СКОВОРОДИНСКОЕ ЗЕМЛЕТРЯСЕНИЕ 14 октября 2011 г. с К_Р=15.4, Мw=6.0, I₀=8 (Верхнее Приамурье) Д.А. Сафонов^{1,2}, Н.С. Коваленко², Я.Б. Радзиминович^{3,4}

¹Институт морской геологии и геофизики ДВО РАН, г. Южно-Сахалинск, **d.safonov@imgg.ru** ²Сахалинский филиал ФИЦ ЕГС РАН, г. Южно-Сахалинск ³Байкальский филиал ФИЦ ЕГС РАН, г. Иркутск ⁴Институт земной коры СО РАН, г. Иркутск

14 октября 2011 г. в 06^h10^m (17^h10^m по местному времени) в Сковородинском районе Амурской области произошло сильное землетрясение, ощущавшееся в близлежащих населенных пунктах с интенсивностью до 7 баллов по шкале MSK-64 [1]. Сейсмогеологическое обследование эпицентральной области обнаружило признаки макросейсмических проявлений с интенсивностью I=8 баллов [2]. Координаты эпицентра, определенные Сахалинским филиалом Геофизической службы РАН, в чьей зоне ответственности находится данная территория, составили φ=54.10° N и λ=123.81° E, глубина очага – *h*=18 км, *MLH*=6.2, *K*_P=15.4 [3]. Это землетрясение стало самым сильным сейсмическим событием, произошедшим в данном районе за весь период инструментальных наблюдений с момента ввода в действие сейсмической станции «Иркутск» 2 декабря 1901 г. [4]. По названию ближайшего к эпицентру крупного населенного пункта – районного центра г. Сковородино – это землетрясение было названо Сковородинским. Ввиду своей уникальности землетрясение вызвало интерес специалистов, и к настоящему времени вышло несколько публикаций, содержащих данные по этому событию. С конца июля 2011 г. по январь 2012 г. в Восточной Сибири функционировала сеть сейсмических станций ИФЗ РАН [5]. Полевые сейсмологические наблюдения в регионе позволили зарегистрировать главный толчок Сковородинского землетрясения и определить положение его гипоцентра [5]. К сожалению, в данной публикации не приведены цифровые данные о положении эпицентра, ориентировочно его можно оценить только по карте. Экспедиционными силами ИФЗ РАН были детально описаны геологические проявления и макросейсмические эффекты в эпицентральной зоне, результаты которых изложены в работе [2], там же приведены координаты эпицентра и глубина очага главного события (табл. 1), однако его положение отличается от такового, приведенного в [5]. В статье [6] приведены первые результаты определения параметров Сковородинского землетрясения по предварительным данным СФ ГС РАН, рассмотрены особенности пространственного распределения макросейсмических эффектов в дальней зоне и сделана попытка привязать очаг к известным региональным разломам. В настоящей работе проводится исследование Сковородинского землетрясения по данным окончательного каталога СФ ГС РАН [3].

Инструментальные данные. Эпицентр землетрясения определили основные мировые и региональные сейсмологические агентства. Варианты положения эпицентра показаны в табл. 1 и на рис. 1.

Агентство	$t_0,$	δt_0 ,	Гипоцентр					Магнитуда	Источник	
	ч мин с	С	φ°, Ν δφ		λ°, Ε	δλ°	h,	Δh ,		
							КМ	км		
C Φ Γ C P AH	06 10 13.8	0.7	54.10	0.04	123.81	0.10	18	4	$K_{\rm P}$ =15.4, <i>MLH</i> =6.2/13,	[3]
									<i>MPV</i> =6.4/13	
ССД ГС РАН	06 10 12		54.03		123.77		15		MS=6.1/29	[7]
ИФЗ РАН ₁			54.1098		123.835		6.9			[2]
ИФЗ РАН ₂			54.105		123.779		15.4			рис.12 [5]

Таблица 1. Координаты гипоцентра и магнитуда Сковородинского землетрясения 14 октября 2011 г. по данным различных сейсмологических служб

	1									
Агентство	$t_0,$	δt_0 ,	Гипоцентр						Магнитуда	Источник
	ч мин с	С	ϕ° , N $\delta\phi$ λ° , E $\delta\lambda^{\circ}$ h, Δh ,							
							КМ	км		
NEIC USGS	06 10 14.6	0.07	54.080	0.02	123.722	0.02	12f		$m_{\rm b}$ =5.7/299,	[8]
									Ms=5.9/297, Mw=6.0	
EMSC	06 10 14.0		54.10		123.77		10		$m_{\rm b}$ =5.1/43, Ms =5.6/35	[9]
BJI	06 10 10.2	_	54.15	_	123.75	_	10		$m_{\rm b}$ =5.7/72,	[10]
									Ms = 6.4/69	
GFZ	06 10 14.9		54.06		123.82		13		<i>Mw</i> =5.9	[11]
IDC	06 10 12.3	0.34	54.06	0.09	123.79	0.08	0f		$m_{\rm b} = (5.1 \pm 0.1)/43$	[8]
									$Ms = (5.6 \pm 0.1)/35$	
MOS	06 10 12.7	1.02	54.061	0.05	123.753	0.05	16		MPSP=5.8/125,	[12]
									MS=5.9/61, Mw=6.1/1	
GCMT	06 10 14.6	0.10	54.17		123.77		21.8	0.6	<i>Mw</i> =6.0/137	[8]
ISC	06 10 14.7	0.28	54.074 123.814 13.9		$m_{\rm b} = (5.7 \pm 0.2)/508.$	[8]				
							14_{pP}		$Ms = (5.9 \pm 0.1)/469$	

Примечание. Расшифровка кодов агентств дана в обозначениях к наст. ежегоднику.

Рис. 1. Положение эпицентра Сковородинского землетрясения 14 октября 2011 г. с *MLH*=6.2 на топографической карте по данным различных источников, согласно табл. 1

Черным овалом показана изосейста 8-ми баллов, согласно [2].

Как видно из рис. 1, положения эпицентра землетрясения по независимым оценкам различных агентств достаточно близки, разброс укладывается в область диаметром 18 км, сравнимую с размерами очага подобного события. Сотрудниками ИФЗ РАН по свежим следам было проведено макросейсмическое и сейсмогеологическое обследование эпицентральной области землетрясения [2]. Согласно их заключению, область 8-балльных сотрясений находилась в долине р. Крестовка (рис. 1). Наиболее близко к центру этой области находится эпицентр землетрясения, полученного по записям локальной сети сейсмических станций ИФЗ. При этом в публикации [5], детально описывающей материалы, полученные по данным локальной сети, значения координат эпицентра не приводятся, но, согласно приводимому в [5] рис. 12, эпицентр главного события смещен западнее. Вариант положения эпицентра землетрясения по данным СФ ГС РАН находится примерно посередине между вариантами ИФЗ РАН. Определение глубины очага традиционно является более сложной задачей. Наибольшую расчетную глубину указывает Сахалинский филиал ГС РАН – $h=18 \ \kappa m$, наименьшую – $h=6.9 \ \kappa m$ – ИФЗ РАН [2]; в статье [5] упоминается глубина очага главного события $h=15.4 \ \kappa m$. Значение глубины, определенное по глубинным фазам pP, приводимое в бюллетене ISC [8], равно 14 κm . По данным других источников глубина гипоцентра колеблется в диапазоне $h=10-15 \ \kappa m$.

Механизм очага Сковородинского землетрясения определен как минимум четырьмя различными сейсмологическими агентствами (табл. 2), причем для первых двух вариантов речь идет о механизме очага для случая плоской подвижки, полученного методом полярности первых вступлений в *P*-волне, для двух других случаев – решение для тензора момента очага землетрясения в приближении двойного диполя.

В Сахалинском филиале ГС РАН определение механизма очага землетрясения по знакам первых вступлений было проведено на основе алгоритма вычислительной программы «FOCMEC» [13], интегрированной в комплекс программ анализа сейсмической информации «SEISAN». Для расчета углов выхода сейсмических волн из очага использовалась средняя модель строения Земли IASPEI-91 [14].

Для определения фокального механизма очага Сковородинского землетрясения использовались записи региональных сетей широкополосных сейсмических станций СФ ГС РАН, БФ ГС СО РАН, глобальной сейсмологической сверхширокополосной сети NEIC [15], а также сети широкополосных сейсмических станций «REFTEK» [16] ДВО РАН.

В расчете задействовано 64 знака первых смещений, зарегистрированных на вертикальной компоненте записей сейсмических колебаний. В результате получено четкое решение, отображенное в табл. 2. При этом число несогласованных знаков минимально – один. Разброс основных параметров в рамках наилучшего решения составляет в среднем $\delta = \pm 5^{\circ}$.

Как видно из рис. 2, все решения описывают сдвиговый механизм, однако по данным GFZ нодальная плоскость *NP1* широтного простирания имеет значительный наклон 27° к югу, т.е. падает под хребет Янкан, в то время как в варианте СФ ГС, USGS и GCMT эта плоскость практически вертикальна. Плоскость *NP2* субвертикальна по всем решениям и имеет субмеридиональное простирание.

Агентство	h, км	Магнитуда	Нодальные плоскости						Источник
			NP1				NP2		
			STK	DIP	SLIP	STK	DIP	SLIP	
СФ ГС РАН	18	<i>MLH</i> =6.2	276	84	1	186	89	174	[17]
NEIC	12f	Mw=6.0	273	80	-10	5	80	-170	[15]
GCMT*	15.6	Mw=6.0	281	82	-3	12	87	-172	[18]
GFZ*	12	Mw = 5.9	279	63	-9	14	81	-152	[11]

Таблица 2. Решения механизма очага Сковородинского землетрясения 14 октября 2011 г.

Примечание. Расшифровка кодов агентств дана в обозначениях к наст. ежегоднику; символом * указаны параметры плоскостей механизма очага, соответствующего тензору сейсмического момента в приближении двойного диполя.

Рис 2. Механизм очага Сковородинского землетрясения 2011 г. по данным разных источников согласно табл. 2

Учитывая тектонику региона и данные по афтершокам (см. ниже), можно предположить в качестве рабочей плоскость *NP1* с субширотным простиранием. В этом случае механизм Сковородинского землетрясения – субширотный левосторонний сдвиг, что совпадает с типом основных разломных нарушений региона.

Афтершоки. По данным СФ ГС РАН в очаговой области Сковородинского землетрясения 14 октября 2011 г. было зарегистрировано большое число повторных событий. В сумме в течение трех последующих лет здесь произошло 125 афтершоков с K_P =7.0 и более. Конечно, ввиду редкой сети региональных станций в этом районе данные СФ ГС РАН за первые несколько месяцев значительно уступают данным временной локальной сети ИФЗ РАН как количественно, так и качественно.

Действительно, согласно [5], за три месяца наблюдений после Сковородинского землетрясения было зарегистрировано более 1300 афтершоков. Их эпицентры образуют компактное облако, вытянутое в субмеридиональном направлении (рис. 12 из [5]). Длина облака составляет ~ 17 км, а ширина 6–8 км. Пространственное распределение афтершоков неоднородно. Выделяются два скопления: западное, где расположен главный толчок, и восточное, в котором сосредоточено около 80% событий. Эпицентр главного события расположен на самом краю облака, на западе. Глубина гипоцентра равна *h*=15.4 км. Гипоцентры афтершоков лежат в интервале глубин 2–20 км.

Сетью СФ ГС РАН до конца 2011 г. зарегистрировано 73 афтершока с K_p =6.7–11.8 в диапазоне глубин *h*=6–20 км [3], карта их эпицентров представлена на рис. 3. Для сопоставления полученных данных на этом рисунке нанесены эпицентры главного толчка Сковородинского землетрясения по данным [2 и 5], а также область афтершоков из [5].

Рис. 3. Карта эпицентров афтершоковой последовательности Сковородинского землетрясения 14 октября 2011 г. с *MLH*=6.2 по данным [3]

1 – энергетический класс *K*_P; 2 – главный толчок по данным сети ИФЗ РАН [2, 5]; 3 – область афтершоков по данным [5].

Как следует из рис. 3, афтершоковая область по данным СФ ГС РАН [3] сильно отличается от таковой, полученной по данным локальной сети ИФЗ РАН [5], что связано со значительным удалением региональных сейсмических станций, участвовавших в обработке, от эпицентра землетрясения. Ближайшая станция Сахалинского филиала «Кировский» находилась на расстоянии 209 км от эпицентра, а станция «Тында» Якутского филиала – на расстоянии 131 км. Ближайшая станция локальной сети ИФЗ располагалась в 21 км от эпицентра. Расчет гипоцентров по локальной сети проводился по уточненной скоростной модели района Сковородинского землетрясения, что несомненно значительно улучшило локализацию событий. Результатом проведенного авторами работы [5] исследования явилась довольно компактная область афтершоков, размеры которой приведены выше.

Отмечается отсутствие среди афтершоков Сковородинского землетрясения сильных событий с магнитудой >3.5 [5]. Согласно данным СФ ГС РАН, сильнейший афтершок произошел 4 декабря в $07^{h}11^{m}$ и имел K_{p} =11.8 [3], что тоже значительно меньше энергии главного события K_{p} =15.4. В [5] предполагается, что отсутствие сильных афтершоков может быть объяснено аномально высокой магнитудой *Mw*=6.0 главного события, произошедшего в среде, где отсутствуют условия для концентрации больших напряжений. Косвенным признаком этого может быть отсутствие столь сильных событий в этом регионе ранее.

Макросейсмические проявления. Сковородинское землетрясение ощущалось на всей территории Амурской области, на значительной территории Забайкальского края, на юге республики Саха (Якутия), в некоторых населенных пунктах республики Бурятия, Хабаровского края и в северных провинциях Китая. Ближе всего к эпицентру землетрясения оказались поселки Бам (Δ =7 км) и Солнечный (Δ =10 км), где интенсивность сотрясений достигала семи баллов. Макросейсмическое обследование было проведено сотрудниками Сахалинского филиала ГС РАН и Байкальского филиала СО ГС РАН. Сотрудниками Института физики Земли РАН было проведено альтернативное макросейсмическое обследование, а также сейсмогеологическое обследование эпицентральной зоны. Ниже приводятся описания наиболее сильных проявлений землетрясения на территории региона.

По результатам сейсмогеологического обследования [2], выход очага землетрясения на поверхность обнаружен не был. Вторичные нарушения представлены сейсмогравитационными и сейсмовибрационными образованиями: следами выбросов, излияния и выдавливания обводненного песка из трещин на речных косах, образованием трещин на ровных поверхностях, сложенных рыхлыми грунтами. Согласно результатам обследования, участок 8-бальных сотрясений находится в долине р. Крестовка в районе устья ее притока р. Валикта (рис. 1, 5 в [2]).

Эффекты с интенсивностью I=7 баллов наблюдались в *пос. Б а м*, *С о л н е ч н ы й* и *T а х т а м ы г д а*. В первом из них землетрясение ощущалось как в помещениях, так и на открытом воздухе. Очевидцы, находившиеся на улице, ощущали колебания почвы, («земля волной уходила из-под ног»). Был слышен сильный гул. В крупнопанельных пятиэтажных домах сильно раскачивалась мебель, сдвигалась с места тяжелая бытовая техника (третий этаж), незакрепленные предметы падали со своих мест на столах, полках и подоконниках. Отмечен случай падения подвесного шкафа. Наблюдалось сильное раскачивание висячих предметов, выплескивание воды из открытой посуды, сдвиг картин на стенах. Зафиксировано образование трещин в штукатурке и падение отдельных ее кусков. В одной из квартир (первый этаж) сильными колебаниями была сброшена с дивана спящая женщина. Во многих деревянных рубленых одноэтажных домах с печным отоплением возникли трещины в печной кладке; зафиксировано разрушение верхних частей кирпичных печных труб, расположенных над уровнем крыши. В штукатурке на стыках между потолком и стенами в углах комнат возникли трещины. Практически все жители поселка вне зависимости от местонахождения испытывали сильный испут и панику; находившиеся в помещениях выбегали на улицу.

В здании тяговой подстанции (имеется акт) разрушен масляный выключатель: пять колонок выключателя разрушены полностью, одна колонка устояла на раме привода с частичным разрушением ребер опорной изоляции (рис. 4 а). В помещении с потолка и из швов осыпалась штукатурка, упали и разбились плафоны освещения. На секционном выключателе возник пожар. В результате землетрясения сработала система аварийного отключения подстанции.

В пос. Солнечный очевидцы вначале услышали гул, а затем как будто прогремел взрыв. На улице земля под ногами прошла волной. В деревянных домах возникли трещины в печах, разрушились печные трубы (некоторые полностью, некоторые частично), растрескалась и осыпалась штукатурка вокруг печей, образовались трещины и осыпания штукатурки на стенах и потолке. Отмечены случаи разрыва обоев, а также отклеивания и падения потолочной плитки. Раскачивалась мебель, в том числе тяжелая, хлопали двери, падала посуда, самопроизвольно двигалась телевизионная тумба на колесиках, разбилась люстра. Лежащая женщина упала с дивана на пол. Все жители поселка испытывали испуг и панику, люди, находившиеся в помещениях, выбегали на улицу.

В *пос. Т а х т а м ы г д а* (Δ =14 км) сначала услышали гул, потом ощутили толчок и раскачивание. Во многих домах обвалилась штукатурка с потолка, стен, вокруг дверных коробок. В кирпичном двухэтажном доме на первом этаже потрескался потолок, отошла от стены веранда, разрушилась кирпичная труба (рис. 4 б, в). В другой квартире межкомнатные стены отошли от потолка на 3–5 см, обрушились два угла в кладовой. В деревянном доме осыпалась штукатурка, потрескалась печь, повело стены (видно по обоям). Падала и билась посуда, открылись дверцы шкафов. Все жители были сильно напуганы. С несколько меньшей интенсивностью (I=6-7 баллов) землетрясение ощущалось в *г.* С к о в о р о д и н о ($\Delta=16$ км) и в noc. Не в е р ($\Delta=26$ км). В Сковородино землетрясение ощущалось всеми жителями города, вначале услышавшими нарастающий гул, затем ощутившими раскачивание. Произошло отключение электроэнергии. В центральной котельной обвалилась стена, не являющая несущей; в другой котельной было сорвано с креплений оборудование. В здании местной администрации осыпался потолок. В квартирах сильно дребезжала посуда, раскачивались люстры, падали мелкие предметы (разделочная доска, посуда, сувениры, вазы, коробки с обувью, книги), открывались балконные двери и дверцы шкафов, упала гардина. В одном из деревянных домов на печке потрескалась штукатурка и лопнула металлическая плита, во многих других домах появились трещины в местах сочленения печей с потолком и стенами. Был слышен скрип полов и стен. Остановились маятниковые часы. В кирпичных домах отмечено выпадение штукатурки из межплитовых швов, возникли трещины возле оконных проемов (рис. 4 г, д, е). Многие жители города испытали сильный испуг и шок, у некоторых людей поднялось давление; спящие люди проснулись, многие выбегали на улицу.

Рис. 4. Примеры повреждений, вызванных Сковородинским землетрясением 14 октября 2011 г. а – подстанция в пос. Бам; б, в – кирпичный дом в пос. Тахтамыгда; *г*, *д*, *е* – повреждение зданий в г. Сковородино.

В *пос. Не в е р* перед землетрясением жители услышали нарастающий гул, затем почувствовали тряску и раскачивание; некоторым показалось, что произошел взрыв. Женщина не смогла устоять на ногах. Было заметно раскачивание столбов на улице. В домах упали цветы с подоконников, разбилась посуда, с полок падали книги и другие предметы. В печах появились трещины, лопнула штукатурка. В шлакоблочном здании магазина с верхних полок упала посуда, в винно-водочном отделе упали бутылки, обвалилась штукатурка с потолка, по стене пошли трещины. В школьном классе со шкафов упали глобусы, книги, папки, полопалась и осыпалась штукатурка с потолка, на стенах появились трещины во всех направлениях, лопнули 17 оконных стекол, 9 вылетели совсем. В здании станции вывалились потолочные светильники. Многие выбежали на улицу – земля под ногами вибрировала и раскачивалась. За поселком, в сопках, в источнике, откуда жители берут воду, после землетрясения вода приобрела белый цвет, как будто в ней растворили мел.

Совместными усилиями сотрудников Сахалинского филиала ГС РАН, Байкальского филиала и Якутского филиалов ГС СО РАН, собравших информацию из большого количества населенных пунктов, расположенных в западных румбах от эпицентра, а также с привлечением данных исследователей ИФЗ РАН были собраны макросейсмические данные из более чем 100 пунктов. Помимо этого, проанализированы публикации официальных электронных средств массовой информации, размещенных в сети Internet. Были также использованы материалы зарубежных СМИ, в частности, для территории Китая. Необходимо отметить, что уровень достоверности источников подобного рода, возможно, несколько ниже, чем материалы макросейсмических обследований, поэтому в расчетах прямой затухания макросейсмического поля эти данные не учитывались. Тем не менее, с применением жестких критериев отбора информации из публикаций Internet-СМИ, эти материалы вполне могут быть приняты во внимание.

Результаты макросейсмического обследования Сковородинского землетрясения сведены в табл. 3, карта пункт-баллов представлена на рис. 5.

N⁰	Населенный	Δ.	ω°. N	λ°. E	Источ-	N⁰	Населенный	Δ.	ω°. N	λ°. E	Источ-
	ПУНКТ	, КМ	T , T	, _	ник		ПУНКТ	, КМ	T ,	,.	ник
	0.7					23	Тынла	130	55 150	124 723	SKHI
	<u>8 баллов</u>					$\frac{23}{24}$	Первомайское	130	55 116	124.723	BYKI
1	Точка наблюдения 6,	6	54.152	123.787	ИФЗ	25	Маглагачи	150	53 457	125.813	SKHL
	долина р. Крестовка					26	Моће Мохэ Китай	151	52.967	122.533	СМИ
	7 баллов					20	4–5 баллов	101	52.907	122.000	Civili
2	Бам	7	54.101	123.695	SKHL	27	<u>п</u>	26	51 262	124 201	14.50
3	Точка наблюления 3.	9	54,170	123.740	ИФЗ	27	лнкан Албаатта	30 01	52 200	124.291	иψз Сми
-	vстье p. Крестовка					28	Алоазино	81	33.390	124.078	UMM UM2
4	Солнечный	10	54.124	123.663	SKHL	20		101	54 021	122 250	ифр ифр
5	Долина р. Амнурай	13	54.213	123.786	ИФЗ	29	ольшая Омутная Хорогони	1/1	55 370	122.239	NA2 NA2
6	Тахтамыгла	14	54.100	123.592	SKHL	30 31	Лорогочи Vetti Vaкима	141	55 312	123.740	BVKI
5	6.7.607707					31	з сть-з ркима Парба	141	55 516	123.103	SKHI
	<u>o-/ oajijiob</u>					32	Jiapua Awazan	104	53 862	120.879	BVKI
7	Сковородино	16	53.984	123.948	SKHL	33 34	лмазар Литкуш	173	55 134	120.078	SKHI
8	Невер	26	53.984	124.160	SKHL	34	динкун Зол	221	53.134	120.734	SKIL
	<u>6 баллов</u>					36	Тупик	253	54.430	119.946	BYKL
9	Разъезд Штурм	16	54.242	123.756	ИФЗ	37	Заречное	254	54.459	119.932	BYKL
10	Малалан	28	54.075	123.381	ИФЗ	38	Могоча	267	53.744	119.763	BYKL
11	Соловьёвск	42	54.220	124.421	SKHL	39	Ключевский	292	53.533	119.458	BYKL
12	Таёжный	51	53.644	123.862	SKHL	40	Верхние Куларки	354	52.817	118.900	BYKL
13	Уркан	54	54.133	124.637	СМИ	41	Олёкма	378	57.027	120.716	BYKL
14	Уруша	61	54.035	122.877	SKHL	42	Шилкинский Завод	383	52.567	118.633	BYKL
15	Джалинда	69	53.480	123.915	SKHL	43	Кадая	466	50.933	119.283	BYKL
	<u>5-6 баллов</u>						<u>4балла</u>				
16	Осёжино	98	53 293	124 412	BYKL	44	Джелтулак	90	54.782	124.571	ИФЗ
17	Игнашино	116	53 469	122 398	BYKL	45	Золотая Гора	184	54.285	126.626	SKHL
18	Ерофей Павлович	122	53 963	121 954	SKHL	46	Лопча	197	55.750	122.683	СМИ
19	Толбузино	151	53 138	125 436	BYKL	47	Тыгда	199	53.104	126.331	SKHL
- /	5 607700		22.120		2	48	Кировский	209	54.430	126.980	SKHL
	<u>5 оаллов</u>					49	Овсянка	210	53.580	126.900	SKHL
20	Среднерейновский	46	53.687	123.821	SKHL	50	Береговой	240	54.363	127.481	SKHL
21	Талдан	80	53.692	124.810	СМИ	51	Иенгра	245	56.224	124.840	СМИ
22	Beiji Village, Китай	118	53.480	122.353	СМИ	52	Юбилейный	257	53.131	127.354	SKHL

Таблица 3. Макросейсмические проявления Сковородинского землетрясения 14 октября 2011 г.
с <i>MLH=</i> 6.2 по данным СФ ГС РАН, БФ ГС СО РАН, ЯФ ГС СО РАН и ИФЗ РАН

№	Населенный	Δ,	φ°, N	λ°, Ε	Источ-	N⁰	Населенный	Δ,	φ°, N	λ° , Ε	Источ-
	пункт	КМ			ник		пункт	КМ			ник
53	Кактолга	315	52.783	119.583	BYKL	103	Ургал	689	51.082	132.753	СМИ
54	Усть-Карск	365	52.708	118.812	BYKL		2–3 балла				
55	Хани	395	56.913	119.962	СМИ	104	Лугла	414	53 360	129 999	SKHL
56	Большие Боты	396	52.399	118.561	BYKL	104	Своболный	417	51 394	129.999	SKHL
57	Бурукан	435	51.833	118.500	BYKL	106	Новокиевский Увал	436	51 670	128 923	BYKL
58	Жирекен	453	52.823	117.291	BYKL	107	Благовешенск	494	50.275	127.534	SKHL
59 60	Средняя Борзя	459	50.900	117.500	BYKL	108	Хэйхэ, Китай	497	50.245	127.528	SKHL
60	Кокуи	40/	52.207	117.022	BYKL	109	Бутиха	566	52.333	115.817	BYKL
01	чернышевск	482	32.331	117.022	BIKL	110	Сухайтуй	567	52.250	115.867	BYKL
	<u>3–4 балла</u>					111	Халтуй	572	52.262	115.766	BYKL
62	Давенда	300	53.550	119.320	BYKL	112	Цагакшино	579	52.226	115.676	BYKL
63	Урюм	392	53.167	118.067	BYKL	113	Вершино-	584	52.350	115.517	BYKL
64	Бузули	395	51.685	128.149	СМИ		Дарасунский				
65	Олочи	402	51.350	119.917	BYKL	114	Светлый	587	52.419	115.417	BYKL
66	Нерчинский Завод	419	51.317	119.600	BYKL	115	Ульдурга	603	52.533	115.100	BYKL
67	Аксёново-Зиловское	429	53.067	117.533	BYKL	116	Нижний Стан	608	52.200	115.233	BYKL
68	Большой Зерентуй	433	51.367	119.200	BYKL	117	Таксимо	617	56.344	114.879	BYKL
69	Солнечный	437	51.518	118.900	BYKL	118	Даурия	662	49.933	116.867	BYKL
70	Икабья	451	56.994	118.755	BYKL	119	Биробиджан	860	48.801	132.899	СМИ
71	Серышево	454	51.094	128.378	СМИ		2 балла				
72	Сретенск	456	52.233	117.700	BYKL	120	VCTL-HIOKKA	307	56 561	121 594	BVKI
73	Белогорск	473	50.920	128.469	СМИ	120	HOBAG Uana	459	56 789	118 270	BYKL
74	Калга	484	50.917	118.900	BYKL	121	Приаргунск	524	50.765	119.079	СБ
75	Александровский	530	50.917	117.950	BYKL	123	Краснокаменск	594	50.050	118.017	BYKL
-	Завод	526	51.002	116 502	DVI/I	123	Облучье	754	49 000	131 050	SKHL
76	Нерчинск	536	51.983	116.583	BYKL	125	Ranghulu. Китай	830	46.652	124.871	СМИ
//	Знаменка	544	52.180	116.293	BYKL	126	Harbin Харбин.	941	45.804	126.535	СМИ
/8	Среднеаргунск	614	49.745	118.259	BYKL		Китай				
/9	Заоаикальск	721	49.000	11/.322	BYKL	127	Комсомольск-на-	978	50.538	137.017	SKHL
80	чита	/21	32.033	115.550	BIKL		Амуре				
	<u>3 балла</u>					128	Хабаровск	1000	48.477	135.094	СМИ
81	Снежногорский	270	54.194	127.967	SKHL	129	Shunyi, Китай	1640	40.130	116.655	СМИ
82	Беркакит	282	56.579	124.775	YARS	130	Changping, Китай	1641	40.221	116.231	СМИ
83	Нерюнгри	290	56.672	124.650	SKHL	131	Peking (Пекин),	1670	39.904	116.407	СМИ
84	Серебряный Бор	293	56.674	124.836	YARS		Китай				
					BYKL	132	Liangxiang, Китай	1696	39.730	116.130	СМИ
85	Юктали	309	56.597	121.645	YARS		1-2 балла				
86	Чульман	313	56.850	124.900	YARS	133	Большой Нимпыр	450	58 044	125 / 85	BVKI
87	Бомнак	333	54.710	128.850	SKHL	134	Куйтун	555	50 242	118 609	BYKL
88	Октябрьский	342	53.006	128.655	SKHL	135	Юбилейный	564	50.212	118 365	BYKL
89	Шимановск	346	52.010	127.656	SKHL	136	Соктуй-Милозан	607	50.077	117 777	BYKL
90	Nenjiang Нэньцзян,	555	49.175	125.218	СМИ	137	Северомуйск	696	56 148	113 427	BYKL
0.1	Китай		51 (00	116 (22	DVIZI	138	Болайбо	727	57.851	114.193	BYKL
91	Балеи	555	51.600	116.633	BYKL	139	Мамакан	735	57.816	114.003	BYKL
92	Богдановка	570	50.017	118./50	BYKL		Ца опплиятора				
93	Маргуцек	5/4	50.403	11/.895	BYKL		пе ощущалось				
94	Шилка	5/0	51.850	115.033	BYKL	140	Чара	467	56.900	118.260	BYKL
93	Усугли	288 500	50 272	113.20/	DINL	141	Малый Тонтой	474	51.838	117.793	BYKL
90	КОВЫЛИ Рору Усульни	501	52 687	117.015	DINL	142	Чингильтуй	489	50.795	119.037	BYKL
9/	Берл-э сугли Кайцастуй	500	10 867	110.193	BVVI	143	Вершино-	504	51.300	117.900	BYKL
90 00	Кайластуй Райнихинск	610	49.00/	120 204	CMM	144	Шахтаминский	520	50 100	110 224	DVU
27 100	1 анчилинск Hulunber Хулулбулгр	610	49.013	110 766	СМИ	144	Староцурухаитуй	530	50.199	119.324	BYKL
100	Китай	010	77.212	117.700	CIVITI	145	ьерезово	535	52.159	116.457	BYKL
101	Брусиловка	631	49 677	118 015	BYKI	140	кыкер Типроизначи	530	53.105	115.818	BYKL
102	Manzhouli	662	49 588	117 480	СМИ	14/	и унгокочен Клиника	540	50 442	113.019	DINL
102	Маньчжурия. Китай	002				140	пличка	500	30.443	117.992	DIKL
	, , , , , , , , , , , , , , , , , , ,	1	l	1	l	I		1	1		

Примечание. Расчет эпицентрального расстояния проводился от инструментального эпицентра СФ ГС РАН с φ=54.10°N, λ=123.81°E из [3].

Рис. 5. Карта расчетных круговых изосейст Сковородинского землетрясения 14 октября 2011 г. с *MLH*=6.2 (на врезке показаны окрестности эпицентральной области и изосейсты высших баллов из [2])

Коэффициент затухания макросейсмической интенсивности, полученный по этим материалам (рис. 6), составил *v*=3.44±0.19, свободный коэффициент *c*=11.75+0.27, т.е.

Рис. 6. Зависимость наблюденных значений интенсивности Сковородинского землетрясения 2011 г. от расстояния по данным СФ ГС РАН и ИФЗ РАН и аппроксимация затухания интенсивности линейной зависимостью

$I = 11.75 - 3.44 \lg r$.

Необходимо отметить, что в отличие от предварительных результатов, опубликованных в [6], в настоящей работе были использованы как данные макросейсмического обследования СФ ГС РАН, так и материалы обследования сотрудников ИФЗ РАН [2] в эпицентральной области, всего 42 пункта с I > 2 баллов. Данные Байкальского и Якутского филиалов не использовались по причинам, указанным выше и ниже. Кроме того, использовался метод ортогональной линейной регрессии (вместо простой линейной регрессии в [6]).

Полученный коэффициент v затухания макросейсмической интенсивности несколько выше, чем в предыдущей версии (v=3.15). Такая величина затухания гораздо ближе к известным оценкам Н.В. Шебалина [19], согласно которым

среднее значение коэффициента затухания составляет v=3.5. В статье [5] обсуждаются результаты опубликованных ранее в [6] данных по макросейсмическим проявлениям землетрясения, делается предположение, что низкие значения затухания могут быть артефактом, и приводятся оценки коэффициента затухания в эпицентральной (ближней) зоне, которые составляют v=3.5. В порядке дискуссии можно возразить, что большинство использованных нами данных получены в поселках, где нет многоэтажной застройки. В то же время возможна переоценка величины интенсивности сотрясений в некоторых населенных пунктах в сравнении с результатами альтернативного макросейсмического обследования ИФЗ РАН [2]. Несомненно, данная проблема заслуживает более подробного изучения.

Теоретические круговые изосейсты на рис. 3 построены по методике, опубликованной в [20], в расчет был принят эпицентр СФ ГС РАН, глубина очага $h=18 \ \kappa m$, v=3.44 – расчетное затухание балльности, а c=11.75 – свободный коэффициент в прямой затухания (1).

Как видно из рис. 5, расчетные изосейсты в целом довольно грубо отражают реальную картину макросейсмического поля Сковородинского землетрясения с учетом всех данных. Так, средний радиус изосейсты с І=3 балла составляет около 490 км, расчетная область уверенной ощутимости землетрясения (3 балла) примерно 750 тыс. км², однако на самом деле уже на расстояниях 450–500 км от эпицентра есть населенные пункты, где, по данным Байкальского филиала ГС СО РАН, землетрясение не ощущалось. В то же время землетрясение слабо ощущалось (I=2 балла) в г. Пекин, расположенном более чем в 1600 км от эпицентра. Наибольшая несогласованность расчетной и зарегистрированной балльности наблюдается в юго-восточном Забайкалье, где перемешаны пункты, в которых землетрясение проявилось довольно сильно (до 4-5 баллов), и в которых его вообще не отметили. С одной стороны, это можно объяснить тем, что прямое макросейсмическое обследование в этом районе не проводилось, вся информация была получена посредством рассылки опросных листов. Соответственно, на оценках балльности могла сказаться субъективность заполнения опросных листов. С другой стороны, эффект локальных аномалий макросейсмического поля отмечался в Восточном Забайкалье и Западном Приамурье и ранее, например, при Южно-Якутском землетрясении 20.04.1989 г. с $K_{\rm P}$ =16.5, *MLH*=6.6, *I*₀=7 [21].

Для сравнения: Южно-Якутское землетрясение 1989 г. с магнитудой *MLH*=6.6 и глубиной очага $h=27 \ mmm,$ произошедшее на 360 км севернее эпицентра Сковородинского землетрясения, имеет площадь изосейсты I=3 (проведенной по реальным данным) около 630 тыс. κm^2 [22]. При этом наблюдался слабый макросейсмический эффект в плейстосейстовой области, который объясняется в упомянутой статье значительной глубиной очага. Проведенные по наблюденным данным изосейсты имеют сложную геометрию и два максимума балльности: I=7-8 баллов в эпицентральной области и I=4 балла в Южном Забайкалье, удаленном от эпицентра на 500–700 км. Большое число пунктов наблюдения не укладывается в области проведенных изосейст, разница балльности ΔI достигает 3–4 единиц.

По причине столь сложного характера распределения макросейсмической интенсивности Сковородинского землетрясения 2011 г. было принято решение ограничиться расчетными круговыми изосейстами, построенными на основе материалов макросейсмического обследования.

Геолого-тектоническое строение и историческая сейсмичность региона. Эпицентр Сковородинского землетрясения находится у южных склонов горного хребта Янкан, относящегося к протяженной горной системе, приуроченной к Янканскому и Тукурингра-Джагдинскому антиклинориям, образование которых структурно тесно связано с Монголо-Охотским краевым швом. Примерно в этом районе проходит западный фланг глубинного Южно-Тукурингрского разлома.

Южно-Тукурингрский разлом протягивается через всю рассматриваемую территорию (рис. 7), на западе его продолжает Южно-Янканский тектонический шов. К северу от него расположен Тукурингра-Джагдинский антиклинорий, сложенный преимущественно докембрийскими и, в меньшей мере, палеозойскими породами, а к югу – Зейский синклинорий, выполненный мощной палеозойской толщей, перекрытой вулканогенно-терригенными отложениями юры и нижнего мела. Практически зона Южно-Тукурингрского разлома представляется как составная часть крупного Монголо-Охотского линеамента, протянувшегося из Северной Монголии к побережью Охотского моря более чем на 3500 км [23].

Возраст заложения Южно-Тукурингрского разлома относится к нижнему палеозою. Повсеместно отмечаются отдельные непротяженные тектонические разрывы, являющиеся оперяющими по отношению к основному структурному шву, или сопутствующие ему на незначительном удалении. Вдоль зоны разлома наблюдаются тектонически и гидротермально измененные породы. Магматическая и эффузивно-вулканическая активность подвижной зоны прослеживается на протяжении всех эпох. Это говорит о постоянной подвижности зоны глубинного Южно-Тукурингрского разлома.

Рис. 7. Тектоническая схема района Сковородинского землетрясения 2011 г. согласно [24] и эпицентры исторических землетрясений

1 – магнитуда землетрясений; 2 – основные и второстепенные разломы; 3 – населенные пункты; в правом нижнем углу показана стереограмма механизма очага Сковородинского землетрясения по [17].

Анализ развития морфоструктур, характер трещинной и разрывной тектоники показывают, что Южно-Тукурингрский разлом является взбросом с левой сдвиговой составляющей. Общий тип и направленность движений по нему сохраняются, по-видимому, и в настоящее время.

Прямолинейность и четкая выраженность разлома свидетельствуют о крутом падении сместителя. По геолого-геоморфологическим данным установлено, что он падает на север-северо-восток под углом 60°-80° [23].

В целом, простирание новейшего разлома совпадает с таковым древнейшего линеамента, но активная зона со временем смещалась к юго-западу [25].

По оценкам В.В. Николаева с соавторами [23] сейсмическая опасность Южно-Тукурингрского разлома должна оцениваться, по крайней мере, в 8 баллов (*М*≈6).

Согласно карте ОСР–97 [26], период повторяемости 7-балльных сотрясений для территории Сковородинского района составляет 200–500 лет.

По данным Л.С. Оскорбина [27], в период с 1863 г. по 1994 г. максимальная интенсивность зарегистрированных сотрясений в г. Сковородино – 5 баллов – зафиксирована в результате Южно-Якутского землетрясения 20.04.1989 г. с K_P =16.5, MLH=6.6, I_0 =7, h=27 км [21], произошедшего более чем в 300 км севернее города. Всего же за сто лет на прилегающей территории (рис. 6) зафиксировано шесть землетрясений с магнитудой M=5.0 и выше. При этом как минимум три события вызывали в близ эпицентральных к Сковородинску населенных пунктах сотрясения с интенсивностью до I=7–8 баллов. К ним относятся землетрясения, произошедшие:

- 06.08.1911 г. на Зейской Пристани с I₀=6 (согласно каталогу В.В. Попова [28]) или с M=5.0, I₀=(7), h=(10 км) (по Новому каталогу (НК) [29]);

-13.06.1972 г. в районе Гилюйского хребта с K_P =14, M=5.6 [30, 31], для которого в НК [29] указана глубина h=18 км и приближенная интенсивность в эпицентре I_0 =(7);

– Зейское землетрясение 02.11.1973 г. в районе хребта Тукурингра (макросейсмические сведения были собраны сотрудниками ИЗК СО АН СССР В.В. Николаевым и Р.М. Семёновым [32]) с $K_{\rm P}$ =14, M=5.4, h=30 км [33], но позднее в НК [29] было изменено его название на «Зеинское» и параметры на M=5.5, I_0 =7–8 и h=20 км.

Оценкой сейсмической опасности Верхнего Приамурья занимался Р.М. Семёнов [34]. Для Западно-Тукурингрского блока, наиболее близко расположенного к эпицентру Сковородинского землетрясения, им принята максимальная магнитуда возможных землетрясений *M*=5.9–6.4. Однако граница выделенного блока проходит несколько севернее инструментального эпицентра. **Выводы.** Очаг Сковородинского землетрясения 14 октября 2011 г., вероятнее всего, можно отнести к зоне глубинного Южно-Тукурингрского разлома, проходящего вдоль южных склонов хребтов Янкан и Тукурингра. Южно-Тукурингрский разлом является взбросом с левой сдвиговой составляющей. Полученный механизм говорит о левосторонней сдвиговой подвижке в очаге Сковородинского землетрясения.

Землетрясение ощущалось на обширной территории, однако макросейсмическое поле крайне неоднородно, разница в интенсивности сотрясений в населенных пунктах на одном эпицентральном расстоянии может достигать трех баллов. Наибольший разброс наблюдается в населенных пунктах Забайкальского края. Приблизительное затухание балльности показано круговыми изосейстами, восстановленными на основе линейного графика затухания интенсивности.

Отмечен несколько заниженный коэффициент затухания интенсивности сотрясений Сковородинского землетрясения, равный *v*=3.44. Дальность регистрации интенсивности *I*=2 балла превысила 1600 км.

Сковородинское землетрясение 14 октября 2011 г. с *MLH*=6.2 стало наиболее сильным сейсмическим событием в рассматриваемом районе, по крайней мере, за период инструментальных наблюдений. На сегодняшний день это событие можно рассматривать как одно из наиболее значимых для территории Приамурья. Во-первых, подтверждается достаточно высокий сейсмический потенциал (*M*=5.9–6.4) расположенных здесь структур, ранее оцененный Р.М. Семёновым [34]. Во-вторых, в определенной мере восполнен дефицит надежных решений механизмов очагов землетрясений для данного района. Это, в свою очередь, позволяет сделать некоторые выводы о геодинамических процессах в пределах региона. В третьих, Сковородинское землетрясение позволило получить новые данные о закономерностях затухания интенсивности сотрясений с расстоянием, что представляет большой интерес в аспекте уточнения карты сейсмического районирования Верхнего Приамурья.

Литература

- 1. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 2. Овсюченко А.Н., Мараханов А.В., Вакарчук Р.Н., Ларьков А.С., Новиков С.С., Рогожин Е.А. Геологические и макросейсмические проявления землетрясения 16 октября 2011 г. в Сковородинском районе Амурской области // Вопросы инженерной сейсмологии. – 2012. – **39**. – № 4. – С. 5–18.
- 3. Коваленко Н.С. (отв. сост.), Авдеева Л.И., Донова Т.Я. (отв. сост.). Каталог землетрясений и взрывов Приамурья и Приморья за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 4. Старовойт О.Е., Мишаткин В.Н. Сейсмические станции Российской академии наук (состояние на 2001 г.). Москва–Обнинск: ГС РАН, 2001. 86 с
- 5. Быкова В.В., Татевосян Р.Э., Николаев Л.Д., Михин А.Г., Мокрушина Н.Г. Сковородинское землетрясение 2011 г. // Физика Земли. 2015. № 1. С. 112–127.
- 6. Ханчук А.И., Сафонов Д.А., Радзиминович Я.Б., Коваленко Н.С., Коновалов А.В., Шестаков Н.В., Быков В.Г., Серов М.А., Сорокин А.А. Сильнейшее современное землетрясение в Верхнем Приамурье 14 октября 2011 г.: первые результаты комплексного исследования // ДАН. – 2012. – 445. – № 3. – С. 338–341.
- 7. Служба срочных донесений ФИЦ ЕГС РАН. URL: http://ceme.gsras.ru.
- 8. International Seismological Centre (ISC), On-line Bulletin, Internatl. Seis. Cent., Thatcham, United Kingdom, 2014. URL: *http://www.isc.ac.uk/iscbulletin/search/bulletin/*.
- 9. European-Mediterranean Seismological Centre. URL: http://www.emsc-csem.org.
- 10. China Earthquake Data Center. URL: http://data.earthquake.cn.
- 11. GeoForschungsZentrum. URL: http://geofon.gfz-potsdam.de.
- 12. Сейсмологический бюллетень (ежедекадный) за 2011 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2011–2012. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2011*.
- 13. Snoke J.A., Munsey J.W., Teague A.G., Bollinger G.A. A program for focal mechanism determination by combined use of polarity and *SV-P* amplitude ratio data // Earthquake notes. 1984. 55. N 3. P. 15.

- 14. Kennett B.L.N. Engdal E.R. Travel times for global earthquake location and phase identification // Geophys. J. Int. - 1991. - 105. - N 2. - P. 429-466.
- 15. National Earthquake Information Center. URL: http://neic.usgs.gov/neic/epic/epic_rect.html.
- 16. Ханчук А.И., Коновалов А.В., Сорокин А.А., Королев С.П., Гаврилов А.В., Бормотов В.А., Серов М.А. Инструментальное и информационно-технологическое обеспечение сейсмологических наблюдений на Дальнем Востоке России // Вестник ДВО РАН. 2011. № 3. С. 127–137.
- 17. Сафонов Д.А. (отв. сост.). Каталог механизмов очагов землетрясений Приамурья и Приморья за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 18. The Global Centroid-Moment-Tensor Project. URL: http://www.globalcmt.org.
- Шебалин Н.В. Коэффициенты уравнения макросейсмического поля по регионам I–XIV // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. – М.: Наука, 1977. – С. 30.
- Сафонов. Д.А., Нагорных Т.В., Фокина Т.А. Невельские землетрясения 2 августа 2007 г. в 02^h37^m с *MLH*=6.3 и 05^h22^m с *MLH*=6.0, *I*₀=8 (о. Сахалин) // Землетрясения Северной Евразии 2007 год. Обнинск: ГС РАН, 2013. С. 396–407.
- 21. Козьмин Б.М., Голенецкий С.И., Николаев В.В. и др. Южно-Якутское землетрясение 20(21).04.1989 г. и его афтершоки // Землетрясения в СССР в 1989 году. М.: Наука, 1993. С. 172–193.
- 22. Николаев В.В., Семёнов Р.М., Козьмин Б.М., Имаев В.С. Сильное землетрясение на юге Якутии 20 (21).04.1989 г. // Тихоокеанская геология. 1996. 15. № 1. С. 120–128.
- 23. Николаев В.В., Семёнов Р.М., Солоненко В.П. Сейсмогеология Монголо-Охотского линеамента (восточный фланг). Новосибирск: Наука, 1979. 113 с.
- 24. Тектоника, глубинное строение и минерагения Приамурья и сопредельных территорий / Отв. ред. Шатков Г.А., Вольский А.С. – СПб.: ВСЕГЕИ, 2004. – 190 с.
- 25. **Подкаминер О.С.** Строение Южно-Тукурингрского разлома в районе проектируемой Зейской ГЭС // Информационный сборник ЛенГИДЭП. – Л.: 1958. – № 8. – С. 11–14.
- 26 Уломов В.И., Шумилина Л.С. Комплект карт общего сейсмического районирования территории Российской Федерации – ОСР-97. Масштаб 1:8 000 000. – М.: ИФЗ РАН, 1999. – 57 с.
- Оскорбин Л.С., Бобков А.О. Макросейсмическое проявление землетрясений на территории южной части Дальнего Востока // Проблемы сейсмической опасности Дальневосточного региона. – Южно-Сахалинск: Институт морской геологии и геофизики ДВО РАН, 1997. – С. 45–74.
- 28. **Попов В.В.** Каталог землетрясений на территории СССР. Вып. II. Сибирь. Труды СИ АН СССР. 1939. № 89. 40 с.
- 29. Оскорбин Л.С. (отв. сост.), Емельянова А.А., Козьмин Б.М. VII. Приамурье и Приморье [1865– 1974 гг.; *М*≥3.0, *I*₀≥5] // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. – М.: Наука, 1977. – С. 349–357.
- 30. Козьмин Б.М., Андреев Т.А., Дарешкина Н.М., Югова Р.С. Землетрясения Якутии и Северо-Востока // Землетрясения в СССР в 1972 г. – М.: Наука, 1976. – С. 119–124.
- 31. Козьмин Б.М. и др. Каталог землетрясений Якутии и Северо-Востока с *К*_Р≥8 за 1972 г. // Землетрясения в СССР в 1972 г. М.: Наука, 1976. С. 125–131.
- 32. Козьмин Б.М., Андреев Т.А., Дарешкина Н.М., Кравец И.Ф. Землетрясения Якутии и Северо-Востока // Землетрясения в СССР в 1973 г. – М.: Наука, 1976. – С. 126–129.
- 33. Козьмин Б.М. и др. Каталог землетрясений Якутии и Северо-Востока с *К*_Р≥8 за 1973 г. // Землетрясения в СССР в 1972 г. М.: Наука, 1976. С. 130–136.
- 34. Семёнов Р.М. Максимальные возможные землетрясения в Верхнем Приамурье // ДАН. 1995. **341.** № 5. С. 689–692.