СРЕДНЯЯ АЗИЯ и КАЗАХСТАН:

УДК 550.348. (574+575.1+575.2)

Центральная Азия

К.Е. Абдрахматов¹, А.Г. Фролова¹, А.В. Берёзина¹, Р. Шукурова¹, В.В. Гребенникова¹, М.О. Гессель², М.Т. Тулаганова³

¹Институт сейсмологии НАН Кыргызской Республики, г. Бишкек, kis@mail.elcat.kg ²Сейсмологическая опытно-методическая экспедиция Министерства образования и науки Республики Казахстан, г. Алматы, m_gessel@mail.ru ³Институт сейсмологии АН Республики Узбекистан, г. Ташкент, complex@uzsci.net

Аннотация. Представлен обзор сейсмичности Центральной Азии за 2012 г. на основе данных сетей наблюдений трех государств: Кыргызстана, Казахстана, Узбекистана. Приведены сведения о каждой сети наблюдений. Дано распределение 245 зарегистрированных землетрясений с $K_P \ge 8.6$ по районам, энергетическим классам и суммарной сейсмической энергии. Сделано сопоставление параметров сейсмичности с соответствующими значениями в предыдущие годы. Самым сильным на исследуемой территории в 2012 г. было землетрясение с энергетическим классом $K_P = 14.2$, которое произошло 30 мая на территории Казахстана, в 155 *км* от Алматы.

Abstract. The review of seismicity of Central Asia for 2012 on the basis of observation networks of three states: Kyrgyzstan, Kazakhstan, Uzbekistan is presented. Information on each observation network is provided. The distribution of 245 registered earthquakes with $K_P \ge 8.6$ for regions, energy classes and total seismic energy is presented. Seismic parameters were compared with previous years. The largest earthquake in the investigated territory in 2012 had energy class $K_P=14.2$; it occurred on May 30 in the territory Kazakhstan, in 155 km from Almaty.

Сейсмические станции. Сейсмический мониторинг Центральной Азии проводился в 2012 г., как и ранее [1, 2], силами трех государств (рис. 1): Кыргызстана, Казахстана и Узбекистана. На территории Кыргызстана работали 26 сейсмических станций: одна аналоговая, 15 цифровых Института сейсмологии Национальной академии наук и 10 цифровых телеметрических станций Научной станции Российской академии наук (НС РАН) [3]. Сеть сейсмических наблюдений Казахстана, состоящая из 36 станций, в течение года претерпела небольшие изменения: 30 июня закрыли станцию «Бесмойнак», 4 сентября открыли станцию «Согинды», на четырех станциях («Архарлы», «Дегерес», «Каратобе», «Котырбулак») менялась аппаратура [4]. На территории Республики Узбекифункционировали 20 цифровых стан станций Института сейсмологии Академии наук Узбекистана [5].

Районы и зоны. Границы региона, границы крупных районов и сейсмоактивных зон остались без изменений. Общая территория региона, как и прежде [1, 2],

Рис. 1. Схема размещения сейсмических станций на территории Центральной Азии

1- станции Кыргызстана, 2 – станции НС РАН, 3 – станции Узбекистана, 4 – станции Казахстана.

разделена на три района: Северо-Восточный (№ 1), Юго-Западный (№ 2) и Южный Тянь-Шань (№ 3). Район № 1 состоит из трех зон: Северо-Тянь-Шаньской (I₁), Срединно-Тянь-Шаньской (Нарынской) (I₂) и Джунгарской (I₃). В район № 2 входят пять зон: Ферганская (II₁), Приташкентско-Чимкентско-Каратауская (II₂), Самаркандско-Газлийская (II₃), Сурхандарьинско-Кашкадарьинская (II₄) и Кизыл-Кумская (II₅). В районе № 3 расположены две зоны: Кокшаальско-Кашгарская (III₁) и Алайско-Гармская (III₂).

Методика обработки землетрясений. Обработка землетрясений и оценка точности определения координат очагов в основном осуществлялись по общепринятой инструкции [6]. Выделение фаз, определение времен вступлений *P*- и *S*-волн, замеры амплитуд производились по программе «dbpick» (пакет программ «Antelope»). Для локации очагов землетрясений использовались скоростные модели земной коры, полученные для территории Кыргызстана [7], Казахстана [8] и Узбекистана [9]. Основные параметры землетрясения (дата, время, координаты, глубина, класс, магнитуда) определялись на компьютерах SUN с помощью программы «Hypoellipse» [10], которая была адаптирована для Центральной Азии согласно утвержденным методам сбора и обработки данных. В качестве характеристики величины землетрясения использовались энергетический класс *К*_P [11] и магнитуда *MPVA* по объемным волнам [12].

Расположение густой высокочувствительной сети сейсмических станций в трех зонах: Северо-Тянь-Шаньской (I₁), Ферганской (II₁) и Приташкентско-Чимкентско-Каратауской (II₂) обеспечило в их пределах представительную регистрацию землетрясений на уровне $K_{\min}=6$ и наименьшую погрешность определения координат гипоцентров в пределах $\delta=\pm(5-10) \kappa M$. На юго-востоке региона (на территории Китая) в Кокшаальско-Кашгарской зоне (III₁) Южного Тянь-Шаня погрешность определения координат эпицентров землетрясений с дополнительным привлечением некоторых станций Китая осталась, как и прежде [1, 2], в пределах $\delta=\pm25 \kappa M$.

Каталог землетрясений в регионе в 2012 г. содержит N_{Σ} =257 событий с энергетическими классами $K_{\rm P}$ =8.6–14.2 [13], что в несколько больше числа землетрясений в 2011 г., когда их было N_{Σ} =219 [1]. Карта эпицентров зарегистрированных в 2012 г. землетрясений показана на рис. 2.

Рис. 2. Карта эпицентров землетрясений Центральной Азии за 2012 г.

1 – энергетический класс К_Р; 2 – глубина *h* гипоцентра, км; 3–5 – граница зоны, района и региона соответственно.

Итоговое распределение землетрясений всего региона по классам дано в табл. 1.

K _P	N (K)	lg N	K _P	N (K)	lg N
9	175	2.225	13	3	0.477
10	50	1.681	14	1	0
11	24	1.322	Cunara	257	
12	4	0.602	Сумма	237	

Таблица 1. Распределение землетрясений Центральной Азии по классам K_P в 2012 г.

Региональные данные о величине землетрясений (K_P и *MPVA*) были дополнены другими оценками, а именно: магнитудами *MS* и *Ms* по поверхностным волнам из бюллетеней MOS [14] и ISC [15], магнитудами *MPSP* и m_b по объемным волнам из тех же источников, разными локальными магнитудами *ML*, m_b (BJI), m_b , m_{pv} (NNC), *ml* (KNET) из [15], а также моментными магнитудами *Mw* и сейсмическими моментами агентств MOS [14], NEIC [15] и GCMT [16].

График повторяемости землетрясений с $K_{\rm P} \ge 8.6$, построенный по данным табл. 1, практически прямолинеен и имеет наклон $|\gamma| = 0.44$ (рис. 3). На графике видно, что землетрясения с $K_{\rm min} = 9$ являются представительными для всей территории Центральной Азии.

Сейсмичность. Сравнение пространственного распределения эпицентров землетрясений с $K_{\rm P} \ge 8.6$ для территории Центральной Азии за 2012 г. (рис. 2) с аналогичными картами за предыдущие годы в [1, 2] показывает, что основные сейсмоактивные зоны и их конфигурация достаточно стабильны во времени. Меняются лишь уровень сейсмической активности разных зон, расположение очагов сильных землетрясений ($K_{\rm P} \ge 12$) и их миграция во времени вдоль Северо-Тянь-Шаньского, Южно- и Северо-Ферганского, Гиссаро-Кокшаальского глубинных разломов.

Общее число землетрясений с $K_P \ge 8.6$ в трех крупных районах в 2012 г. составило $N_{\Sigma} = 257$ с суммарной энергией $\Sigma E = 1.94 \cdot 10^{14} \, \mathcal{Д} \mathcal{K}$. Сейсмическая энергия рассчитывалась, исходя из самого определения энергетического класса по Т.Г. Раутиан [11]: $K = \lg E (\mathcal{Д} \mathcal{K})$.

Распределение числа землетрясений по районам, энергетическим классам и суммарной сейсмической энергии за 2012 г. приведено в табл. 2.

N⁰	Район			k	с. Р			N_{Σ}	$\Sigma E \cdot 10^{14}$,
		9	10	11	12	13	14		Дж
1	Северо-ВосточныйТянь-Шань	38	5	6	1		1	51	1.62
2	Юго-Западный Тянь-Шань	37	15	7				59	0.01
3	Южный Тянь-Шань	100	30	11	3	3		147	0.31
	Всего	175	50	24	4	3	1	257	1.94

Таблица 2. Распределение числа землетрясений разных классов *K*_P и их суммарной сейсмической энергии Σ*E* по районам за 2012 г.

Суммарное число зарегистрированных в 2012 г. землетрясений с $K_P \ge 8.6$ и величина выделенной сейсмической энергии чуть больше по сравнению с ситуацией в 2011 г. [1]: $N_{\Sigma} = 257$ вместо 219, $\Sigma E = 1.94 \cdot 10^{14} \, \square m$ вместо $\Sigma E = 1.306 \cdot 10^{14} \, \square m$ (табл. 3).

Средние значения основных характеристик уровня сейсмичности – числа землетрясений (N_{cp} =562) и уровня сейсмической энергии (ΣE_{cp} =16.06·10¹⁴ Дж), выделившейся в очагах за 16 лет, – выше значений этих параметров в 2012 г. в 2.3 и в 11.7 раз соответственно (табл. 3).

Для данного временного интервала просматривается 5–6-летняя повторяемость максимумов выделенной сейсмической энергии (рис. 4).

Год				$K_{ m P}$					N_{Σ}	$\Sigma E \cdot 10^{14}$,	
	9	10	11	12	13	14	15	16	1	Дж	
1996	348	102	42	9	3		1		505	10.45	
1997	550	280	134	42	3	3	6		1018	63.89	
1998	493	196	75	19	7	2	1		789	12.99	
1999	345	123	41	12	3				524	0.4768	
2000	323	107	46	4	2	1			483	1.3	
2001	270	86	34	8		1			399	1.125	
2002	270	78	31	6	2				387	0.302	
2003	534	141	66	14	5	4	2		766	24.73	
2004	351	99	40	8	2				500	0.333	
2005	373	82	20	9	3		1		488	10.42	
2006	392	93	34	9	1	2	1		531	12.24	
2007	317	105	32	13	3	1	1		471	11.48	
2008	622	201	62	18	6	2		1	912	102.9	
2009	386	144	41	9	4	2			586	2.55	
2010	279	84	33	13	3				412	0.4742	
2011	139	49	20	8	2	1			219	1.306	
Среднее	374	123	47	12.56	3.0625	1.1875	0.813	0.0625	562	16.06	
2012	175	50	24	4	3	1			257	1.94	

Таблица 3. Распределение по годам числа N_Σ землетрясений разных классов K_P и суммарной сейсмической энергии ΣE на территории региона Центральной Азии с 1996 г. по 2012 г.

Максимальный уровень сейсмической энергии в 2012 г. соответствует энергетическому классу K_P =14.2 (рис. 5) и характеризует 8-балльное землетрясение, произошедшее 30 мая в 21^h20^m на территории Казахстана.

Puc. 4. Распределение числа землетрясений *N* и суммарной сейсмической энергии Σ*E* по годам

Рассмотрим детально сейсмичность в каждом из трех районов и в их отдельных зонах. **Район № 1 – Северо-Восточный Тянь-Шань,** разделен на три зоны (рис. 2): Северный Тянь-Шань (I₂) и Джунгарию (I₃).

Сейсмичность зоны (I₁) распределена неравномерно по площади: большая часть эпицентров землетрясений расположена в горных ее районах вокруг оз. Иссык-Куль и к юго-востоку от него. Общее число зарегистрированных здесь событий N_{Σ} =26, выделенная суммарная сейсмическая энергия – ΣE =1.003·10¹⁴ Дж. В этой зоне произошло упомянутое выше самое сильное событие 2012 года – 30 мая в 21^h20^m с K_P =14.2 в 155 км к востоку от г. Алматы, где ощущалось с интенсивностью в 4 балла. В эпицентральную зону этого землетрясения была отправлена группа сотрудников СОМЭ РК, результаты обследования его последствий приведены в отдельной статье наст. ежегодника. На территории Кыргызстана землетрясение ощущалось в с. Тюп (88 км) с интенсивностью *I*=4–5 баллов; в г. Каракол (112 км) – 3–4 балла; в г. Чолпон-Ата (168 км), с. Ананьево (122 км) – 3 балла; в г. Бишкек (350 км) – 2 балла. Два землетрясения с *K*_P=11.2 и 10.9 произошли в ноябре месяце на юго-востоке и северозападе этой зоны, остальные были слабее.

В Срединном Тянь-Шане (зона I₂) зарегистрировано 12 землетрясений, суммарная сейсмическая энергия которых $\Sigma E=0.011\cdot 10^{14} \ \square \omega$.

Максимальным по энергии было землетрясение с K_P =12.3, произошедшее 5 февраля в 07^h10^m на северо-западе этой зоны, в хребте Молдо-Тоо. Согласно [16, 17], в его очаге преобладали близгоризонтальные (6°) напряжения сжатия юго-западного направления, которые вызвали подвижки типа взбросо-сдвиг по обеим достаточно крутым (54° и 63°) нодальным плоскостям близмеридиональной (*STK*=16°) и близширотной (*STK*=264°) ориентации. Остальные землетрясения, за исключением одного – на востоке, можно считать его афтершоками, эпицентры которых простираются узкой полосой к югу от главного толчка.

Макросейсмического обследования последствий землетрясения 5 февраля не проводилось. Для него авторами проведен лишь теоретический расчет значений интенсивности сотрясений в ближайших населенных пунктах на основе метода оперативного определения интенсивности сотрясений, предложенного в работах [18, 19]. Результаты представлены в виде карты теоретических изосейст (рис. 6) и расчетной таблицы пунктов-баллов с *I*≥5.0 (табл. 4).

Рис. 6. Карта расчетных круговых изосейст для землетрясения 5 февраля 2012 г. в 07^h10^m с φ=41.55°N, λ=74.77°E, *K*_P=12.4, *h*=21 *км*, *I*₀=5–6 баллов

Таблица 4. Расчетные значения интенсивности сотрясений от землетрясения 5 февраля 2012 г. для 17-ти пунктов с ∆<40 км

N⁰	Населенные пункты	Область	Район	φ°, <i>N</i>	λ°, <i>Ε</i>	Δ,	Ι,
						КМ	балл
1	Кёк-Джар	Нарынская	Ак-Талинский	41.45	74.83	12.17	5.7
2	Ак-Кыя	Нарынская	Ак-Талинский	41.44	74.83	13.19	5.6
3	Угют	Нарынская	Ак-Талинский	41.4	74.83	17.38	5.5
4	Джаны-Талап	Нарынская	Ак-Талинский	41.45	75.01	22.80	5.4
5	Байгёнчек	Нарынская	Ак-Талинский	41.35	74.92	25.45	5.3
6	Мин-Куш	Нарынская	Джумгальский	41.67	74.45	29.71	5.2
7	Кара-Ой	Нарынская	Ак-Талинский	41.45	75.11	30.32	5.2
8	Кызыл-Сеок	Нарынская	Джумгальский	41.63	74.41	31.17	5.1
9	Кош-Булак	Джалал-Абадская	Тогуз-Тороуский	41.45	74.4	32.65	5.1
10	Джаны-Тилек	Нарынская	Ак-Талинский	41.26	74.85	32.87	5.1
11	Кайынды-Булак	Нарынская	Ак-Талинский	41.28	74.95	33.49	5.1
12	Баетово	Нарынская	Ак-Талинский	41.26	74.95	35.49	5.0
13	Кара-Бюргён	Нарынская	Ак-Талинский	41.22	74.7	37.09	5.0
14	Ак-Чий	Нарынская	Ак-Талинский	41.22	74.83	36.97	5.0

N⁰	Населенные пункты	Область	Район	φ°, <i>N</i>	λ°, E	Δ,	Ι,
						КМ	балл
15	Дёдёмёль	Джалал-Абадская	Тогуз-Тороуский	41.46	74.33	37.86	5.0
16	Конорчок	Нарынская	Ак-Талинский	41.23	74.6	38.22	5.0
17	Кадыралы	Нарынская	Ак-Талинский	41.5	75.23	38.58	5.0

Для построения расчетной карты сейсмических изосейст и таблицы использовалась заложенная в методику база макросейсмических данных и точных координат населенных пунктов только Киргизии [18].

Наблюденная интенсивность сотрясений при землетрясении 5 февраля отмечена агентством NEIC [15] лишь в двух пунктах: в столице Казахстана Алматы *I*=3 балла и факт ощутимости (felt) – в столице Кыргызстана Бишкек [20].

В Джунгарии (зона I_3) зарегистрировано 13 землетрясений с $K_P \ge 8.6$, суммарная энергия которых $\Sigma E = 1.21 \cdot 10^{11} \ Дж$. Максимальным было землетрясение 6 июня в 06^h 26^m с $K_P = 10.6$.

Таким образом, в Северо-Восточном Тянь-Шане в 2012 г. было зарегистрировано 51 землетрясение, т.е. на три землетрясения меньше, чем в 2011 г. [1]. Однако уровень сейсмической энергии, равный $\Sigma E=1.015 \cdot 10^{14} \ Дж$, в 7.8 раза выше соответствующего уровня суммарной энергии ($\Sigma E=0.1294 \cdot 10^{14} \ Дж$) в 2011 г. Но, по сравнению со средними показателями этих параметров за 16 лет в табл. 5, в 2012 г. число землетрясений ($N_{\Sigma}=51$ против $N_{\Sigma}=87$) ниже в 1.7 раз и высвобожденная энергия – в 2.3 раза.

Год					N_{Σ}	$\Sigma E \cdot 10^{14}$,				
	9	10	11	12	13	14	15	16		Дж
1996	60	18	8	4	2				92	0.2504
1997	72	17	2	4	1		1		97	10.14
1998	53	23	9	3	1	1			90	1.1418
1999	55	23	5		2				85	0.2079
2000	39	17	5		2				63	0.2071
2001	37	18	6	1					62	0.0182
2002	46	12	5						63	0.0067
2003	92	19	8	3		2			124	2.041
2004	64	10	5	2	1				82	0.1266
2005	67	15	5	3			1		91	10.04
2006	76	21	10	3		1	1		111	11.04
2007	48	23	2	2	1				76	0.1247
2008	52	19	6	3	1				81	0.1384
2009	83	17	7	1	2	1			111	1.22
2010	80	25	5	3	1				114	0.1383
2011	32	11	8	2	1				54	0.1294
Среднее	59.8	18.0	6.0	2.12	0.94	0.312	0.1875		87.25	2.311
2012	39	6	4	1		1			51	1.015

Таблица 5. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* в Северо-Восточном Тянь-Шане (№ 1) за 1996–2012 гг.

В Юго-Западном Тянь-Шане (**№** 2) наибольшей сейсмичностью отличалась Ферганская зона (II₁), где в течение года произошло 36 землетрясений, суммарная энергия которых составила $\Sigma E=5.94 \cdot 10^{11} \ \text{Дж}$. Большая часть землетрясений сгруппировалась в горном обрамлении Ферганской долины, как бы окаймляя ее с трех сторон (рис. 2). Сильных событий ($K_P \ge 12$) в Ферганской зоне в 2012 г. не было. Наибольшее значение K_P составило 11.5 и характеризует землетрясение 12 сентября в 05^h50^m, зарегистрированное на севере зоны. Еще четыре землетрясения с классами $K_P=11.4$, 11.1, 10.8 и 10.7 [13] произошли в течение года на востоке зоны.

В Приташкентско-Чимкентско-Каратауской зоне (II₂) в 2012 г. зафиксировано шесть землетрясений с суммарной энергией $\Sigma E=3.3 \cdot 10^{10} \ Дж$: три события 10-го класса и три – 9-го класса.

В Самаркандско-Газлийской зоне (II₃) в течение года произошло всего четыре землетрясения. Максимальный энергетический класс K_P=10.9 имело землетрясение, зарегистрированное 29 июля в $18^{h}32^{m}$ на границе с Ферганской зоной (II₁). Три землетрясения произошли в районе Газли: два с классами $K_{\rm P}$ =10.5 и 9.8 и с абсолютно одинаковыми координатами эпицентров и одно – с $K_{\rm P}$ =9.4. Выделенная сейсмическая энергия для этой зоны составила ΣE =1.21·10¹¹ Дж.

В Сурхандарьинско-Кашкадарьинскаой зоне (II₄) 8 апреля в $16^{h}24^{m}$ зарегистрировано единственное землетрясение с K_{P} =8.6. Кизыл-Кумская зона (II₅) в 2012 г. была совершенно асейсмична.

В целом по району № 2 наблюдалось небольшое повышение количества землетрясений до N_{Σ} =47, но понижение уровня выделенной сейсмической энергии до ΣE =0.00749·10¹⁴ Дж относительно таковых в 2011 г.: N_{Σ} =42, ΣE =1.007·10¹⁴ Дж [1]. По сравнению со средними значениями этих параметров за предыдущие 16 лет (табл. 6), равными N_{cp} =115.7 и ΣE_{cp} =0.8904·10¹⁴ Дж, в 2012 г. произошло понижение как количества землетрясений в 2.7 раза, так и выделенной суммарной сейсмической энергии – в 119 раз, т.е. более, чем на два порядка.

Год				$K_{ m P}$					N_{Σ}	$\Sigma E \cdot 10^{14}$,
	9	10	11	12	13	14	15	16	_	Дж
1996	126	16	13						155	0.0159
1997	112	16	7						135	0.0097
1998	86	24	4						114	0.0073
1999	73	30	10	3	1				117	0.1437
2000	90	23	11	1		1			126	1.024
2001	85	26	11	2		1			125	1.034
2002	75	29	8	2	1				115	0.1317
2003	94	20	9	2	1				126	0.1319
2004	68	22	9		1				100	0.1119
2005	93	26	3	3	1				126	0.1365
2006	83	22	8						113	0.0110
2007	94	35	10	6	1		1		147	10.17
2008	81	28	7	2	1				119	0.1306
2009	65	29	3	4	1				102	0.1466
2010	59	20	8	2					89	0.0306
2011	22	14	5			1			42	1.007
Среднее	81.62	23.75	7.875	1.688	0.5	0.1875	0.0625		115.7	0.8904
2012	29	12	6						47	0.00749

Таблица 6. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* в Юго-Западном Тянь-Шане (№ 2) за 1996–2011 гг.

Южный Тянь-Шань (район № 3), связанный с системой Гиссаро-Кокшаальского глубинного разлома на границе Кыргызстана с Таджикистаном и широкой полосой эпицентров в системе хребтов Кунь-Луня на границе Кыргызстана с Китаем, традиционно активен. В 2012 г. здесь наблюдалось повышение как суммарного числа землетрясений, так и уровня выделенной сейсмической энергии по сравнению с таковыми в 2011 г.: N_{Σ} =147 вместо 123, ΣE =0.345·10¹⁴ Дж вместо 0.170·10¹⁴ Дж (табл. 7). А по сравнению со средними значениями этих параметров за предыдущие 16 лет и число землетрясений, и высвобожденная энергия ниже в 2.4 и в 37 раз соответственно.

Таблица 7. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* в Южном Тянь-Шане (№ 3) за 1996–2012 гг.

Год				ŀ	Кp				N_{Σ}	$\Sigma E \cdot 10^{14}$,
	9	10	11	12	13	14	15	16		Дж
1996	155	68	20	5	1		1		250	10.18
1997	366	247	125	38	2	3	5		786	53.73
1998	354	149	62	16	6	1	1		589	11.84
1999	217	70	26	9					322	0.1252

ЦЕНТРАЛЬНАЯ АЗИЯ К.Е. Абдрахматов, А.Г. Фролова, А.В. Берёзина, Р. Шукурова, В.В. Гребенникова, М.О. Гессель, М.Т. Тулаганова

Год				K	-P				N_{Σ}	$\Sigma E \cdot 10^{14}$,
	9	10	11	12	13	14	15	16		Дж
2000	193	67	30	3					293	0.0686
2001	148	41	17	5					211	0.0726
2002	149	37	18	4	1				209	0.1632
2003	348	102	49	9	4	2	2		516	22.55
2004	219	67	26	6					318	0.0949
2005	201	39	9	3	2				253	0.2449
2006	233	50	16	6	1	1			307	1.183
2007	175	47	19	5	1	1			248	1.175
2008	489	154	49	13	4	2		1	712	102.6
2009	238	98	31	4	1	1			373	1.183
2010	140	39	20	8	2				209	0.3053
2011	84	25	7	6	1				123	0.170
Среднее	231.81	81.25	32.75	8.75	1.625	0.688	0.563	0.0625	357.4	12.86
2012	100	30	11	3	3				147	0.345

Отдельно в Кокшаальско-Кашгарской зоне (III₁) зарегистрировано в общей сложности 91 землетрясение с суммарной энергией $N_{\Sigma}=3.307\cdot10^{13}$ Дж. Из них три на уровне 13-го энергетического класса и возникли последовательно во времени и мигрируя в пространстве в направлении с запада на восток. Они зарегистрированы: 1 июня в $12^{h}32^{m}$ с $\phi=39.83^{\circ}$, $\lambda=75.17^{\circ}$, $K_{P}=13.0$; 1 августа в $09^{h}52^{m}$ с $\phi=39.57^{\circ}$, $\lambda=75.50^{\circ}$, $K_{P}=12.6$; 11 августа в $09^{h}34^{m}$ с $\phi=39.92^{\circ}$, $\lambda=78.67^{\circ}$, $K_{P}=13.1$ [13]. В эту цепочку можно добавить одно более слабое землетрясение с $K_{P}=11.6$, заполняющее нишу между толчками 1 и 11 августа, т.к. оно зарегистрировано 7 августа в $09^{h}43^{m}$ с $\phi=39.03^{\circ}$, $\lambda=77^{\circ}.47$. Все они имеют решения механизмов очагов по данным GCMT и, соответственно, оценки значений их сейсмических моментов M_{0} и моментных магнитуд Mw (табл. 8).

Таблица 8. Параметры механизмов очагов землетрясений Кокшаальско-Кашгарской зоне (III₁) за 2012 г. из [16]

N⁰	Дата,	t_0 ,	h	Mw	M_0 ,	K _P	0	Оси главных напряжений					Нодальные плоскости					
	дм	ч мин с	км	GCMT	Н∙м		Т		Ν		Р		NP1		NP2		2	
							PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
1	01.06	12 32 25.3	12	5.1	5.01.1016	13.0	52	1	37	200	9	103	42	64	132	158	48	36
2	01.08	09 52 17.3		5.0	3.72.1016	12.6	63	359	9	250	25	156	74	71	100	226	22	65
3	07.08	09 43 17.6	11	4.4	4.59.1015	11.6	79	209	4	97	10	6	90	35	82	280	56	95
4	11.08	09 34 20.5	23	5.3	1.12.1017	13.1	86	55	4	259	2	169	82	47	95	255	43	84

Их диаграммы показаны на рис. 7.

Рис. 7. Диаграммы механизмов очагов наиболее заметных землетрясений Кокшаальско-Кашгарской зоне (III₁) за 2012 г.

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Согласно приведенным данным, в очаге первого из них с Mw=5.1 от 1 июня по крутой (64°) плоскости NP1 северо-восточного (42°) простирания произошла подвижка типа взброс со значительными компонентами правостороннего сдвига, а по более пологой (48°) плоскости NP2 юго-восточного простирания – левосторонний сдвиг со взбросом. В очаге землетрясения 1 августа с Mw=5.1 движения также восходящие, даже более выраженные, т.к. сдвиги очень незначительны: по близвертикальной (71°) плоскости NP1 восток-юго-восточного (74°) простирания произошел взброс, а по совсем пологой (22°) плоскости NP2 юго-западного простирания – надвиг, с незначительными левосторонним сдвигом. В очаге наиболее слабого землетрясе-

ния 7 августа движения по обеим нодальным плоскостям широтного простирания (90° и 280°) представляли собой надвиг (*NP1*) и взброс (*NP2*). Четвертый очаг в мигрирующей цепочке характеризуется наибольшей (Mw=5.3) магнитудой, а по типу подвижки практически дублирует землетрясение 7 августа – по обеим плоскостям близширотного (82° и 255°) простирания с почти равными (47° и 43°) наклонами реализовался взброс.

В Алайско-Гармской зоне (III₂) в 2012 г. зарегистрировано 56 землетрясений с суммарной энергией N_{Σ} =1.433·10¹² Дж. Из них отметим наболее сильное (K_{P} =12.2) землетрясение, произошедшее 2 марта в 13^h40^m на территории КНР вблизи границы с Кыргызстаном. Эпицентр этого землетрясения расположен в 50 км от основного толчка Нуринского землетрясения 05.10.2008 г. [21] и, возможно, является поздним его афтершоком. Применение к нему способа расчета теоретической интенсивности сотрясений по программам из [18, 19] дает в двух известных населенных пунктах (Нуре (34 км) и Кёк-Суу (42 км)) значение интенсивности 4 балла, но подтверждение расчетных сотрясений отсутствует.

Рассматривая сейсмический процесс в целом, можно отметить, что в 2012 г. в регионе наблюдалось небольшое увеличение сейсмичности. По сравнению с ситуацией в 2011 г. [1], значительно повысилась выделенная сейсмическая энергия в районах Северо-Восточного (№ 1) и Южного (№ 3) Тянь-Шаня. В Юго-Западном Тянь-Шане (№ 2) произошло небольшое повышение количества землетрясений, но понижение уровня выделенной сейсмической энергии. Эпицентральные зоны и их конфигурация остались без особых изменений в пространстве и во времени.

Литература

- 1. Абдрахматов К.Е., Фролова А.Г., Муралиев А.М., Берёзина А.В., Шукурова Р., Михайлова Р.С., Гребенникова В.В., Гессель М.О., Тулаганова М.Т. Центральная Азия // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017 С. 97–107.
- 2. **Муралиев А.М., Джанузаков К.Д., Шукурова Р., Гессель М.О., Тулаганова М.Т.** Центральная Азия // Землетрясения Северной Евразии, 2010 год. Обнинск: ФИЦ ЕГС РАН, 2016 С. 127–136.
- 3. Берёзина А.В. (сост.). Сейсмические станции Кыргызстана в 2012 г. // Землетрясения Северной Евразии. Вып. 21 (2012 г.). Обнинск: ФИЦ ЕГС РАН, 2018. Приложение на CD_ROM.
- Гессель М.О., Неверова Н.П. (СОМЭ МОН РК) (сост.). Сейсмические станции Сейсмологической опытно-методической экспедиции Министерства образования и науки Республики Казахстан в 2012 г. // Землетрясения Северной Евразии. – Вып. 21 (2012 г.). – Обнинск: ФИЦ ЕГС РАН, 2018. – Приложение на CD_ROM.
- Ибрагимов А. (сост.). Сейсмические станции Института сейсмологии АН Республики Узбекистан в 2012 г. // Землетрясения Северной Евразии. – Вып. 21 (2012 г.). – Обнинск: ФИЦ ЕГС РАН, 2018. – Приложение на CD_ROM.
- 6. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М: Наука, 1982. 273 с.
- 7. Сабитова Т. и др. Земная кора и верхняя мантия Тянь-Шаня в связи с геодинамикой и сейсмичностью. Бишкек: Илим, 2006. 114 с.
- 8. Шацилов В.И., Стихарный А.П. Отчет о научно-практической работе по расчету обобщенных скоростных моделей земной коры и годографов для регионов Казахстана. Алматы: Фонды Института сейсмологии АН Республики Казахстан, 2004. 157 с.
- 9. Захарова А.И., Ибрагимов Р.Н., Матасова Л.М. и др. Параметры землетрясений и очаговых зон Узбекистана. Ташкент: Фан, 1973. 143 с.
- 10. Lahr J.C. A computer program HYPOELLIPSE for determining local earthquakes hypocentral parameters, magnitude and first motion pattern. U.S.G.S. Open-FileReport.
- 11. **Раутиан Т.Г.**Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика. Труды ИФЗ АН СССР, №32 (199). М.: Наука, 1964. С. 88–93.
- 12. Михайлова Н.Н., Неверова Н.П. Калибровочная функция *s*(*d*) для определения *MPVA* землетрясений Северного Тянь-Шаня // Комплексные исследования на Алма-Атинском прогностическом полигоне. Алма-Ата: Наука, 1986. С. 41–47.

- 13. Фролова А.Г., Берёзина А.В., Шукурова Р. (по региону), Соколова Н.П. (по Кыргызстану), Гессель М.О. (по Казахстану), Михайлова Н.Н. (по Казахстану), Тулаганова М.Т. (по Узбекистану) (отв. сост.), Молдобекова С., Першина Е.В., Афонина Л.Р., Неверова Н.П., Проскурина Л.П., Далебаева Ж., Досайбекова С.К., Проскурина А.В., Мукамбаев А.С., Бастанова Н.Ш., Узбеков Р., Сейнасинов Н., Рябенко О.В., Бектурганова Б.Б., Содикова Н.М., Кучкарова К.И. (сост.). Каталог землетрясений Центральной Азии за 2012 г. // Землетрясения Северной Евразии. Вып. 21 (2012 г.). Обнинск: ФИЦ ЕГС РАН, 2018. Приложение на CD_ROM.
- 14. Сейсмологический бюллетень (ежедекадный) за 2012 год [Электронный ресурс] / Отв. ред. О.Е. Старовойт. – Обнинск: ФИЦ ЕГС РАН, 2012–2013. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2012*
- 15. International Seismological Centre, Thatcham, Berkshire, United Kingdom, 2015 [Сайт]. URL: *http://www.isc.ac.uk/iscbulletin/search/bulletin/*
- 16. Global Centroid Moment Tensor (СМТ) Catalog [Сайт]. URL: *http://www.globalcmt.org/CMTsearch.html*
- 17. Муралиев А.М. (ИС НАН КР), Полешко Н.Н. (РГП ИГИ МЭ РК) (отв. сост.), М.Б. Малдыбаева, Абдыраева Б.С. (ИС НАН КР), Досайбекова С. (СОМЭ МОН РК), Холикова М.А. (РЦСМ) (сост.). Каталог механизмов очагов землетрясений Центральной Азии за 2012 г. // Землетрясения Северной Евразии. – Вып. 21 (2012 г.). – Обнинск: ФИЦ ЕГС РАН, 2018. – Приложение на CD_ROM.
- 18. Гребенникова В.В., Миркин Е.Л. База Данных (БД) «SEISMIC INTENSITY». Кыргызпатент. Авторское свидетельство № 25 от 17 июня 2015 г.
- 19. Миркин Е.Л., Гребенникова В.В. Программа «SEISMICINTENSITY». Кыргызпатент: Авторское свидетельство № 369 от 17 июня 2015 г.
- 20. Фролова А.Г., Гребенникова В.В., Лукаш Н.А. (сост.). Макросейсмический эффект ощутимых землетрясений в населенных пунктах Центральной Азии в 2012 г. // Землетрясения Северной Евразии. Вып. 21 (2012 г.). Обнинск: ФИЦ ЕГС РАН, 2018. Приложение на CD_ROM.
- 21. Абдрахматов К.Е., Омуралиев М., Ормуков Ч. Землетрясение Нура 5 октября 2008 г. с K_P =15.4, Mw=6.7, I_0 =8 (Кыргызстан) // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 408–416.