкополосного сейсмометра STS-1 станции «Кисловодск» (Δ=257 км) и 15 ноября 2012 г. в 01^h36^m с K_P=10.3 на горизонтальных компонентах широкополосного сейсмометра CM3-OC станции «Анапа» (Δ=195 км)

Сглаженные станционные спектры *S*-волн станций «Кисловодск» и «Анапа» двух землетрясений для горизонтальных компонент приводятся для примера на рис. 3. Для исследуемых землетрясений корректно проведены две асимптоты в соответствии с моделью Брюна [21].

Рис. 3. Примеры станционных спектров на горизонтальных составляющих N–S (BHN) станций «Кисловодск» и «Анапа» для двух землетрясений из табл. 2: 30 мая 2012 г. в 07^h58^m и 15 ноября 2012 г. в 01^h36^m с асимптотами в соответствии с моделью Брюна

Замеры спектральной амплитуды Ω_0 осуществлялись также для обеих горизонтальных компонент и приведены в табл. 2 вместе с вычисленными по ним сейсмическими момен-

тами *M*₀ и моментными магнитудами *Mw* по формуле (4) Канамори из [22]:

$$Mw = 2/3 (\lg M_0 + 7) - 10.7.$$
(4)

В качестве окончательных значений Мw выбраны максимальные величины.

Таблица 2. Значения спектральной амплитуды Ω₀, скалярного сейсмического момента M₀ и моментной магнитуды Mw для 19 землетрясений Северного Кавказа в 2012 г. по данным станций «Кисловодск» (KIV), «Анапа» (ANN) и «Сочи» (SOC)

N⁰	Дата,	<i>t</i> ₀ ,	Код	Δ°	Компо-	Ω_0 ,	M_0	<i>Mw</i> _{sta}	Mw
	дн м	ч мин с	с/ст		нента	м.с	Н∙м		
1	13.02	08 53 04.9	ANN	1.1	BHE	0.000000513	7.610^{13}	3.2	
					BHN	0.00000219	$3.2 \cdot 10^{14}$	3.6	3.6
2	23.04	15 50 19.0	KIV	2.49	BHE	0.0000202	$4.2 \cdot 10^{15}$	4.4	4.4
					BHN	0.0000132	$2.8 \cdot 10^{15}$	4.3	
3	30.05	07 58 21.9	KIV	2.32	BHE	0.0000339	6.610^{15}	4.5	4.4
					BHN	0.0000312	$6.2 \cdot 10^{15}$	4.5	
			ANN	2.20	BHE	0.0000114	$3.4 \cdot 10^{15}$	4.3	
					BHN	0.0000117	$3.4 \cdot 10^{15}$	4.3	
4	02.06	00 32 22.1	KIV	2.74	BHE	0.000122	$2.8 \cdot 10^{16}$	4.9	4.9
					BHN	0.000114	$2.6 \cdot 10^{16}$	4.9	
5	26.06	21 33 53.3	KIV	2.32	BHE	0.0000166	$3.2 \cdot 10^{15}$	4.3	4.3
					BHN	0.00000951	$1.9 \cdot 10^{15}$	4.2	
6	05.07	08 49 04.4	KIV	2.36	BHE	0.0000379	$7.6 \cdot 10^{15}$	4.6	4.5
					BHN	0.0000223	$4.4 \cdot 10^{15}$	4.4	
7	19.07	03 34 23.3	KIV	2.48	BHE	0.00000777	$1.6 \cdot 10^{15}$	4.1	4.1
					BHN	0.00000584	$1.2 \cdot 10^{15}$	4.0	
8	20.07	13 51 09.7	KIV	1.75	BHE	0.0000763	$1.1 \cdot 10^{16}$	4.7	4.6
					BHN	0.0000464	$6.9 \cdot 10^{15}$	4.5	
9	17.10	19 06 35.4	ANN	0.71	BHE	0.0000145	$1.4 \cdot 10^{15}$	4.1	4.0
					BHN	0.00000688	$6.6 \cdot 10^{14}$	3.8	
10	15.11	01 36 36.8	KIV	2.48	BHE	0.0000212	$4.4 \cdot 10^{15}$	4.4	4.3
					BHN	0.0000201	$4.2 \cdot 10^{15}$	4.4	
			ANN	1.76	BHE	0.00000600	$1.4 \cdot 10^{15}$	4.1	
					BHN	0.00000800	$1.9 \cdot 10^{15}$	4.2	
11	10.12	16 56 56.4	ANN	0.16	BLN	0.000154	$3.4 \cdot 10^{15}$	4.3	4.3
12	23.12	13 31 36.5	KIV	1.88	BHE	0.00725	$1.2 \cdot 10^{18}$	6.0	6.0
					BHN	0.00713	$1.1 \cdot 10^{18}$	6.0	
			GCMT				$5.6 \cdot 10^{17}$		5.8
			NEIC				$3.4 \cdot 10^{17}$		5.7
			KIV	1.86	BHE	0.00000606	$9.5 \cdot 10^{14}$	4.0	4.0
					BHN	0.00000481	$7.6 \cdot 10^{14}$	3.9	

N⁰	Дата, <i>дн м</i>	t ₀ , ч мин с	Код с/ст	Δ°	Компо- нента	$\Omega_0,$ $\mathcal{M} \cdot \mathcal{C}$	М ₀ Н∙м	<i>Mw</i> _{sta}	Mw
			SOC	1.42	BHE	0.00000683	$1.3 \cdot 10^{15}$	4.0	
					BHN	0.00000700	$1.3 \cdot 10^{15}$	4.0	
14	23.12	15 18 34.9	KIV	1.87	BHE	0.0000241	$3.8 \cdot 10^{15}$	4.4	4.4
					BHN	0.0000171	$2.7 \cdot 10^{15}$	4.3	
			SOC	1.47	BLE	0.0000210	$4.1 \cdot 10^{15}$	4.4	
					BLN	0.0000145	$2.8 \cdot 10^{15}$	4.3	
15	24.12	12 25 16.3	KIV	1.84	BHE	0.00000915	$1.4 \cdot 10^{15}$	4.1	4.0
					BHN	0.00000723	$1.1 \cdot 10^{15}$	4.0	
			SOC	1.46	BHE	0.00000620	$1.2 \cdot 10^{15}$	4.0	
					BHN	0.00000620	$1.2 \cdot 10^{15}$	4.0	
16	25.12	04 33 58.3	KIV	1.91	BHE	0.0000122	$2.0 \cdot 10^{15}$	4.2	4.2
					BHN	0.00000737	$1.2 \cdot 10^{15}$	4.0	
			SOC	1.41	BHE	0.0000170	$3.2 \cdot 10^{15}$	4.3	
					BHN	0.0000125	$2.3 \cdot 10^{15}$	4.2	
17	25.12	22 44 32.1	KIV	1.88	BHE	0.00291	$4.6 \cdot 10^{17}$	5.7	5.7
					BHN	0.00192	$3.1 \cdot 10^{17}$	5.6	
			GCMT				$1.5 \cdot 10^{17}$		5.4
			NEIC				$8.8 \cdot 10^{16}$		5.2
18	25.12	22 55 48.1	KIV	1.88	BHE	0.000147	$2.3 \cdot 10^{16}$	4.9	4.7
					BHN	0.000103	$1.6 \cdot 10^{16}$	4.9	
			SOC	1.40	BLE	0.0000557	$1.0.10^{16}$	4.6	
19	27.12	05 15 48.3	KIV	1.89	BHE	0.0000187	$3.0 \cdot 10^{15}$	4.3	4.3
					BHN	0.0000136	$2.2 \cdot 10^{15}$	4.2	
			SOC	1.42	BLE	0.0000221	$4.2 \cdot 10^{15}$	4.4	
					BLN	0.0000119	$2.3 \cdot 10^{15}$	4.2	

Для 17 землетрясений (табл. 2) определены характеристики f_0 и Ω_0 амплитудных спектров в соответствии с моделью Брюна [21], которые использованы для расчета динамических параметров их очагов и Mw (табл. 3). Представлены следующие параметры очагов землетрясений: Δ – эпицентральное расстояние, Ω_0 – спектральная плотность, $f_{\rm n}$ – частота перегиба спектра, f_0 – угловая частота, M_0 – сейсмический момент, Mw – моментная магнитуда, L – длина разрыва, $\Delta\sigma$ – сброшенное напряжение, $\eta\sigma$ – кажущееся напряжение, \bar{u} – средняя подвижка по разрыву.

№из	Дата,	<i>t</i> ₀ ,	Стан-	Ком-	Δ°	$\Omega_{0,} 10^{-6}$	f_{π} ,	f_{0} ,	<i>M</i> ₀ ,	Mw	$L, 10^3$	Δσ, 10 ⁵	$\eta \overline{\sigma}, 10^5$	\overline{u} ,
табл. 2	дм	ч мин с	ция	по-		м∙с	Гų	Гц	Н∙м		м	H/M^2	H/M^2	\mathcal{M}
				нента										
1	13.02	08 53 04.9	ANN	BHN	1.1	2.01	2.0	2.0	$3.2 \cdot 10^{14}$	3.6	1.3	5	5	0.015
2	23.04	15 50 19.0	KIV	BHE	2.49	2.02	0.9	0.9	$4.2 \cdot 10^{15}$	4.4	1.8	25	4.5	0.06
3	30.05	07 58 21.9	KIV	BHN	2.32	3.12	0.9	0.9	$6.2 \cdot 10^{15}$	4.5	2.4	37	1.9	0.08
			ANN	BHE	2.20	1.14	1.5	2.0	$3.4 \cdot 10^{15}$	4.3	1.2	69	3.5	0.10
4	02.06	00 32 22.1	KIV	BHN	2.74	11.4	1.6	1.6	$2.8 \cdot 10^{16}$	4.9	1.4	332	2.3	0.56
5	26.06	21 33 53.3	KIV	BHE	2.32	1.66	0.7	0.9	$3.2 \cdot 10^{15}$	4.3	2.4	8	1.2	0.02
6	05.07	08 49 04.4	KIV	BHE	2.36	3.79	0.9	1.3	$7.6 \cdot 10^{15}$	4.6	1.8	46	2.0	0.10
7	19.07	03 34 23.3	KIV	BHE	2.48	0.78	2.0	2.0	$1.6 \cdot 10^{15}$	4.1	1.2	32	2.4	0.05
8	20.07	13 51 09.7	KIV	BHE	1.75	7.63	1.0	1.6	$1.1 \cdot 10^{16}$	4.7	1.4	140	3.4	0.24
9	17.10	19 06 35.4	ANN	BLE	0.71	1.45	2.7	2.7	$1.4 \cdot 10^{15}$	4.1	1.0	49	2.1	0.06
10	15.11	01 36 36.8	KIV	BHE	2.48	2.12	0.9	0.9	$4.4 \cdot 10^{15}$	4.4	2.4	11	1.4	0.03
			ANN	BHN	1.76	0.80	1.0	1.4	$1.9 \cdot 10^{15}$	4.2	1.8	11	3.2	0.02
11	10.12	16 56 56.4	ANN	BLN	0.16	15.4	2.3	2.3	$3.4 \cdot 10^{15}$	4.3	1.2	69	28	0.10
13	23.12	14 18 47.3	KIV	BHE	1.86	0.61	1.1	1.1	$9.5 \cdot 10^{14}$	4.0	2.0	4	6.3	0.01

Таблица 3. Спектральные и динамические параметры очагов землетрясений Северного Кавказа в 2012 г. (*S*-волны)

СПЕКТРАЛЬНЫЕ и ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ СЕВЕРНОГО КАВКАЗА Л.С. Малянова, И.П. Габсатарова

№ из табл. 2	Дата, дм	t ₀ , ч мин с	Стан- ция	Ком- по- нента	Δ°	$\Omega_{0,} 10^{-6}$ $\mathcal{M} \cdot C$	fп, Гц	f ₀ , Гц	М ₀ , Н∙м	Mw	$L, 10^3$ \mathcal{M}	$\Delta \sigma, 10^{5} \ H/m^{2}$	ησ, 10 ⁵ <i>H/m</i> ²	<u>и</u> , м
			SOC	BHN	1.42	0.7	2.2	2.2	$1.3 \cdot 10^{15}$	4.0	1.2	26	4.6	0.04
14	23.12	15 18 34.9	KIV	BHE	1.87	2.41	1.0	1.6	$3.8 \cdot 10^{15}$	4.4	1.4	48	5.0	0.08
			SOC	BLE	1.47	2.10	2.3	2.3	$4.1 \cdot 10^{15}$	4.4	1.2	83	4.6	0.12
15	24.12	12 25 16.3	KIV	BHE	1.84	0.92	0.6	1.3	$1.4 \cdot 10^{15}$	4.1	1.8	8	4.3	0.02
			SOC	BHE	1.46	0.62	2.0	2.0	$1.2 \cdot 10^{15}$	4.0	1.2	24	5.0	0.04
16	25.12	04 33 58.3	KIV	BHE	1.91	1.22	1.2	1.2	$2.0 \cdot 10^{15}$	4.2	1.8	12	1.9	0.03
			SOC	BHE	1.41	1.70	2.8	2.8	$3.2 \cdot 10^{15}$	4.3	1.0	112	1.2	0.14
18	25.12	22 55 48.1	KIV	BHE	1.88	14.7	0.9	1.2	$2.3 \cdot 10^{16}$	4.9	1.8	138	10.3	0.30
			SOC	BLE	1.40	5.57	2.2	2.2	$1.0 \cdot 10^{16}$	4.6	1.2	202	23.8	0.29

Полученные значения скалярного сейсмического момента землетрясений и их энергетические классы К_Р для Северо-Западного Кавказа, объединенные на рис. 4 с аналогичными результатами для событий в этой зоне из [23] (всего N=43 землетрясения), позволили посчитать параметры зависимости lg $M_0 = f(K_P)$. Для сравнения с полученными ранее зависимостями значения M_0 в единицах (*H*·*м*) переведены в единицы (дин.см). В результате найдена зависимость (5), которая неплохо согласуется с аналогичным уравнением (6) для Черноморско-Анапской зоны из [24], полученным по данным станций Крыма:

lg *M*₀, [*∂н*·*см*]=0.77(±0.03) *K*_P+14.19 (±0.36) при *r*=0.96, *N*=43(5),

lg *M*₀, [*∂н*·*см*]=0.51(±0.05) *K*_P+16.4 (±0.4) при *r*=0.92(6) [24].

Сравнение приведенных в табл. 3 под №11 очаговых параметров по одной станции «Анапа» для Су-Псехского землетрясения 10 декабря в 16^h56^m [25] с таковыми по пяти станциям Крымской сети [26] дано в табл. 4.

Рис. 4. Корреляция логарифма скалярного сейсмического момента lg *M*₀ с энергетическим классом *K*_P за 2004–2012 г. для землетрясений Северо-Западного Кавказа

Символом «^» отмечены основной толчок и афтершоки Восточно-Черноморского землетрясения 23 декабря 2012 г.

Таблица 4. Значения очаговых параметров Су-Псехского землетрясения по данным Северного Кавказа и Крыма

№ из табл. 3	Дата, ∂ м	t ₀ , ч мин с	Стан- ция	Компо- нента	$\Omega_{0,} 10^{-6}$ $\mathcal{M} \cdot C$	f ₀ , Гц	М ₀ , Н∙м	Mw	$L, 10^3$	$\Delta \sigma,$ $10^5 H/m^2$	$\eta \overline{\sigma}, 10^5$ H/M^2	$\Delta \sigma_r \cdot 10^5,$ Πa	и , м
11	10.12	16 56 56.4	ANN	BLN	15.4	2.3	$3.4 \cdot 10^{15}$	4.3	1.2	69	28	-6.5*	0.10
[26]	10.12	16 56 56.1		N+E, Z	2.92	1.5	3.39·10 ¹⁵	4.3	2.34	9.2	7.9	-3.3	2.61

Примечание. Знаком * отмечено доопределенное значение коэффициента радиационного трения по формуле $\Delta \sigma_r = 1/2 \Delta \sigma - \eta \overline{\sigma}$ из [27].

Как видим, это сравнение показало хорошее совпадение по значению M_0 и Mw, но значительные расхождения по параметрам L, $\Delta \sigma$, $\eta \sigma$, \overline{u} , .

Это связано, на наш взгляд, с разной аппаратурой на станциях [28, 29] и, в соответствии с этим, с разными значениями угловой частоты f_0 на спектрах станций. Кроме того, это может

быть связано с различным подходом к учету затухания в мантии для близкой станции «Анапа» (Δ =18 км) и более удаленных станций Крымской сети (Δ ≥250 км). Однако полученные различия не отразились на характеристиках типа разрыва от землетрясения 10 декабря в 16^h56^m по данным станции «Анапа» и по данным Крымской сети [26] – и в том [25], и в другом случае [26] установлено, что значение радиационного трения σ_r , связанного с шероховатостью поверхностей разрыва в очаге, имеет отрицательные значения и составило σ_r =-6.5 и -3.3 соответственно, подчеркивая сложность и шероховатость поверхности разрыва, так как отрицательные значения σ_r связываются с наличием макротрения по разрыву, которое возникает при смещении его крыльев из-за множества неоднородностей.

Следует отметить, что в табл. 2 значения скалярного сейсмического момента M_0 и Mw для землетрясений 23 декабря 2012 г. в 13^h31^m и 25 декабря 2012 г в 22^h44^m , полученные по станции «Кисловодск», примерно на 0.2–0.3 Mw завышены относительно данных международных центров GCMT и NEIC. Однако полученные впервые значения скалярного сейсмического момента и динамические параметры восьми очагов восточной шельфовой части Чёрного моря вблизи Абхазии дополнили ряд землетрясений при построении корреляционного графика $lgM_0=f(K_P)$ на рис. 4 и не исказили его, а повысили устойчивость этой зависимости.

Литература

- 1. Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры Пшехского землетрясения в Краснодарском крае // Землетрясения Северной Евразии, 2004 год. – Обнинск: ГС РАН, 2010. – С. 268–271.
- Габсатарова И.П. Пшехское землетрясение 15 ноября 2004 года с *Мw*=4.6, *MS*=4.6, *I*₀^p=5–6 (Краснодарский край) // Землетрясения Северной Евразии, 2004 год. – Обнинск: ГС РАН, 2010. – С. 386–394.
- Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии, 2005 год. – Обнинск: ГС РАН, 2011. – С. 331–335.
- 4. Габсатарова И.П., Малянова Л.С. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. С. 286–291.
- 5. Габсатарова И.П., Малянова Л.С. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 297–303.
- 6. Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии, 2009 год. Обнинск: ГС РАН, 2015. С. 271–276.
- 7. Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии, 2010 год. Обнинск: ГС РАН, 2016. С. 505–311.
- Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии, 2011 год. – Обнинск: ГС РАН, 2017. – С. 294–299.
- 9. International Seismological Centre, Thatcham, Berkshire, United Kingdom, 2015 [Сайт]. URL: *http://www.isc.ac.uk/iscbulletin/search/bulletin/*
- 10. Габсатарова И.П., Амиров С.Р., Девяткина Л.В., Цирихова Г.В. (отв. сост.), Александрова Л.И., Артёмова Е.В., Багаева С.С., Гамидова А.М., Гричуха К.В., Головкова Л.В., Иванова Л.Е., Калугина И.Ю., Королецки Л.Н., Косая В.В., Лещук Н.М., Мусалаева З.А., Перевозникова Я.Н., Петросян Э.Н., Сагателова Е.Ю., Селиванова Е.А. (сост.). Каталог землетрясений и взрывов Северного Кавказа за 2012 г. // Землетрясения Северной Евразии. – Вып. 21 (2012 г.). – Обнинск: ФИЦ ЕГС РАН, 2018. – Приложение на CD_ROM.
- 11. Соловьёва О.Н., Агаларова Э.Б., Алимамедова В.П., Гасанов А.Г., Геодакян Э.Г., Гюль Э.К., Дарахвелидзе Л.К., Петросян М.Д., Фабрициус З.Э., Хромецкая Е.А. Калибровочные функции для определения магнитуды Кавказских землетрясений по короткопериодной волне *P* на малых эпицентральных расстояниях // Интерпретация сейсмических наблюдений. – М.: МГК при Президиуме АН СССР, 1983. – С. 65–72.
- 12. **Раутиан Т.Г.** Энергия землетрясений // Методы детального изучения сейсмичности. Труды ИФЗ АН СССР; № 9(176). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 13. Аптекман Ж.Я., Дараган С.К., Долгополов В.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определе-

ния динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – № 2. – С. 60–70.

- 14. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И. и др. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология. – 1989. – № 2. – С. 66–79.
- 15. Anderson D.L., Hart R.S. Q of the Earth // J. Geophys. Res. 1978. 83. No B12. P. 5869-5882.
- 16. Ризниченко Ю.В., Джибладзе Э.А., Болквадзе И.Н. Спектры колебаний и параметры очагов Кавказа // Исследования по физике землетрясений. – М.: Наука, 1976. – С. 74–86.
- Пустовитенко Б.Г. Сейсмические процессы в Черноморском регионе и сейсмическая опасность Крыма // Диссертация на соискание ученой степени доктора физ.-мат. наук. – Киев: ИГ НАНУ, 2003. – С. 58–71.
- 18. **Павленко В.А., Павленко О.В.** Поглощение сейсмических волн в коре и верхней мантии в окрестностях сейсмостанции «Кисловодск» // Физика Земли. 2016. –№ 4 С. 24–34.
- Павленко О.В. Характеристики излучения и распространения сейсмических волн на Северном Кавказе, оцененные по записям сейсмостанций «Сочи» и «Анапа» // Вопросы инженерной сейсмологии. – 2016. – 43. – № 1. – С. 49–61.
- 20. Павленко О.В. Изучение региональных характеристик излучения и распространения сейсмических волн на Северном Кавказе посредством моделирования акселерограмм // Физика Земли. 2009. № 10. С. 38–48.
- 21. Brune I.V. Tectonic stress and the spectra of seismic shear waves from earthquakes // J. Geophys. Res. 1970. 75. No 26. P. 4997–5009.
- 22. Hanks T.S., Kanamori H. A moment magnitude scale // J. Geophys. Res. 1979. 84. No 135. P. 2348–2350.
- 23. Отчет о научно-исследовательской работе «Изучение параметров очагов и волновых полей сильных землетрясений на территории России» (заключительный). / Под рук. И.Р. Абубакирова. Фонды ФИЦ ЕГС РАН, 2013. –102 с.
- 24. **Пустовитенко Б.Г., Пантелеева Т.Г.** Спектральные и очаговые параметры землетрясений Крыма. Киев: Наукова думка, 1990. 251 с.
- 25. Габсатарова И.П., Малянова Л.С., Селиванова Е.А., Якушева В.Н. Су-Псехское землетрясение 10 декабря 2012 г. с *К*_P=12.5, *Мw*_{per}=4.3, *I*₀^P=5−6 (Анапский сейсмоактивный район) // Землетрясения Северной Евразии. Вып. 21 (2012 г.). Обнинск: ФИЦ ЕГС РАН, 2018. С. 420–432.
- 26. Пустовитенко Б.Г., Калинюк И.В., Пустовитенко А.А. Очаговые параметры землетрясений Крымско-Черноморского Региона // Землетрясения Северной Евразии. Вып. 21 (2012 г.). Обнинск: ФИЦ ЕГС РАН, 2018. С. 286–293.
- 27. Костров Б.В. Механика очага тектонического землетрясения. М.: Наука, 1975. 179 с.
- 28. Мехрюшев Д.Ю., Янков А.Ю., Погода Э.В., Даниялов М.Г., Габсатарова И.П., Пойгина С.Г. (сост.). Сейсмические станции ФИЦ ЕГС РАН, работавшие на территории Северного Кавказа в 2012 г. // Землетрясения Северной Евразии. Вып. 21 (2012 г.). Обнинск: ФИЦ ЕГС РАН, 2018. Приложение на CD_ROM.
- 29. Панков Ф.Н. (отв. сост.). Сейсмические станции Крымско-Черноморского региона в 2012 г. // Землетрясения Северной Евразии. Вып. 21 (2012 г.). Обнинск: ФИЦ ЕГС РАН, 2018. Приложение на CD_ROM.