ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ КРЫМСКО-ЧЕРНОМОРСКОГО РЕГИОНА Б.Г. Пустовитенко, И.В. Калинюк, А.А. Пустовитенко

Институт сейсмологии и геодинамики Крымского федерального университета им. В.И. Вернадского, г. Симферополь, bpustovitenko@mail.ru

Исходные данные. Очаговые параметры землетрясений Крыма за 2011 г. восстановлены для 17 землетрясений с энергетическими классами K_{Π} =6.2–10.8, произошедших в различных частях региона (рис. 1). В отличие от ситуации в 2007–2008 гг., когда для определения спектральных и динамических параметров очагов использовались записи как аналоговых, так и цифровых сейсмических станций [1, 2], в настоящее время, начиная с 2009 г. [3], исходными данными являются только цифровые сейсмограммы.

Наибольшее число изученных землетрясений, как и в предыдущие годы [1–4], относится к центральной зоне региона (районы № 2, 3), по два – к Судакско-Феодосийской и Анапской зонам (районы № 4 и № 5), а также к степному Крыму (район № 6) и одно, наиболее сильное, – к Черноморской впадине (район № 9).

Рис. 1. Карта эпицентров землетрясений за 2011 г., для которых восстановлены очаговые параметры

1 – энергетический класс *К*_П [5]; 2 – глубина очага, *h км*; 3 – сейсмическая станция; 4 – граница района (№№ 1–9); 5 – крупный населенный пункт; номера землетрясений даны по табл. 1.

Для анализа выбраны, прежде всего, наиболее значимые сейсмические события года с $K_{\Pi}>9$ и добавлены более слабые толчки материковой части Крыма, представляющие научный интерес с точки зрения их географического положения и слабой изученности сейсмичности данной территории. К таким районам относится Тарханкутский полуостров (район № 6) и зона Демерджинского глубинного разлома вблизи г. Алушта (район № 3). Основные параметры выбранных для анализа землетрясений приведены в табл. 1 по каталогу [6].

N⁰	Дата,	t_0 ,	Эпиі	центр	h,	K_{Π}/n	$M_{\rm L}/n$	Mw/ n	Район
	дм	ч мин с	φ°, Ν	λ°, Ε	км				
1	2	3	4	5	6	7	8	9	10
1	17.03	02 13 27.7	43.39	36.13	31	10.8/7	3.7/6	4.1/7	Черноморская впадина (№ 9)
2	10.07	15 33 12.1	45.63	32.95	12	7.5/4	2.0/4	2.6/1	Степной Крым (№ 6)
3	24.07	03 22 51.4	45.65	33.19	20	7.6/5	2.0/5	2.7/1	Степной Крым (№ 6)
4	26.08	14 33 32.6	43.89	35.23	25	9.4/5	2.9/5	3.2/5	Судакско-Феодосийский (№ 4)
5	26.08	15 38 19.3	43.91	35.27	34	9.8/6	3.1/6	3.3/8	Судакско-Феодосийский (№ 4)
6	09.09	07 46 20.5	44.39	34.34	20	9.7/6	3.0/6	3.5/6	Ялтинский (№ 2)
7	09.09	14 43 40.7	44.38	34.33	18	9.5/5	3.0/4	3.3/7	Ялтинский (№ 2)
8	09.09	14 49 28.3	44.42	34.34	22	9.3/5	2.9/5	3.3/7	Ялтинский (№ 2)
9	09.09	15 26 09.6	44.39	34.33	20	9.6/6	3.1/6	3.4/6	Ялтинский (№ 2)
10	25.10	13 00 59.5	44.6	36.96	10	10.1/8	3.5/7	3.8/6	Керченско-Анапский (№ 5)
11	10.11	18 55 17.9	44.74	34.43	17	8.5/5	2.5/5	3.2/5	Алуштинский (№ 3)
12	10.11	21 40 25.2	44.74	34.43	18	6.2/5		2.35/2	Алуштинский (№ 3)
13	11.11	09 54 43.9	44.73	34.42	17	8.2/5	2.3/5	2.9/7	Алуштинский (№ 3)
14	11.11	10 37 42.8	44.73	34.44	17	7.6/5	2.1/5	2.7/5	Алуштинский (№ 3)
15	12.11	00 28 18.5	44.74	34.43	17	7.4/5	1.9/5	2.4/5	Алуштинский (№ 3)
16	12.11	05 43 03.3	44.73	34.43	17	8.3/5	2.4/5	2.8/4	Алуштинский (№ 3)
17	29.11	02 17 41.6	44.68	37.02	24	10.6/8	3.7/7	3.7/8	Керченско-Анапский (№ 5)

Таблица 1. Основные параметры землетрясений Крымско-Черноморского региона за 2011 г., для которых восстановлены очаговые параметры

Примечание. Параметры землетрясений в графах 2–7, 10 соответствуют таковым в [6]; значения $M_L/n - из$ [7]; значения $M_W/n - из$ табл. 5, где n - количество станционных определений.

Для расчета амплитудных спектров и восстановления динамических параметров очагов использовано 147 записей *P*- и *S*-волн по станциям «Алушта» (ALU), «Севасто-поль» (SEV), «Симферополь» (SIM), «Судак» (SUDU) и «Ялта» (YAL), для которых надежно определены амплитудно-частотные характеристики (AЧX) сейсмографов. На рис. 2 дан пример АЧХ сейсмической станции «Ялта» для короткопериодных ЕН-каналов с сейсмометрами СМ-3.

Общая статистика использованных станционных записей землетрясений Крыма в 2011 г. для восстановления динамических параметров очагов дана в табл. 2.

Из табл. 2 видно, что наибольшее число спектров получено по станциям «Се-

Рис. 2. Амплитудно-частотные характеристики сейсмографов на сейсмической станции « Ялта» (YAL) в 2011 г.

вастополь» и «Судак». Процент участия этих же станций в общей оценке динамических параметров очагов отдельных землетрясений также наибольший, соответственно 94 % и 71 %. В большинстве случаев станционные определения очаговых параметров выполнены по записям *S*-волн. Для наиболее сильного (K_{Π} =10.8) землетрясения 17 марта (№ 1 в табл. 1) получено решение механизма очага [8].

Станция	% участия/(N)	Количество	Количество записей объемных волн			
		спектров	Р	S		
«Алушта»	65/(11)	27	7	11		
«Севастополь»	94/(16)	30		16		
«Симферополь»	59/(10)	26	6	10		
«Судак»	71/(12)	36	10	13		
«Ялта»	65/(11)	28	6	11		

Таблица 2. Статистика использованного материала

Механизм очага землетрясения 17 марта в $02^{h}13^{m}27.7^{s}$ с K_{Π} =10.8. Переход станций Мира, в том числе и Крыма, на цифровой способ регистрации сейсмических колебаний позволил оперативно собрать, проанализировать и единообразно проинтерпретировать первичные записи волновых форм на сейсмических станциях Крыма [7] и ближней зоны, окружающих очаг в широком азимутальном створе. Дополнительно собранные волновые формы землетрясения и определенные по ним знаки первых вступлений продольных волн в совокупности с данными международного сейсмологического центра [9] позволили получить надежное решение механизма очага (табл. 3) и параметры разрыва в очаговой зоне землетрясения.

Дата,	<i>t</i> ₀ ,	h,	Mai	K_{Π}	Оси главных напряжений						Нодальные плоскости						Ис-		
д м	ч мин с	км	$Mw_{\rm per}$	MPSP	$m_{\rm b}$		Т		N		Р		NP1			NP2			точ-
			1	[10]	[9]		PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	ник
17.03	02 13 27.7	31	4.1	4.1	3.9	10.8	71	183	5	289	18	20	119	28	102	286	63	84	[8]

Таблица 3. Параметры механизма очага землетрясения 17 марта 2011 г. в $02^{h}13^{m}$ с K_{Π} =10.8

Определение двух возможных положений плоскости разрыва и осей главных напряжений, действующих в очаге, проведено по стандартной методике [11, 12]. Углы выхода сейсмических волн определены для удаленных станций по годографу «АК-135» [13], а для близких – по региональному годографу [14].

В соответствии с полученным в [8] решением, землетрясение произошло под действием близгоризонтальных ($PL_P=18^\circ$) сил сжатия близмеридиональной ориентации ($AZM_P=20^\circ$), и близвертикальных меридиональных сил растяжения ($PL_T=71^\circ$, $AZM_T=183^\circ$). Подвижка по крутой ($DP_{NP2}=63^\circ$) нодальной плоскости NP2 практически чистый взброс, с незначительным левосторонним сдвигом, по пологой ($DP_{NP1}=20^\circ$) плоскости NP1 – почти чистый надвиг, с минимальным правосторонним сдвигом (рис. 3, а). При этом первая плоскость разрыва NP1 имела юго-восточное простирание ($STK_{NP1}=119^\circ$) с пологим падением ($DP_{NP2}=63^\circ$) на юго-запад, а другая (NP2) – близширотное ($STK_{NP2}=286^\circ$), с крутым падением ($DP_{NP2}=63^\circ$) на север–северовосток. Наглядно полученное решение (рис. 3, а) в объемном изображении можно представить в виде схемы движения активных блоков для каждой из нодальных плоскостей (рис. 3, б, в).

Рис. 3. Механизм очага землетрясения 17 марта 2011 г. в 02^h13^m с K_П=10.8 по знакам первых вступлений *P*-волн: а – стереограмма (нижняя полусфера); б, в – объемное представление механизма очага в виде схемы движения активных блоков, соответственно для первой и второй нодальной плоскости

Для этого землетрясения проведено также исследование процессов разрывообразования в очаговой зоне. Использована методика [15], разработанная из представления о протяженном, движущемся источнике излучения от его начального гипоцентра. Практическое применение данной методики заключается в интерпретации азимутального распределения времен τ запаздывания максимальной фазы P_{max} в группе продольных P-волн относительно первого вступления P на данную станцию наблюдения: $\tau = t_{\text{Pmax}} - t_{\text{P}}$ [15, 16].

При построении азимутального годографа $\tau = f(AZM)$ землетрясения 17 марта 2011 г. (рис. 4) использованы волновые формы на сейсмических станциях Крыма, Украины, Кавказа и Турции, окружающих эпицентр землетрясения в широком азимутальном створе.

На азимутальном годографе землетрясения 17 марта 2011 г. (рис. 4) выделен только один максимум со значением τ_{max} =5.7 *с* в азимуте 310° при τ_{min} =1 *с*, что, согласно использованной методике [15], свидетельствует об однонаправленности процесса разрывообразования в очаговой зоне. С применением формул из работы [15]:

Рис. 4. Азимутальное распределение времен запаздывания продольных волн землетрясения 17 марта 2011 г. в 02^h13^m с *K*_П=10.8

$$L = \upsilon_{P} (\tau_{max} - \tau_{min})/2$$

$$C = \upsilon_{P} (\tau_{max} - \tau_{min}) / (\tau_{max} + \tau_{min})$$

$$Az_{0} = Az_{max} - 180^{\circ}$$

$$T = L / C$$

рассчитаны численные значения параметров процесса вспарывания в очаговой зоне землетрясения 17 марта: разрыв протяженностью $L=15 \ \kappa m$ ориентирован диагонально в юго-восточном направлении $(AZM_0=130^\circ)$, скорость вспарывания $C=4.4 \ \kappa m/c$ и время процесса $T=3.4 \ c$. Полученное направление распространения разрыва в очаговой зоне в $AZM_0 = 130^\circ$

в пределах погрешностей определения величин согласуется с диагональным простиранием первой плоскости разрыва (*STK*_{NP1}=119°) по данным о решении механизма очага (табл. 3).

Следует отметить, что простирание нодальных плоскостей, а также численные значения параметров разрывообразования в очаге землетрясения 17 марта не противоречат полученным ранее [17] решениям для очагов восточной части региона.

Методика обработки и интерпретация амплитудных спектров. Для анализа отбирались записи только с четкими фазами *P*- и *S*-волн, не осложненные микросейсмическим шумом. Примеры записей землетрясения 17 марта с K_{Π} =10.8 приведены на рис. 5.

Рис. 5. Записи землетрясения 17 марта 2011 г. в $02^{h}13^{m}$ с K_{Π} =10.8 по составляющим N-S, E-W, Z (1–3) на станциях «Ялта» (а), Симферополь» (б) с Δ =200 км и 236 км соответственно

Амплитудные спектры S-волн в большинстве случаев рассчитывались по записям двух горизонтальных составляющих (N–S), (E–W) и затем вычислялся полный горизонтальный вектор колебаний, а спектры P-волн – по вертикальной (Z). Длительность исследуемого участка записи, как и при обработке аналоговых сейсмограмм [18], принята равной $\tau_{1/3}$, т.е. взят интервал времени от вступления S- и P-волн до времени спада максимальных колебаний A_{max} на уровень $\frac{1}{3} A_{max}$. Спектры рассчитаны стандартным методом быстрого преобразования Фурье с учетом АЧХ сейсмографов. Интерпретация спектров выполнена в рамках дислокационной модели Бруна [19].

Спектр объемной волны в модели Бруна описывается тремя основными характеристиками: спектральной плотностью $\Omega_0(x, f)$ при $f \rightarrow 0$, пропорциональной скалярному сейсмическому моменту M_0 ; угловым коэффициентом γ и угловой частотой $f_0(\omega_0)$, связанной с размером дислокации r_0 . Полученные спектры записей землетрясений Крыма за 2011 г. уверенно аппроксимируются двумя прямыми: в длиннопериодной части спектра – прямой, параллельной оси частот; в области коротких периодов – наклонной прямой с угловым коэффициентом $\gamma \sim -2$ (рис. 6), что соответствует выбранной теоретической модели.

Рис. 6. Примеры амплитудных спектров землетрясений Крымско-Черноморского региона из табл. 1 по записям региональных цифровых сейсмических станций

Расчет динамических параметров. Спектр записи землетрясения на станции регистрации является суперпозицией эффектов самого источника, характеристики регистрирующего прибора, среды на пути очаг-станция, направленности излучения. Формула для расчета скалярного сейсмического момента M_0 по станционному спектру имеет вид:

$$M_0 = \Omega_0 (4\pi \cdot \rho \cdot \upsilon^3) / R_{\theta \varphi} \cdot G(\Delta, h) \cdot C(\omega) \cdot Sm(f),$$

где Ω_0 – максимальное значение спектральной плотности при $\omega \to 0$; ρ – плотность пород в окрестности очага; υ – скорость распространения волны; $R_{\theta\phi}$ – направленность излучения из очага на станцию; $G(\Delta, h)$ – поправка за геометрическое расхождение; $C(\omega)$ – частотная характеристика среды под станцией; Sm(f) – поправка за неупругое затухание в мантии. Методика учета всех этих факторов при переходе от станционного спектра к спектру источника подробно изложена в работах [18, 20]. Для землетрясения 17 марта введена поправка за направленность излучения $R_{\theta\phi}$ по табл. 4, для остальных принято среднее $R_{\theta\phi} = 0.4$ [18].

Станция	«Алушта»		«Симферополь»		«Севаст	гополь»	«Cy,	цак»	«Ялта»		
Тип волны	P	S	P	S	Р	S	P	S	Р	S	
$R_{ heta \phi}$	0.052	0.45	0.05	0.48	0.093	0.31	-0.06	0.65	0.083	0.34	

Таблица 4. Значения *R*₀₀ для землетрясения 17 марта 2011 г.

Геометрические размеры очага определялись по угловой частоте f_0 амплитудного спектра смещения. Частота f_0 связана с длительностью импульса, излученного очагом, которая, в свою очередь, определяется размером источника, скоростью вспарывания и положением точки наблюдения по отношению к источнику. Для дислокационной модели Бруна [19] с разрывом в виде круга, радиус дислокации r_0 вычисляется по формуле:

$$r_0 = 2.34 \frac{\upsilon_P}{2\pi \cdot f_0}$$

По найденным значениям сейсмического момента M_0 и размеров разрыва r_0 с использованием формул из работ [18–22] определены другие динамические параметры очагов: сброшенное напряжение $\Delta \sigma$, величина деформации сдвига є, кажущееся напряжение $\eta \sigma$, величина радиационного трения $\Delta \sigma_r$, средняя подвижка или величина дислокации по разрыву \bar{u} и моментная магнитуда Mw (табл. 5). Моментная магнитуда рассчитана по индивидуальным оценкам сейсмических моментов M_0 с использованием формулы Канамори [22]. Большинство динамических параметров получено по пяти и более независимым станционным определениям. Только для двух слабых сейсмических толчков района п-ва Тарханкут динамические параметры рассчитаны по записям одной составляющей *S*-волны на ближайшей к очагам станции «Севастополь» (табл. 5).

Осреднение станционных динамических параметров (кроме радиационного трения $\Delta \sigma_r$) и вычисление их стандартных отклонений выполнены, как и прежде [18], с учетом логнормального закона распределения величин. Поскольку индивидуальные станционные значения $\Delta \sigma_r$ получились знакопеременными, то их среднее значение вычислено по среднегеометрическим для данного очага напряжениям $\Delta \sigma$ и $\eta \sigma$ по формуле [21]:

$$\Delta \sigma_r = 1/2 \Delta \sigma - \eta \sigma$$

Среднее значение моментной магнитуды Mw определено как среднее арифметическое с соответствующей погрешностью. Результаты расчета станционных и средних для землетрясения динамических параметров представлены в табл. 5. Для каждой станции указаны эпицентральное расстояние Δ , *км* и составляющая записи, где (N+E) означает полный вектор горизонтальных колебаний.

Код станции	Составля- ющая	Δ, <i>км</i>	$\Omega_0 \cdot 10^{-6},$ $\mathcal{M} \cdot C$	f ₀ , Гц	$M_0 \cdot 10^{13},$ $H \cdot M$	r ₀ , км	$\Delta \sigma \cdot 10^5,$ Πa	ε·10 ^{−6}	$\bar{u} \cdot 10^{-2},$	ησ·10 ⁵ , <i>Πα</i>	$\Delta \sigma_r \cdot 10^5,$ Πa	Mw	
Землетрясение (1) 17 марта; $t_0 = 02^h 13^m 27.7^s$; $\varphi = 43.39^\circ$; $\lambda = 36.13^\circ$; $h = 31$ км; $K_{\Pi} = 10.8$													
SIM	Ζ	236	0.08	3	197	0.82	15.7	52.3	3.12	3.4	4.4	4.1	
SIM	N+E	236	1.73	1.8	84.8	0.79	7.6	25.5	1.46	7.9	-4.1	3.9	
YAL	Ζ	200	0.4	2.5	594	0.93	32.2	107	7.27	1.1	15.0	4.4	
YAL	N+E	200	1.15	1.8	113	0.79	10.2	33.9	1.94	6.0	-0.9	4.0	
SUDU	Ζ	190	0.2	2.6	339	0.90	20.6	68.8	4.48	2.0	8.4	4.3	
SUDU	N+E	190	3.46	1.85	219	0.76	21.4	71.5	3.98	3.1	7.7	4.2	
SEV	N+E	234	0.92	1.8	144	0.79	12.9	43.1	2.47	4.7	1.8	4.0	
		S			198	0.82	14.2	52.0	3.11	3.4	3.7	4.1	
		δS			0.11	0.01	0.08	0.08	0.09	0.11		0.1	

Таблица 5. Спектральные и динамические параметры очагов землетрясений Крымско-Черноморского региона за 2011 г.

	1		1									
Код	Составля-	Δ,	$\Omega_0 \cdot 10^{-6}$,	f_0 ,	$M_0 \cdot 10^{13}$,	r_0 ,	$\Delta \sigma \cdot 10^5$,	ε·10 ⁻⁶	$\bar{u} \cdot 10^{-2}$,	$\eta \sigma \cdot 10^5$,	$\Delta \sigma_r \cdot 10^5$,	Mw
станции	ющая	км	м.с	Гц	Н∙м	км	Па		м	Па	Па	
	Землетря	ение (2) 10 ин	חת: <i>t</i> o	$=15^{h}33^{m}1$	2 1 ^s . ω=	=45 63°.	$\lambda = 32.94$	$5^{\circ} \cdot h = 12$	км. К.	=7.5	
SEV	Б	124	2) 10 m	2 2	0.06	0.40	-5.05 ,	2.75	0.06	1.07	1.(2	26
SEV	E	134	0.02	3.2	0.90	0.40	0.08	2.20	0.00	1.97	-1.63	2.0
	Землетряс	ение (3) 24 ию	оля; t ₀ =	$=03^{n}22^{m}5$	1.4 ^s ; φ=	=45.65°;	λ=33.19	$h^{\circ}; h = 20$) км; К _І	₁ =7.6	
SEV	Е	129	0.03	3.2	1.38	0.40	0.97	3.25	0.09	1.37	-0.8	2.7
Зем	петрясени	e (4) 2	6 август	$a \cdot t_0 = 1$	4 ^h 33 ^m	32.6 ^{s.} ω	= 43.89	$\cdot \lambda = 34$	$5.23^{\circ} \cdot h$	$= 25 \kappa n$	$4 \cdot K_{\Pi} = 9$	4
	7	100	0.03	5	15	0.47	1.06	, 1 20	0.22	0.4	0 A	3.0
	L N+E	109	0.03	3 2 2	4.5	0.47	2.02	13.1	0.22	9.4 6.4	-8.4	3.0
	N+E N+E	109	0.25	3.2	0.0	0.42	2.93	7.0	0.4	0.4	-4.4	3.2
SEV	N+E N+E	1/3	0.1	3.2	3.0 7.4	0.42	2.11	13.3	0.21	5 76	-10.9	3.0
SUDU	N+E N+F	112	0.15	3.0	7. 4 8.9	0.45	4 35	1 45	0.42	4.8	-2.6	3.2
5656	IN L	S	0.2	5.0	59	0.43	3.09	6 49	0.47	7.23	-2.0	3.2
		<u>85</u>			0.07	0.01	0.07	0.18	0.07	0.07	-3.07	0.1
	AN HATPROA	uua (5)	26 apr	vora: t	-15 ^h 28 ⁿ	10.01	-43 019	0.10	$77^{\circ} h^{-3}$	0.07	V -0.8	0.1
	ыны	нис (5)		$\frac{yc1a, l}{20}$	0-13-38	19.5,4	5.01	$, \lambda = 33.$	27, n=.	54 км, I	X _Π = 9.8	2.2
SEV	N+E	142	0.2	3.0	14.2	0.47	5.91	19.7	0.68	5.96	-3.0	3.3
SUDU	N+E	113	0.38	3.0	21.5	0.47	8.97	29.9	1.03	3.93	0.56	3.5
		113	0.04	5.3	11.9	0.46	5.21	1/.4	0.59	/.12	-4.5	3.3
ALU	N+E	110	0.45	5.0	16.5	0.47	6.9	22.9	0.78	5.13	-1.7	3.4
YAL		107	0.05	3.5	11.0	0.45	5.7	19.0	0.62	/.20	-4.4	2.2
	INTE N+E	107	0.23	3.2	10.2	0.44	3.2	17.2	0.30	8.27	-5.7	2.2
SIM	N+E N+E	147	0.28	2.9	10.5	0.49	3.88	12.9	0.46	8.2	-6.2	3.3
SIIVIZ	INTE	14/ C	0.29	5.0	10.7	0.47	4.40	14.8	0.31	/.9 6 71	-5./	3.3
		<u>sc</u>			12.9	0.40	5.01	18.7	0.03	0.71	-3.91	3.3
		05	0.000	-5n +	-0.04	$n_{20} 5^{s}$	-44.20	0.04	0.04	0.05	$V_{-0.7}$	0.05
J	вемлетрясе		9 CEHT	яоря, <i>і</i>	0 - 07 40	20.3,0	p=44.39	, λ-34.	54, n-2	20 км, 1	$n_{\Pi} - 9.7$	
SEV	N+E	55	1.2	3.05	26.1	0.44	13.5	44.8	1.43	2.3	4.4	3.55
SIM2	N+E	65	2.5	2.0	32.1	0.6/	4./	15.5	0.76	1.9	0.5	3.6
SUDU	L N+E	76	0.125	$\frac{5.0}{2.0}$	18.8	0.47	8.2	51.7	0.92	1.0	2.5	3.45
VAI	7	18	0.8	5	36.4	0.40	15.5	52.7	1.74	0.83	7.1	3.65
YAL	N+E	18	1.4	2.9	12.2	0.47	5.4	18.0	0.61	2.5	0.23	3 35
	1, 2	S		,	25.0	0.49	9.4	31.2	1.11	1.52	3.2	3.5
		δS			0.08	0.03	0.10	0.10	0.08	0.09		0.07
3	емлетрясен	ие (7)	9 сентя	бря: to	$=14^{h}43^{m}$	40.7 ^s : σ	$= 44.38^{\circ}$	·: λ=34.2	$33^{\circ}: h =$	18 км:	$K_{\rm H} = 9.5$	
ALLI	N+F	3/	0.7	3.0	71	0.45	3.5	116	0.38	8 /	67	3.2
SEV	N+E N+E	55	0.7	2.5	21.3	0.43	5.5	20.2	0.38	0.4	-0.7	3.2
SIM	Z	65	0.08	4.0	5.6	0.54	1.2	4 1	0.17	10.8	_10.2	3.1
SUDU	Z	77	0.00	5.2	15.9	0.56	7.8	25.9	0.17	3.8	0.13	3.4
SUDU	N+E	77	1.0	2.4	30.5	0.56	7.7	25.5	1.04	2.0	1.9	3.6
YAL	Ζ	18	0.6	6.0	26.2	0.39	19.6	65.4	1.85	2.3	7.5	3.55
YAL	N+E	18	0.6	5.2	5.0	0.26	12.8	42.6	0.8	12.0	-5.6	3.1
		S			12.7	0.45	6.3	20.9	0.68	4.7	-1.55	3.3
		δS			0.13	0.05	0.15	0.15	0.13	0.12		0.2
	Землетрясе	ние (8) 9 cent	ября: <i>t</i>	$_0 = 14^{h}49^{r}$	ⁿ 28.3 ^s ; (=44.42°	; λ=34.3	$34^{\circ}; h=2$	2 км; К	C _Π =9.3	
ALU	E	34	0.84	2.8	90	0.48	3.6	12.0	0.42	66	_4 8	3.2
SEV	N+F	55	11	2.0	25.9	0.48	10.3	34.3	1 2	23	2.8	3 55
SIM	Z	65	0.08	5.0	5.4	0.47	2.3	7.8	0.26	5.6	_4 4	3.1
SIM	N+E	65	1.2	2.0	16.1	0.67	2.3	7.8	0.38	1.8	0.68	3.4
SUDU	N+E	77	0.9	3.1	27.1	0.43	14.7	48.9	1.54	1.1	6.2	3.55
YAL	Ζ	19	0.5	5	24.7	0.47	10.7	35.7	1.21	1.2	4.14	3.5
YAL	N+E	19	0.8	3.2	7.6	0.42	4.5	15.0	0.46	4.0	-1.73	3.2
		S			14.0	0.48	5.4	18.2	0.64	2.6	0.1	3.3
		δS			0.11	0.03	0.13	0.13	0.12	0.12		0.1

ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ КРЫМСКО-ЧЕРНОМОРСКОГО РЕГИОНА Б.Г. Пустовитенко, И.В. Калинюк, А.А. Пустовитенко

	1				1		1			1		1
Код	Составля-	Δ,	$\Omega_0 \cdot 10^{-6}$,	$f_0,$	$M_0 \cdot 10^{13}$,	<i>r</i> ₀ ,	$\Delta \sigma \cdot 10^5$,	ε·10 ^{−6}	$\bar{u} \cdot 10^{-2}$,	η σ ·10 ⁵ ,	$\Delta \sigma_r \cdot 10^5$,	Mw
станции	ющая	КМ	<i>M</i> · <i>C</i>	Τų 	$H \cdot M$	^m O (^S , a	= 11a	.) _ 2 4 2	M	11a	11a	
	землетрясе	ение (9) 9 cen	яоря;	$t_0 = 15 20$	9.0;¢	=44.39	; <i>λ</i> =34.3	$5^{-1}; n=2$	0 км; к	п =9.6	
ALU	N	32	1.1	3.0	10.9	0.45	5.3	17.7	0.58	2.0	0.7	3.3
SEV	N+E	55	1.48	3.0	32.2	0.45	15.8	52.6	1.71	0.66	7.2	3.6
SIM	Z	64	0.09	4.0	6.0	0.58	1.3	4.4	0.19	3.6	-2.9	3.1
SIM	N+E	64	1.5	2.2	18.9	0.61	3.7	12.2	0.54	1.12	0.71	3.45
SUDU	Z	76	0.15	4.8	23.6	0.48	9.0	30.2	1.06	0.9	3.6	3.5
SUDU	N+E	76	1.68	3.1	50.5	0.43	27.3	91.0	0.29	0.42	13.2	3.7
		<u>S</u> SC			19.0	0.50	6.8	22.7	0.56	1.12	2.3	3.4
Зем	петрясение	(10)	25 oktać	ภัทя: <i>t</i> ₀:	$=13^{h} 00^{m}$	<u>0.03</u> 59 5 ^{s.} տ	$= 44.6^{\circ}$	$\lambda = 36$	$96^{\circ} h =$	0.14 10 км [.]	$K_{\rm TI} = 10$	1
ALU	Z	202	0.2	3.3	49.4	0.68	7.0	23.2	1.14	1.2	2.3	3.7
ALU	N+E	202	0.8	2.3	36.0	0.55	9.4	31.5	1.26	1.7	3.0	3.6
SEV	N+E	260	0.78	2.2	67.5	0.58	15.5	51.6	2.16	0.9	6.8	3.8
SUDU	Ζ	158	0.3	3.1	87.1	0.72	10.2	33.9	1.78	0.7	4.4	3.9
SUDU	N+E	158	3.8	2.1	201	0.6	40	133	5.99	0.3	19.7	4.1
YAL	N+E	223	0.44	2.3	27.3	0.55	7.2	23.9	0.96	2.2	1.4	3.6
		<u>S</u>			62.1	0.61	12.0 0.12	39.9 0.12	1.78	1.0	5.0	3.8
	Земпетоясе	ол ние (1	1) 10 но	ana. t	$= 18^{h}55^{r}$	ⁿ 17 9 ^s · a	$=44.74^{\circ}$	$\gamma = 34 4$	$13^{\circ} \cdot h=1$	$7 \kappa M^{\circ} k$	(n = 8 5	0.1
				<u>торя, г</u>	10	17.7 , q	50	, 7 34	0.50	7 KM, I		2.2
SUDU		48	0.1	3.5	10	0.42	5.8	19.3	0.59	0.19	2.1	3.3
SUDU	N+E N+E	48	1.8	$\frac{3.0}{2.4}$	34.5 0 2	0.45	10.9	30.3	1.8	0.05	8.4	3.0
	N+E N+E	36	0.33	3.4	0.2	0.39	2.6	19.5	0.30	0.25	2.7	3.2
SIM	N+E N+E	30	0.55	3.2	4.5	0.42	2.0	0.0	0.20	0.44	0.0	3.0
SIIVI	INTE	54 C	0.0	3.5	4.4 8.8	0.38	5.5	11.5	0.52	0.43	24	3.0
		<u>5</u> 85			0.0	0.01	0.14	0.14	0.15	0.08	2.7	0.2
	Землетрясе	о <u>о</u> ние (1	2) 10 но	абря: <i>t</i>	$= 21^{h}40^{r}$	$^{n}25.2^{s}$: ($=44.74^{\circ}$	$^{\circ}: \lambda = 34.4$	43°: <i>h</i> =1	8 км: К	ζ _π =6.2	0.2
ΔΙΙΙ	7	7	0.016	75	0.43	0.31	0.6	21	0.05	0.05	0.26	24
ALU	N+F	7	0.010	6	0.45	0.22	1.4	4.6	0.03	0.05	0.20	2.4
THEO	IV L	S	0.07	0	0.30	0.22	0.9	31	0.07	0.00	0.01	2.35
		$\frac{2}{\delta S}$			0.04	0.07	0.18	0.17	0.07	0.04	••••	0.05
	Землетрясе	ние (1	3) 11 ноя	чбря; <i>t</i>	$_0 = 09^{h}54^{r}$	ⁿ 43.9 ^s ; q	o=44.73°	; λ=34.4	42°; <i>h</i> =1	7 км; К	<i>K</i> _Π =8.2	
ALU	Ζ	6	0.15	6	3 64	0 39	2 73	91	0.26	0.52	0.85	3.0
ALU	N+E	6	0.92	4	4 27	0.34	4 96	16.5	0.40	0.44	2.04	3.0
SEV	N+E	62	0.084	4	2.12	0.34	2.46	8.2	0.20	0.89	0.34	2.8
YAL	N+E	34	0.09	3.9	1.14	0.34	1.23	4.1	0.10	1.66	-1.04	2.6
SIM	N+E	34	0.16	4.5	1.22	0.30	2.02	6.7	0.15	1.55	-0.54	2.7
SUDU	Ζ	49	0.03	6.2	3.08	0.38	2.54	8.5	0.23	0.6	0.65	2.9
SUDU	N+E	49	0.64	3.0	12.5	0.45	6.15	20.5	0.67	0.15	2.9	3.3
		S			2.91	0.36	2.78	9.3	0.24	0.65	0.74	2.9
		δS			0.14	0.02	0.09	0.09	0.10	0.14		0.2
,	Землетрясе	ние (1	4) 11 ноя	нбря; <i>t</i>	$_0 = 10^h 37^n$	ⁿ 42.8 ^s ; q	₀=44.73°	; λ=34.4	44°; <i>h</i> =1	7 км; К	C _Π =7.6	
ALU	Ζ	6	0.09	6.8	2.19	0.34	2.39	7.9	0.2	0.15	1.04	2.8
ALU	N+E	6	0.58	4.5	2.69	0.30	4.46	14.9	0.32	0.13	2.1	2.9
SEV	N+E	64	0.03	5.5	0.76	0.24	2.3	7.6	0.13	0.44	0.7	2.5
SIM	3.1.1	35	0.04	5.5	0.30	0.24	0.92	3.1	0.05	1.1	-0.64	2.3
	N+E	55										
SUDU	N+E N+E	47	0.18	4.0	3.4	0.34	3.9	13.0	0.32	0.1	1.86	3.0
SUDU	N+E N+E	47 S	0.18	4.0	3.4 1.35	0.34 0.29	3.9 2.45	13.0 8.15	0.32 0.17	0.1 0.25	1.86 1.0	3.0 2.7
SUDU	N+E N+E	<u>47</u> <u>S</u> δS	0.18	4.0	3.4 1.35 0.20	0.34 0.29 0.03	3.9 2.45 0.12	13.0 8.15 0.12	0.32 0.17 0.15	0.1 0.25 0.2	1.86 1.0	3.0 2.7 0.2
SUDU 3	N+E N+E	47 S бS ние (15	0.18 5) 12 но	4.0 ября;	$ \begin{array}{r} 3.4 \\ 1.35 \\ 0.20 \\ t_0 = 00^h 28 \end{array} $	0.34 0.29 0.03 ^m 18.5 ^s ; 6	3.9 2.45 0.12 φ=44.74	13.0 8.15 0.12 °; λ=34.	0.32 0.17 0.15 43°; h=	0.1 0.25 0.2 17 км; 1	1.86 1.0 $K_{\Pi} = 7.4$	3.0 2.7 0.2
SUDU 3 ALU	N+E N+E Вемлетрясен Z	<u>47</u> <u>S</u> бS ние (15	0.18 5) 12 но 0.06	4.0 ября; 7	$ \begin{array}{r} 3.4 \\ 1.35 \\ 0.20 \\ t_0 = 00^h 28 \\ 1.55 \\ \end{array} $	0.34 0.29 0.03 ^m 18.5 ^s ; 0.33	$ \begin{array}{r} 3.9 \\ \hline \hline 2.45 \\ 0.12 \\ \phi = 44.74 \\ 1.84 \\ \end{array} $	$ \begin{array}{r} 13.0 \\ \hline 8.15 \\ 0.12 \\ \circ; \lambda = 34. \\ \hline 6.1 \\ \end{array} $	0.32 0.17 0.15 43°; <i>h</i> = 0.15	0.1 0.25 0.2 17 км; 1 0.87	1.86 1.0 $K_{\Pi} = 7.4$ 0.06	3.0 2.7 0.2 2.7
SUDU 3 ALU ALU	N+E N+E Вемлетрясен Z N+E	<u>47</u> <u>S</u> δS ние (15 7 7	0.18 5) 12 но 0.06 0.017	4.0 ября; 7 7	$ \begin{array}{r} 3.4 \\ 1.35 \\ 0.20 \\ t_0 = 00^h 28 \\ 1.55 \\ 1.78 \\ \end{array} $	0.34 0.29 0.03 ^m 18.5 ^s ; 0 0.33 0.26	$ \begin{array}{r} 3.9 \\ \hline \hline 2.45 \\ 0.12 \\ \phi = 44.74 \\ \hline 1.84 \\ 4.5 \\ \end{array} $	$ \begin{array}{r} 13.0 \\ \hline 8.15 \\ 0.12 \\ \circ; \lambda = 34. \\ \hline 6.1 \\ 15.1 \\ \end{array} $	$\begin{array}{c} 0.32 \\ \hline 0.17 \\ 0.15 \\ 43^{\circ}; h = 1 \\ \hline 0.15 \\ 0.28 \end{array}$	0.1 0.25 0.2 17 км; 1 0.87 0.75	$ \begin{array}{c} 1.86 \\ 1.0 \\ K_{\Pi} = 7.4 \\ 0.06 \\ 1.5 \\ \end{array} $	3.0 2.7 0.2 2.7 2.8

Код	Составля-	Δ,	$\Omega_0 \cdot 10^{-6}$,	$f_0,$	$M_0 \cdot 10^{13}$,	<i>r</i> ₀ ,	$\Delta \sigma \cdot 10^5$,	ε·10 ^{−6}	$\bar{u} \cdot 10^{-2}$,	η σ ·10 ⁵ ,	$\Delta \sigma_{r} \cdot 10^{5}$,	Mw
станции	ющая	КМ	М∙С	Тų	Н∙м	КМ	IIa		\mathcal{M}	IIa	IIa	
SIM	N+E	34	0.017	7	0.13	0.19	0.8	2.7	0.04	10.3	-9.9	2.0
SIM	Ζ	34	0.008	8	0.32	0.29	0.57	1.9	0.04	4.2	-3.9	2.3
		S			0.53	0.26	1.39	4.7	0.09	2.5	-1.8	2.4
		δS			0.22	0.04	0.16	0.16	0.16	0.22		0.3
	Землетрясе	ние (1	6) 12 но	ября;	$t_0 = 05^{h}43^{h}$	^m 3.3 ^s ; φ	=44.73°	; λ=34.4	3°; <i>h</i> =17	7 км; К	п = 8.3	
SEV	N+E	63	0.12	4.2	2.98	0.32	4.0	13.3	0.31	0.63	1.37	2.9
SUDU	N+E	48	0.072	5	1.38	0.27	3.13	10.4	0.20	1.37	0.19	2.7
SUDU	Ζ	48	0.04	10	4.01	0.23	13.9	46.4	0.78	0.47	6.5	3.0
YAL	N+E	35	0.06	4.2	0.76	0.32	1.02	2.4	0.09	2.48	-1.97	2.5
		S			1.88	0.28	3.65	11.1	0.26	1.00	0.83	2.8
		δS			0.16	0.03	0.23	0.26	0.20	0.16		0.2
3	вемлетрясе	ние (17	7) 29 ноя	бря; <i>t</i> 0	$=02^{h}17^{m}$	41.6 ^s ; φ	=44.68°	; λ=37.0	2°; h=24	4 км; К	$_{\Pi} = 10.6$	
ALU	Ζ	208	0.1	5	28.7	0.47	12.4	41.5	1.41	5.9	0.35	3.6
ALU	N+E	208	0.61	2.8	33.5	0.48	13.3	44.4	1.55	5.0	1.6	3.6
SUDU	Ζ	163	0.3	4.8	101	0.48	38.8	129	4.56	1.7	17.7	3.9
SUDU	N+E	163	2.3	2.3	148	0.58	32.7	109	4.63	1.14	15.2	4.0
SEV	N+E	266	0.64	3.0	67.4	0.45	33.0	110	3.58	2.5	14	3.8
YAL	Z	229	0.2	4.0	79	0.58	17.5	58.5	2.47	2.14	6.63	3.9
YAL	N+E	229	0.21	3.2	15.8	0.42	9.43	31.4	0.96	10.6	-5.9	3.4
SIM	Z	232	0.2	4.0	47.8	0.58	10.6	35.4	1.5	3.5	1.8	3.7
		S			52.5	0.50	18.2	60.7	2.22	3.21	5.89	3.7
		δS			0.11	0.02	0.09	0.09	0.09	0.11		0.2

ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ КРЫМСКО-ЧЕРНОМОРСКОГО РЕГИОНА Б.Г. Пустовитенко, И.В. Калинюк, А.А. Пустовитенко

Обсуждение результатов. Восстановленные очаговые параметры для изученных землетрясений 2011 г. можно отнести к категории надежных, поскольку получено хорошее согласие всех станционных определений динамических параметров с малыми стандартными отклонениями (табл. 5). Для большинства землетрясений индивидуальные значения моментных магнитуд Mw_{per} либо полностью совпали, либо их разброс не превысил погрешности $\delta Mw = \pm 0.2$. Наибольшие значения динамических параметров: M_0 , r_0 , $\Delta \sigma$, ε , \bar{u} получены для землетрясения 17 марта с $K_{\Pi} = 10.8$ и $h=31 \ \kappa m$ (№ 1), произошедшего в восточной части глубоководной впадины Чёрного моря, а наименьшее – для самого слабого ($K_{\Pi} = 6.2$) землетрясения $N \ge 12$, зарегистрированного 10 ноября в районе горы Демерджи. В целом для всех землетрясений наблюдается увеличение значений динамических параметров (кроме радиационного трения) с ростом энергии землетрясений.

С учетом среднего для землетрясения 17 марта скалярного сейсмического момента $M_{0 \text{ per}}=1.98 \cdot 10^{15} H \cdot M$ (табл. 5) параметры механизма очага пересчитаны в компоненты тензора сейсмического момента (рис. 7).

Рис. 7. Компоненты тензора сейсмического момента $M_{0 \text{ per}}(H \cdot M)$

Как и в предыдущие годы [2, 3, 4], проведено сравнение полученных в 2011 г. динамических параметров очагов землетрясений [23] со средними их долговременными величинами (рис. 8). Сравнение проведено только для сейсмического момента M_0_{per} и радиуса круговой дислокации r_0 , с использованием их зависимостей от энергии землетрясений $M_0(K_{\Pi})$ и $r_0(K_{\Pi})$, полученных по записям с аналоговой регистрацией сейсмических волн [24]:

lg
$$M_{0 \text{ per}} = 0.645(\pm 0.027) \cdot K_{\Pi} + 8.142(\pm 0.271), \rho = 0.99;$$

lg
$$r_0 = 0.112(\pm 0.011) \cdot K_{\Pi} - 1.293(\pm 0.107), \rho = 0.93.$$

Рис. 8. Сравнение динамических параметров очагов землетрясений Крымско-Черноморского региона за 2011 г.: сейсмического момента $M_{0 \text{ per}}$ (а) и радиуса круговой дислокации $r_0(6)$ – с долговременными зависимостями $M_0(K_{\Pi})$ и $r_0(K_{\Pi})$ в [24]

экспериментальные значения за 2011 г.; 2 – значения для землетрясения 17 марта с известным механизмом очага;
 наложение двух одинаковых значений; пунктиром обозначены пределы погрешностей (доверительная область на уровне 0.95).

Как видно из рис. 8, все средние значения $M_{0 \text{ рег}}$ по группе станций удовлетворяют долговременной зависимости $M_0(K_{\Pi})$, находясь в ее доверительной области. Для большинства землетрясений значения отклонений δM_0 относительно зависимости $M_0(K_{\Pi})$ распределены равномерно (рис. 8, а). При этом для четырех событий $\delta M_0 \approx 0$, для шести – δM_0 имеют положительные значения, а для семи – отрицательные. В отличие от предыдущих лет [2, 3, 4] большинство значений радиусов круговой дислокации r_0 за 2011 г. (рис. 8, б) – ниже долговременной зависимости $r_0(K_{\Pi})$. Только для двух относительно слабых толчков района мыса Тарханкут $\delta r_0 > 0$. Полное соответствие $r_0(K_{\Pi})$ отмечено для самого сильного землетрясения 17 марта с $K_{\Pi}=10.8$ и слабого ($K_{\Pi}=6.2$) из Демерджинской серии. В связи с этим, высказанное ранее [3, 4] предположение о том, что завышение δr_0 для большинства землетрясений 2009–2010 г. «может быть объяснено использованием более широкополосных цифровых сейсмических каналов по сравнению с прежними аналоговыми», должно быть проверено на более длительных рядах наблюдений для исключения возможных пространственно-временных вариаций динамических параметров.

Литература

- Пустовитенко Б.Г., Мержей Е.А., Поречнова Е.И., Сыкчина З.Н. Динамические параметры очагов землетрясений Крыма // Землетрясения Северной Евразии, 2007 год. – Обнинск: ГС РАН, 2013. – С. 291–296.
- 2. Пустовитенко Б.Г., Калинюк И.В., Мержей Е.А., Поречнова Е.И., Сыкчина З.Н. Динамические параметры очагов землетрясений Крыма // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 289–296.
- Пустовитенко Б.Г., Калинюк И.В., Мержей Е.А., Пустовитенко А.А. Динамические параметры очагов землетрясений Крыма // Землетрясения Северной Евразии, 2009 год. – Обнинск: ГС РАН, 2015. – С. 261–270.
- Пустовитенко Б.Г., Калинюк И.В., Мержей Е.А. Динамические параметры очагов землетрясений Крымско-Черноморского региона // Землетрясения Северной Евразии, 2010 год. – Обнинск: ГС РАН, 2016. – С. 296–304.

- 5. Пустовитенко Б.Г., Кульчицкий В.Е. Об энергетической оценке землетрясений Крымско-Черноморского региона // Магнитуда и энергетическая классификация землетрясений. – М.: ИФЗ АН СССР, 1974. – Т. 2. – С. 113–125.
- 6. Козиненко Н.М., Свидлова В.А., Сыкчина З.Н. (отв. сост.). Каталог землетрясений Крымско-Черноморского региона за 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- Козиненко Н.М., Свидлова В.А., Сыкчина З.Н. (отв. сост.), Антонюк Г.П., Антонюк В.А., Бондарь М.Н., Курьянова И.В., Подвинцев А.В., Росляков А.В., Сусин Д.А. (сост.). Каталог и подробные данные о землетрясениях Крымско-Черноморского Региона за 2011 г. – Севастополь: НПЦ «ЭКОСИ-Гидрофизика», 2012. – С. 94–135.
- 8. Пустовитенко А.А. (отв. сост.). Каталог механизмов очагов землетрясений Крымско-Черноморского региона за 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- 9. International Seismological Centre (ISC), On-line Bulletin, Internatl. Seis. Cent., Thatcham, United Kingdom, 2014. URL: *http://www.isc.ac.uk/iscbulletin/search/bulletin/.*
- 10. Сейсмологический бюллетень (ежедекадный) за 2011 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2011–2012. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2011*.
- 11. **Введенская А.В.** Исследование напряжений и разрывов в очагах землетрясений при помощи теории дислокации. М.: Наука, 1969. –136 с.
- 12. Балакина Л.А., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 198 с.
- Kennet B.L.N. Seismological Tables: AK-135 // Research School of earth Sciences Australian national University. Australia, Canberra, ACT0200. – 2005. – 80 p.
- Кульчицкий В.Е., Сафонова Г.П., Свидлова В.А. Годографы сейсмических волн Крымско-Черноморских землетрясений // Сейсмологический бюллетень Западной территориальной зоны ЕССН СССР (Крым-Карпаты) за 1983 г. – Киев: Наукова думка, 1986. – С. 94–103.
- Горбунова И.В., Бойчук А.Н., Доцев Н.И., Кальметьева З.А., Капитанова С.А., Кучай О.А., Михайлова Н.Н., Пустовитенко Б.Г., Симбирёва И.Г., Товмасян А.К. Интерпретация очаговых волн на записях землетрясений. – М.: Наука, 1992. – 130 с.
- 16. Горбунова И.В., Пустовитенко Б.Г. Новая методология изучения сложного сейсмического разрывообразования // Геофизический журнал. 1997. 19. № 3. С. 42–47.
- 17. Пустовитенко Б.Г., Пустовитенко А.А., Капитанова С.А. Экспериментальные данные о процессах в очагах черноморских землетрясений // Сейсмологический бюллетень Украины за 2005 год. – Севастополь: НПЦ «ЭКОСИ-Гидрофизика», 2007. – С. 152–163.
- 18. **Пустовитенко Б.Г., Пантелеева Т.А.** Спектральные и очаговые параметры землетрясений Крыма. Киев: Наукова думка, 1990. 251 с.
- 19. Brune I.V. Tectonic stress and the spectra of seismic shear waves from earthquakes // J. Geophys. Res.-1970. - 75. - N 26. - P. 4997-5009.
- 20. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология. –1989.– № 2. С. 66–79.
- 21. Костров Б. Механика очага тектонического землетрясения. М.: Наука, 1975. 179 с.
- 22. Hanks T.C., Kanamori H. A Moment Magnitude Scale // J. Geophys. Res. 1979. 84. N 135. P. 2348–2350.
- 23. Пустовитенко Б.Г., Калинюк И.В., Мержей Е.А., Пустовитенко А.А. Очаговые параметры землетрясений Крыма 2011 года // Сейсмологический бюллетень Украины за 2011 год – Севастополь: НПЦ « ЭКОСИ-Гидрофизика», 2012. – С. 17–35
- 24. Пустовитенко Б.Г., Пустовитенко А.А., Капитанова С.А., Поречнова Е.И. Пространственные особенности очаговых параметров землетрясений Крыма // Сейсмичность Северной Евразии. Материалы Международной конференции. Обнинск: ГС РАН, 2008. С. 238–242.