ТЫМОВСКОЕ ЗЕМЛЕТРЯСЕНИЕ 12 декабря 2011 г.

с K_P=13.6, Mw=5.1, I₀=6-7 (Центральный Сахалин) Е.П. Семёнова¹, Д.А. Сафонов^{1,2}, Р.С. Михайлова³

¹Сахалинский филиал ФИЦ Единой Геофизической службы РАН, г. Южно-Сахалинск, **semenova@seismo.sakhalin.ru** ²Институт морской геологии и геофизики ДВО РАН, г. Южно-Сахалинск. **d.safonov@imgg.ru** ³Федеральный исследовательский центр Единой Геофизической службы РАН, г. Обнинск, **raisa@gsras.ru**

12 декабря 2011 г. в центральной части о. Сахалин произошло землетрясение с магнитудой *MLH*=5.0 [1]. Сотрясения наибольшей интенсивности (*I*=5–6 баллов) испытали жители населенных пунктов Тымовского района. По названию принадлежности эпицентральной зоны события к административному району острова землетрясение получило название Тымовское.

Основные параметры Тымовского землетрясения. Локализацию Тымовского землетрясения реализовали две региональные организации: Сахалинский филиал Геофизической службы РАН (СФ ГС РАН → SKHL) и Институт морской геологии и геофизики ДВО РАН (ИМГиГ).

Решение гипоцентра Тымовского землетрясения в SKHL_{per} получено по данным всех региональных станций [2–4] Сахалинского филиала, а также телесейсмических станций Объединенного института сейсмологических исследований (IRIS – Incorporated Research Institutions for Seismology) [5] по программе MGP [6]. Использован принятый в практике обработки региональных землетрясений годограф Джеффриса, адаптированный к сахалинским землетрясениям. В оперативном определении (SKHL_{onep}) параметров Тымовского землетрясения поиск решения осуществлялся по программе DIMAS [7].

В лаборатории физики землетрясений Института морской геологии и геофизики эпицентр землетрясения локализован по записям сейсмических станций ИМГиГ и СФ ГС РАН по методу гипоинверсии [8] с использованием локального скоростного разреза, который уже использовался в ИМГиГ ДВО РАН в ходе детальных сейсмологических наблюдений на севере о. Сахалин [9] (глубина очага и эпицентр землетрясения оценены одновременно). Для корректировки отношения скоростей *P*- и *S*-волн и независимой оценки времени в очаге производилось дополнительное тестирование измеренных параметров при помощи графика Вадати. В совокупности это позволило добиться высокой точности пространственной привязки очага землетрясения [10].

Описанные решения вместе с решениями разных сейсмологических агентств мира приведены в табл. 1.

Агентство	<i>t</i> ₀ ,	δt_0 ,			Гипоце	ентр		Магнитуда	Источ-		
	ч мин с	С	φ°, N	δφ°	λ°, Ε	δλ°	<i>h</i> ,	δh ,		ник	
							КМ	км			
SKHL	09 28 39.1	0.30	50.66	0.03	143.04	0.15	10		MLH=5.0/4, MPV=4.7/1,	[1]	
									<i>MPVA</i> =5.3/17, <i>MSH</i> =5.1/1,		
									$K_{\rm C}$ =11.9, $K_{\rm P}$ =13.6 ^p		
SKHL _{onep}	09 28 38.3	0.32	50.60		143.19		3	3	<i>MS</i> =5.1, <i>ML</i> =5.7	[11]	
ИМГиГ	09 28 39.5		50.67		143.03		5.1	3	<i>ML</i> =5.4	[12]	
Макросейсми-			50.829		142.725	С карты изосейст (настоящая статья)					
ческий эпицентр								_			
MOS	09 28 38.7		50.64	0.06	143.05	0.04	11		MPSP=5.2/102, MS=4.7/35	[13]	
ISC	09 28 41.7	0.49	50.69	0.04	143.12	0.03	13.9		$Ms = (4.8 \pm 0.3)/65,$	[14]	
							$h_{\rm pP}=14$		$m_{\rm b} = (5.0 \pm 0/2)/286$		
ISCJB	09 28 38.8	0.25	50.65	0.02	143.10	0.02	8.9	2.8		[14]	
							$h_{\rm pP}=16$				

Таблица 1. Параметры Тымовского землетрясения 12 декабря 2011 г. с *Мw*=5.1 по данным международных агентств и региональных сейсмологических центров

Агентство	<i>t</i> ₀ ,	δt_0 ,			Гипоц	ентр	Магнитуда	Источ-		
	ч мин с	С	φ°, N	δφ°	λ°, Ε	δλ°	<i>h</i> ,	δh ,		ник
							КМ	км		
IDC	09 28 38.8	0.45	50.71	0.12	143.15	0.10	0f		$m_{\rm b}=(4.7\pm0/1)/22$	[14]
									$Ms = (4.5 \pm 0.1)/37$	
NEIC USGS	09 28 41.6	1.16	50.71	0.03	143.04	0.02	14.3	7.5	$m_{\rm b}$ =5.0/175	[15]
GCMT	09 28 42.0		50.70		142.97		16.4	0.9	Mw=5.1/110	[16]
BJI	09 28 41.3		50.70		143.10		20		$m_{\rm b}$ =4.9/68	[14]
									<i>Ms</i> =5.4/70	
EMSC	09 28 40.0		50.70		143.01		10		<i>Mw</i> =5.1	[17]
GFZ	09 28 40.3		50.67		143.21		10		<i>Mw</i> =5.1	[18]

Примечание. Расшифровка кодов агентств дана в обозначениях к наст. ежегоднику.

Как видим, разброс в положении эпицентра в табл. 1 находится в диапазоне $\Delta \phi$ =50.60–50.71°N, $\Delta \lambda$ =142.97–143.21°E. В плане все решения Тымовского землетрясения показаны на рис. 1. Отметим компактное расположение почти всех решений. В основном расстояние между

Рис. 1. Варианты положения эпицентра Тымовского землетрясения 12 декабря 2011 г. с *MLH*=5.0

1 – макросейсмический эпицентр; 2, 3 – решения SKHL и ИМГиГ соответственно; 4 – решения других агентств; 5 – населенный пункт.

эпицентрами не превышает нескольких километров. Исключение составляет лишь макросейсмический эпицентр, описанный ниже, со смещением к северо-западу на 29 км, что превышает погрешности инструментальных определений. Глубина гипоцентра, согласно [10], составила 5.1 км по методу гипоинверсии и 11 км – по обменным волнам pP, sP, sS, отраженным вблизи эпицентра. Можно считать, что очаг Тымовского землетрясения залегает в земной коре на глубине 5–11 км. Среди разных оценок величины землетрясения заслуживает внимания региональное значение магнитуды по поверхностным волнам MLH=5.0 [1], близкое к моментной магнитуде Mw=5.1_{GCMT} [16].

Механизм очага Тымовского землетрясения был определен методом полярности первых вступлений *P*-волн независимо в ИМГиГ [10, 20] с использованием базового алгоритма программы «МЕХАНИЗМ» и привлечением полярности первых вступлений в *S*-волне и в Саха-

линском филиале [19] с использованием вычислительной программы FOCMEC [21], интегрированной в комплекс сейсмологических программ SEISAN [22]. Кроме того, в ИМГиГ дополнительно получено решение для тензора сейсмического момента очага с использованием метода инверсии волновых форм (centroid moment tensor – CMT) [20], как и в агентствах GCMT [16] , GFZ [18] (табл. 2).

Агент	<i>t</i> ₀ ,	h,	Магн	итуды	K _C	Оси главных напряж				жений Нодальные плоскости						Источ-		
ство	ч мин с	км	Mw	MLH		Т		N		Р		NP1		NP2		2	ник	
						PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
SKHL	09 28 39.1	10		5.0	11.9	76	104	10	330	10	238	316	36	73	157	56	102	[19]
ИМГиГ	09 28 40.1	5		4.9		53	2			16	249	17	41	145	134	68	55	[10, c.142]
ИМГиГ*	09 28 40.1	5	5.4			68	315			9	68	355	57	114	136	40	58	[20]
GCMT*	09 28 42.0	16.4	5.1			8	353	80	132	7	262	38	80	179	128	89	10	[16]
GFZ*	09 28 40.3	10	5.1			22	357	60	133	19	259	37	60	177	128	88	30	[18]

Таблица 2. Решения механизма очага Тымовского землетрясения 12 декабря 2011 г. с Мw=5.1

Примечание. Символом * указаны параметры плоскостей механизма очага, соответствующего тензору сей смического момента в приближении двойного диполя; расшифровка кодов агентств дана в обозначениях к наст. ежегоднику. На рис. 2 показаны стереограммы механизма очага Тымовского землетрясения 2011 г. в проекции нижней полусферы.

Рис. 2. Стереограммы механизма очага Тымовского землетрясения 12 декабря 2011 г. по данным разных источников

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Как видим, результаты определения механизма очага по данным разных источников значительно разнятся. По данным Сахалинского филиала Геофизической службы РАН, землетрясение стало результатом взброса: одна из возможных плоскостей разрыва (NP2) простирается на юго-восток ($STK_2=157^\circ$) и падает на юго-запад ($DP_2=56^\circ$), вторая (NP1) простирается на северо-запад ($STK_1=316^\circ$) и более полого падает на северо-восток ($DP_1=36^\circ$), сдвиговая компонента незначительна. Согласно решению ИМГиГ по первым вступлениям Р-волн [10], одна из возможных плоскостей разрыва (NP2) простирается на юго-восток ($STK_2=134^\circ$) и круто ($DP_2=68^\circ$) падает на юго-запад, при этом западное крыло разрыва поднялось и сдвинулось на юго-восток (левосторонний сдвиг). Альтернативная плоскость (NP1) имеет север-северо-восточное простирание ($STK_1=17^\circ$) и падает на юго-восток с наклоном $DP_1=41^\circ$, юго-восточное крыло разрыва поднялось и сдвинулось на юго-запад (правосторонний сдвиг). По данным иных источников, тип сейсмодислокации в очаге землетрясения меняется от взбросо-сдвигового до почти чисто сдвигового. Общим во всех решениях остается близгоризонтальное положение главной оси сжатия (Р), т.е. можно утверждать, что очаг землетрясения находился в условиях сжатия, что хорошо согласуется с современными представлениями о сейсмотектонике региона [23, 24]. В то же время положение оси растяжения (T) значительно меняется: от субвертикального ($PL_{T}=76^{\circ}$) по данным Сахалинского филиала, до горизонтального (*PL*_T=8°) – по данным GCMT.

Выбор рабочей плоскости очага Тымовского землетрясения был выполнен в [10] при помощи азимутального годографа фиктивной волны $\tau = t_{Pmax} - t_{P1}$ по методике И.В. Горбуновой [25], который представлен и скопирован на рис. 3.

Рис. 3. Азимутальный годограф Тымовского землетрясения $\tau = t_{Pmax} - t_{P1}$

1, 2 – аппаратура СКМ и СКД соответственно; 3, 4 – уверенные и неуверенные участки кривой соответственно; стрелкой указан азимут разрыва в очаге (*Az*_{разрыва}); коды и названия сейсмических станций: YSS – «Южно-Сахалинск»; МАЈО – «Мацуширо»; YAK – «Якутск»; OKH – «Оха»; NGL – «Ноглики»; BILL – «Билибино».

Согласно [10], вид годографа позволяет предположить, что в очаге Тымовского землетрясения разрыв был однонаправленным. Установленная по азимутальному годографу ориентация разрыва равна ≈130–140° и близка к простиранию плоскости *NP2* (*STK*₂=134° (ИМГиГ) или 136° (ИМГиГ*) юго-западного падения (табл. 2), вдоль которой, как отмечалось выше, наблюдался левосторонний сдвиг, впрочем, решения GCMT и GFZ (*STK*₂=128°) также укладываются в по-грешность методики.

Афтершоки. Тымовское землетрясение сопровождалось значительным количеством афтершоков. Согласно [26], сетью ИМГиГ (рис. 1) до конца года из эпицентральной зоны было зарегистрировано 605 повторных толчков с ML>0, из них за первые сутки было зарегистрировано около 50 % афтершоков от их общего числа за две недели. Список повторных толчков приведен в Приложении 1 к наст. ежегоднику [27]. В нем величина афтершоков характеризуется локальной магнитудой ML, описанной в [28]. В частности, для главного толчка ML=5.4.

Максимальный афтершок имел магнитуду ML=3.9 и был зарегистрирован спустя 1 час после главного толчка и вблизи (3.2 км) него. Еще раньше, спустя 5 минут после главного события, произошло схожее по величине землетрясение с ML=3.7 на расстоянии 5.9 км. Можно отметить и другие два афтершока с магнитудами ML>3.0, возникшие последовательно 12 декабря в $10^{h}58^{m}$ с ML=3.3 и 13 декабря в $05^{h}25^{m}$ с ML=3.4, т.е. все – в течение первых суток.

Распределение афтершоков по магнитуде *ML* рассмотрено в накопленном варианте с разным шагом обобщения δ *ML*=0.2 и 0.5. Соответствующие каждому случаю графики повторяемости изображены на рис. 4. Их наклоны, равные b_1 =(-0.82) и b_2 =(-0.85), в пределах ошибок совпадают и близки среднестатистическим их величинам в регионе.

Рис. 4. Графики повторяемости афтершоков Тымовского землетрясений из каталога ИМГиГ и значения их параметров с б *ML*=0.2 (а) и 0.5 (б)

К сожалению, многие афтершоки в списке ИМГиГ [12] были зарегистрированы лишь одной станцией и не локализованы, поэтому в полном объеме (N_{Σ} =605) не могут быть использованы для исследования пространственной структуры поля всех афтершоков. Эпицентры определены лишь для 66 из них. Однако наряду со списком афтершоков ИМГиГ есть еще два источника сведений об афтершоках Тымовского землетрясения за исследуемые 20 дней до конца года, а именно: оперативный каталог СФ ГС РАН [11], из которого взяты лишь более сильные 22 афтершока $K_{C} \ge 7.6$ и региональный каталог СФ ГС РАН [1], в котором выявлено лишь 9 афтершоков. К сожалению, в этих трех списках использованы разные системы классификации землетрясений: в ИМГиГ – ML, в оперативном и в региональном – энергетические классы K_{C} . Поэтому рассмотрим соответственно три карты эпицентров афтершоков на рис. 5 а, б, в с целью оценить по ним конфигурацию облака афтершоков для выбора действующей плоскости разрыва. Исходные для рис. 5 данные (соответствующие три списка афтершоков) приведены в Приложениях к наст. ежегоднику [1, 27, 29].

Как видим, обсуждать можно лишь первый фрагмент (a) (фрагменты (б) и (в), скорее всего, имеют ошибки в локации событий), где четко просматривается близмеридиональная ориентация области афтершоков. Более всего это соответствует простиранию нодальной плоскости *NP2* решения механизма очага *SKHL* (*STK*₂=157°), впрочем, нодальные плоскости *NP2* других решений приблизительно ориентированы в том же направлении.

Рис.5. Три варианта карты эпицентров афтершоков Тымовского землетрясения с 12 по 31 декабря по [1, 27, 29]

1 – магнитуда *ML* на фрагменте (а), класс *K*_S – на (б) и класс *K*_C на – (с); 2 – глубина гипоцентра *h*, *км*; 3 – главный толчок; 4 – населенный пункт.

Макросейсмическое обследование. Первоначальные данные о проявлении землетрясения были получены из сообщений жителей районов Сахалинской области, которые проживают в непосредственной близости к эпицентральной зоне Тымовского землетрясения. К оперативной оценке интенсивности сотрясений подключились службы мониторинга Главного Управления МЧС России по Сахалинской области. Детальное макросейсмическое обследование было выполнено сотрудниками сейсмической станции «Тымовское» и РИОЦ «Южно-Сахалинск». Маршруты групп макросейсмического обследования пролегали вдоль основных транспортных артерий от пос. Тымовское: на юг в сторону Палевских высот, на северо-восток к пос. Ноглики и на северо-запад в направлении г. Александровск-Сахалинский.

Наибольшие проявления землетрясения с интенсивностью $I_i=5-6$ баллов испытало на себе население в пос. Тымовское ($\Delta=8 \ \kappa m$). Землетрясение ощущалось всеми жителями поселка. Испугавшись, многие вышли на улицу и ждали последующих сотрясений. В домах постройки типа Б были отмечены легкие повреждения 1-й степени (рис. 6, 7).

Рис. 6. Пос. Тымовское, раскрытие шва между стеной и потолком в классной комнате здания школы

Рис. 7. Пос. Тымовское, на стене появились трещины, осыпание штукатурки со стен в одном из помещений школы

С интенсивностью до 4–5 баллов землетрясение ощутили жители ближайших к пос. Тымовское населенных пунктов южного направления – Красная Тымь, Зональное, Белоречье, Палево, северного направления – Воскресенское, Слава, Молодёжное.

Согласно [10], макросейсмические данные, собранные в табл. 3 и изображенные на рис. 8, отражают редкость расположения населенных пунктов Центрального Сахалина и их отсутствие на Восточном и Западном побережье. Населенные пункты, построенные в советское время леспромхозами, по большей части расположены в долинах рек Тымь и Поронай.

№	Пункт	Δ,	φ°, N	λ°, Ε	N⁰	Пункт	Δ,	φ°, N	λ°, Ε
		КМ					КМ		
	5-6 баллов				25	Трамбаус	90.0	51.510	142.020
1	Тымовское	57	50 851	142 651	26	Виахту	99.3	51.575	141.933
1	4-5 баццов	5.7	50.051	142.001		<u>2-3 балла</u>			
2	<u>+ 5 000000</u>	6.0	50 706	140 (74	27	Михайловка	38.7	50.837	142.173
2	Красная Тымь	0.0	50.786	142.674	28	Иркир	46.4	51.245	142.670
3	молодежное	19.6	51.001	142.665	29	Южная Хандаса	95.6	49.970	142.800
	<u>4 балла</u>				30	Рощино	96.6	49.960	142.760
4	Восход	8.1	50.830	142.610	31	Первомайское	103.2	49.968	143.266
5	Подгорное	8.8	50.822	142.600	32	Победино	111.2	49.830	142.810
6	Воскресеновка	10.8	50.910	142.640	33	Ноглики	112.7	51.809	143.149
7	Кировское	13.5	50.708	142.715	34	Смирных	121.2	49.740	142.830
8	Зональное	18.1	50.667	142.753	35	Ельники	127.9	49.680	142.840
9	Белоречье	18.2	50.693	142.869	36	Буюклы	142.4	49.550	142.850
10	Ясное	21.9	50.633	142.696	37	Леонидово	172.4	49.280	142.870
11	Слава	24.1	51.037	142.625	38	Тихменево	180.3	49.210	142.890
12	Палево	24.4	50.610	142.710	39	Поронайск	181.7	49.210	143.080
	<u>3-4 балла</u>				40	Углегорск	200.1	49.080	142.067
13	Арково	34.2	50.940	142.270		<u>1 балл</u>			
14	Адо-Тымово	34.5	51.138	142.675	41	Комрво	66.1	51.106	143.563
15	Александровск-	40.5	50.892	142.156		(метеостанция)			
_	Сахалинский				42	Катангли	104.3	51.715	143.224
16	Дуэ	43.0	50.822	142.112	43	Шахтерск	189.1	49.180	142.080
	3 балла				44	Краснополье	213.1	48.940	142.220
17	<u>5 ounit</u>	10.9	50 751	142 (27	45	Платформа	217.0	52.715	143.565
1/	Белое	10.8	50.754	142.027		Моликпак			
18	Мгачи	41.8	51.050	142.240	46	Поречье	220.8	48.900	142.000
19	Чир-унвд	42.4	51.210	142.682	47	Макаров	245.5	48.620	142.770
20	Мангидаи	44.2	51.098	142.258	48	Сабо	257.5	53.143	142.950
21	Арги-Паги	51.2	51.344	142./22	49	Восточный,	285.5	48.260	142.620
22	X0e	66.1	51.517	142.180		Макаровского р-на			
25	Онор	/1.1	50.190	142.680	50	Oxa	306.9	53.588	142.941
24	Ныш	/8.4	51.534	142.753					

Таблица 3. Результаты макросейсмического обследования эпицентральной зоны Тымовского землетрясения 12 декабря 2011 г. с *MLH*=5.0

Примечание. Расстояния вычислены от макросейсмического эпицентра с φ=50.829°N, λ=142.725°E.

Результат макросейсмического обследования изображен на карте пункт-балл (рис. 8). Оказалось возможным провести две изосейсты – с I=4 и 3 балла. Особенно важна область в пределах I=4 балла, т.к. ее геометрический центр является макросейсмическим эпицентром с координатами $\varphi=50.829^{\circ}$ N, $\lambda=142.725^{\circ}$ E, от которого наиболее правильно измерять расстояние до всех населенных пунктов, что отражено в табл. 3.

Как видно из рис. 8, эллипс изосейст имеет юго-юго-восточное простирание, примерно совпадающее с простиранием облака афтершоков и ориентацией нодальной плоскости *NP2* решения механизма очага SKHL (*STK*₂=157°).

Сейсмотектоническая позиция очаговой зоны. Сейсмичность Восточно-Сахалинской зоны генерируется одним из сегментов Срединно-Сахалинского глубинного разлома. Срединно-Сахалинский разлом в пределах всех его фрагментов сопровождается системами складчатых и разрывных дислокаций [23], которые реализуют тектоническую расслоенность структурнодинамической среды Хоккайдо-Сахалинского сооружения. В пределах Центрального Сахалина сегмент Срединно-Сахалинского глубинного разлома – Первомайский взбросо-надвиг – ограничивает с запада горстовые массивы Восточно-Сахалинских гор и п-ова Терпения.

Согласно [10], Тымовское землетрясение 12 декабря 2011 г., произошедшее в центральной части о. Сахалин, приурочено к одному из сегментов Срединно-Сахалинского глубинного разлома (рис. 9).

Рис. 8. Карта изосейст Тымовского землетрясения 12 декабря 2011 г. с *Мw*=5.1

1 – интенсивность сотрясений в баллах шкалы MSK-64 [30]; 2, 3 – инструментальный (SKHL: ϕ =50.66°N, λ =143.04°E) и макросейсмический (ϕ =50.819°N, λ =142.753°E) эпицентр Тымовского землетрясения; 4 – изосейста, уверенная (а) и неуверенная (б) соответственно.

землетрясений (в том числе Тымовского 2011 г.) относительно разломов различных кинематических типов и направлений (стрелки) регионального тензора напряжений сжатия и растяжения

1 – оси сжатия: а – с учетом, б – без учета магнитуды,
в – средние напряжения сжатия всего региона в целом (без учета магнитуды);
2 – оси растяжения: а – с учетом,
б – без учета магнитуды;
3 – очаговые зоны с рабочими плоскостями (треугольниками указаны направления падения этих плоскостей) из [10, с. 133].
Список разломов: 1 – Восточно-Сахалинский, 2 – Хок-

синсок разломов. 1 – Восточно-сахалинский, 2 – Хоккайдо-Сахалинский, 3 – Западно-Сахалинский, 4 – Центрально-Сахалинский, 9 – Сусунайский, 18 – Срединно-Сахалинский, 24 – Монеронский, из [10, с. 125].

Привлечение к выбору нодальной плоскости ориентации фрагмента разлома лишь подтверждает реальную возможность выбора в качестве действующей в очаге Тымовского землетрясения именно плоскости *NP2* в описанном выше решении *SHKL* с *STK*=157°, тем более что падение этой плоскости на запад–юго-запад совпадает с погружением плоскости разлома (рис. 9).

История сейсмичности. В целом Восточно-Сахалинская сейсмоактивная зона [24], к которой относится эпицентральная зона Тымовского землетрясения 2011 г., характеризуется низким уровнем сейсмической активности. За период инструментальных наблюдений с 1909 г. землетрясений с магнитудой *M*>5.0 здесь не было.

Вся территория Сахалина подвержена сейсмическим сотрясениям, однако сейсмическая активность отдельных зон острова отличается чрезвычайной неоднородностью.

Согласно [10], в районе сейсмоактивной зоны [24], к которой относится Тымовское землетрясение, за инструментальный период наблюдений на о. Сахалин землетрясения с магнитудой *М*>6.0 известны не были. Эпицентр землетрясения 02.07.1906 г. с *М*=6.0 расположен в 70 км западнее эпицентра декабрьского землетрясения 22.01.2011 г. Одно из сильнейших землетрясений 1909 г. с *М*=6.1 произошло в 100 км северо-западнее рассматриваемого района [31].

Эпицентры названных землетрясений 02.07.1906 г. с магнитудой *M*=6.0 и 22.01.1909 г. с магнитудой *M*=6.1 [32] больше тяготеют к Центрально-Сахалинской сейсмоактивной зоне и контролируются системой Центрально-Сахалинского (Тымь-Поронайского) глубинного разлома. На основе совместного анализа сейсмологической и геолого-геофизической информации Оскорбиным Л.С. [24] была выполнена оценка сейсмической опасности, согласно которой период возникновения землетрясения с магнитудой *M*≥5.0 для территории Среднего Сахалина составляет 100 лет.

Подводя итоги проведенных инструментальных и макросейсмических наблюдений, можно констатировать, что Тымовское землетрясение 2011 г. является верхнекоровым, его очаг залегает в земной коре на глубине 5–10 км, где, по-видимому, происходит накопление упругих деформаций, обусловленных общим региональным сжатием. Оно приурочено к одному из сегментов Срединно-Сахалинского глубинного разлома, тип подвижки – взбросо-сдвиг по плоскости юг–юго-восточного простирания с падением на юго-запад.

Литература

- 1. Кислицына И.П., Паршина И.А. (отв. сост.), Ферчева В.Н., Децик И.В., Рунова А.И., Сохатюк А.С. (сост.). Каталог землетрясений Сахалина за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 2. Костылев Д.В. (сост.). Стационарные сейсмические станции и сеть цунами Сахалина в 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- 3. Михайлов В.И. (отв. сост.). Сейсмические станции Приамурья и Приморья в 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- 4. Костылев Д.В. (сост.). Сейсмические станции Курило-Охотского региона в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 5. IRIS, Incorporated Research Institutions for Seismology. URL: http://https://www.iris.edu/.
- Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. Методические работы ЕССН. – М.: Наука, 1989. – С. 32–51.
- 7. Дрознин Д.В, Дрознина С.Я. Интерактивная программа обработки сейсмических сигналов DIMAS. // Сейсмические приборы. –2010. – 46. – № 3. – С. 22–34.
- 8. Lienert B.R.E., Havskov J. Hypocenter 3.2: A computer program for locating earthquakes locally, regionally and globally // Seis. Res. Lett. 1995. 66. P. 26–36.
- Коновалов А.В., Семёнова Е.П., Сафонов Д.А. Результаты детального изучения очаговой зоны землетрясения 16 марта 2010 года (*Mw*=5.8) на северо-западе о. Сахалин // Вулканология и сейсмология – М.: Наука, 2012. – С. 243–253.
- 10. Коновалов А.В., Нагорных Т.В., Сафонов Д.А. Современные исследования очагов землетрясений о. Сахалин и механизмов их возникновения. – Владивосток: Дальнаука, 2014. – 252 с.
- 11. Оперативные данные СФ ГС РАН. Фонды СФ ФИЦ ЕГС РАН, 2011.
- 12. База данных «Монитор сейсмической активности» Фонды СФ ФИЦ ЕГС РАН, 2011.
- 13. Сейсмологический бюллетень (ежедекадный) за 2011 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2011–2012. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2011*.
- 14. International Seismological Centre, on-line Bulletin, Internatl. Seis. Cent., Thatcham, United Kingdom, 2014. URL: *http://www.isc.ac.uk/iscbulletin/search/bulletin/*.
- 15. National Earthquake Information Center. URL: http://neic.usgs.gov/neic/epic/epic_rect.html.
- 16. Global CMT Catalog Search. URL: http://www.globalcmt.org/CMTsearch.html.

- 17. European-Mediterranean Seismological Centre. URL: http://www.emsc-csem.org/Earthquake/.
- 18. Helmholtz Centre Potsdam. URL: http://geofon.gfz-potsdam.de/eqinfo/form.php.
- 19. Богинская Н.В. (отв. сост.). Каталог механизмов очагов землетрясений Сахалина за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 20. Сафонов Д.А., Нагорных Т.В., Коновалов А.В., Степнов А.А. Тензор момента, механизмы очага землетрясений и напряженное состояние территории о. Сахалин // Вулканология и Сейсмология. 2017. № 3. С. 59–70.
- 21. Snoke J.A., Munsey J.W., Teague A.G., Bollinger G.A. A program for focal mechanism determination by combined use of polarity and *SV-P* amplitude ratio data // Earthquake notes. 1984. 55. N 3. P. 15.
- 22. Ottemöller L., Voss P., Havskov J. Seisan earthquake analysis software for Windows, Solaris, Linux and Macosx. 2011.– URL: https://www.uib.no/rg/geodyn/artikler/2010/02/software.
- 23. Харахинов В.В. Нефтегазовая геология Сахалинского региона. М.: Научный мир, 2010. 276 с.
- Оскорбин Л.С. Сейсмогенные зоны Сахалина и сопредельных областей // Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т. 6. Южно-Сахалинск: ИМГиГ ДВО РАН, 1997. С. 154–178.
- 25. Горбунова И.В., Бойчук А.Н., Доцев Н.И., Кальметьева З.А., Капитанова С.А., Кучай О.А., Михайлова Н.Н., Пустовитенко Б.Г., Симбирёва И.Г., Товмасян А.К. Интерпретация очаговых волн на записях землетрясений. – М.: Наука, 1992. – 130 с.
- 26. Семёнова Е.П., Сафонов Д.А., Коновалов А.В. Очаговые параметры Тымовского землетрясения 12 декабря 2011 г. в Центральной части о. Сахалин // Современные методы обработки и интерпретации сейсмологических данных. Материалы Седьмой Международной сейсмологической школы, Нарочь, 10–14 сентября 2012 г. – Обнинск: ГС РАН, 2012. – С. 289–292.
- 27. Коновалов А.В., Карташова О.Л. (сост.). Каталог афтершоков Тымовского землетрясения 12 декабря 2011 г. (по данным Института морской геологии и геофизики ДВО РАН) // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD ROM.
- 28. Коновалов А.В., Сычёв А.С. Калибровочная функция локальной магнитуды и межмагнитудные связи для Северного Сахалина // Вулканология и сейсмология. 2014. № 6. С. 75–86.
- Семенова Е.П. (отв. сост.). Каталог афтершоков Тымовского землетрясения 12 декабря 2011 г. (по данным оперативного каталога СФ ГС РАН) // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- 30. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 31. Региональный каталог землетрясений острова Сахалин, 1905-2005 / Отв. ред. Л.Н. Поплавская. Южно-Сахалинск: ИМГиГ ДВО РАН. 2006. 104 с.
- 32. Оскорбин Л.С., Соловьёва О.Н., Соловьёв С.Л. VIII. Сахалин [1906–1974 гг.; *M*≥4.5; *I*₀≥5] // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука, 1977. С. 358–373.