<u>II. СПЕКТРЫ И ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ</u>

УДК 550.348. (100)

ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ Л.С. Чепкунас, Л.С. Малянова

ФИЦ ЕГС РАН, г. Обнинск, luba@gsras.ru

Очаговые параметры рассчитаны по спектрам продольных волн, зарегистрированных на станциях «Обнинск»-OBN и «Талая»-TLY, координаты которых даны в табл. 1.

Таблица 1. Станции и их координаты

N⁰	Название станции	Код		Источник		
			φ°, N	λ°, Ε	h, м	
1	Обнинск	OBN	55.114	36.569	130	[1]
2	Талая	TLY	51.681	103.644	579	[2]

Спектры построены для 13 землетрясений Земли (рис. 1) с MS=5.9-8.4 из [3]. Их параметры приведены в табл. 2. Наибольший интерес представляет разрушительное землетрясение № 3 с магнитудой по разным оценкам M=8.8-9.0, повлекшее за собой человеческие жертвы и разрушения. Землетрясение вызвало сильное цунами высотой свыше 10 *м*. Гигантская волна накрыла поля и дороги, разрушила многочисленные здания и сооружения, выбросила на берег корабли. Число погибших и пропавших без вести в результате землетрясения и цунами превышает 25 тысяч человек [4].

Все землетрясения расположены в основном в восточной части земного шара на расстоянии $\Delta < 100^{\circ}$ с очагами в земной коре.

N₂	Дата,	t ₀ ,		Гипоцентр		MS	Район
	д м	ч мин с	φ°	λ°	һ, км		
1	2	3	4	5	6	7	8
1	20.02	21 43 24.4	55.851	162.270	51	6.0	Восточное побережье Камчатки
2	09.03	02 45 18.7	38.563	142.888	31	7.6	Восточное побережье Хонсю, Япония
3	11.03	05 46 22.4	38.334	142.514	27	8.4	Восточное побережье Хонсю, Япония
4	24.03	13 55 14.5	20.650	99.937	12	7.1	Мьянма
5	07.04	14 32 42.5	38.293	141.708	49	7.3	Восточное побережье Хонсю, Япония
6	22.06	21 50 49.9	40.036	142.351	24	6.9	Восточное побережье Хонсю, Япония
7	24.06	03 09 37.8	52.098	-171.784	52	7.0	Лисьи острова, Алеуты
8	10.07	00 57 09.7	38.005	143.325	27	7.2	У восточного побережья Хонсю, Япония
9	19.07	19 35 40.8	39.979	71.406	15	6.2	Таджикистан
10	02.09	10 55 52.9	52.239	-171.704	43	6.8	Лисьи острова, Алеуты
11	14.10	06 10 12.7	54.061	123.753	16	5.9	Юго-Восточная Сибирь, Россия
12	23.10	10 41 20.3	38.655	43.435	10f	7.3	Турция
13	27.12	15 21 54.9	51.791	95.869	9	6.6	Юго-Западная Сибирь, Россия

Таблица 2. Параметры землетрясений 2011 г., для которых построены спектры

Примечание. В графе 6 знаком «f» отмечена фиксированная глубина; названия районов даны по [5].

Рис. 1. Карта эпицентров землетрясений с рассчитанными спектрами за 2011 г.

Таблица 3. Характеристики спектров *P*-волн и динамические параметры очагов землетрясений по записям STS-1 на станциях «Обнинск», «Талая» за 2011 г.

№	Дата, д м	t ₀ , ч мин с	С/ст	MS	Δ°	$\Omega_0,$ $10^{-4} M \cdot C$	$\int_{10^{-2}}^{f_{\rm n},} \Gamma_{\rm u}$	f ₀ , 10 ⁻² Гц	<i>М</i> ₀ , 10 ¹⁹ <i>Н</i> ∙м	Mw	L, $10^3 M$	Δσ, 10 ⁵ Πa	$\frac{1}{\eta}\sigma$, $10^5\Pi a$	_ и, м
1	20.02	21 43 24.4	OBN	6.0	60.87	0.03	11.2	46.8	0.12	6.0	10	42	16	0.58
2	09.03	02 45 18.7	OBN	7.5	67.57	3.80	4.5	9.1	16.0	7.4	54	36	30	2.33
3	11.03	05 46 22.4	OBN	8.4	67.58	91.2	3.3	3.8	390.0	8.4	130	62	19	9.80
4	24.03	13 55 14.5	TLY	7.1	31.11	0.7	5.8	12.6	2.0	6.8	40	11	42	0.53
5	07.04	14 32 42.5	OBN	7.3	67.23	1.3	4.8	20.0	5.4	7.1	24	137	31	3.98
6	22.06	21 50 49.9	OBN	6.9	66.14	1.0	2.7	11.2	4.0	7.0	44	16	11	0.88
7	24.06	03 09 37.8	OBN	7.0	70.59	2.0	7.6	18.2	16.0	7.4	32	171	4	6.63
8	10.07	00 57 09.7	OBN	7.2	68.22	0.6	4.4	25.1	2.4	6.9	20	105	50	2.55
9	19.07	19 35 40.8	OBN	6.2	27.61	0.1	10.0		0.2	6.2				
10	02.09	10 55 52.9	OBN	6.8	70.47	0.9	2.1	14.4	3.9	7.0	34	35	150	1.43
11	14.10	06 10 12.7	OBN	5.9	47.33	0.03	4.3	24.0	0.14	6.1	20	6	0.3	0.15
12	23.10	10 41 20.3	TLY	7.3	43.20	4.5	7.9	13.8	9.6	7.3	36	72	18	3.14
13	27.12	15 21 54.9	OBN	6.6	34.55	0.2	4.8	33.9	0.9	6.6	14	115	17	1.95

На обеих станциях использовались записи вертикального канала цифрового широкополосного сейсмометра STS-1. Анализируемый интервал выбирался от вступления продольной волны *P* до вступления отраженной волны *PP*. В качестве примера на рис. 2 приведены записи *P*-волн для пяти землетрясений, зарегистрированных на станциях «Обнинск» и «Талая».

Рис. 2. Сейсмограммы продольных волн за 2011 г. на станции «Обнинск» для землетрясений № 1 (20 февраля в 21^h43^m с *MS*=6.0, Δ=60.87°); № 2 (9 марта в 02^h45^m с *MS*=7.6, Δ=67.57°); № 3 (11 марта в 05^h46^m с *MS*=8.4, Δ=67.58°); на станции «Талая» для землетрясений № 4 (24 марта в 13^h55^m с *MS*=7.1, Δ=31.11°); № 12 (23 октября в 10^h41^m с *MS*=7.3, Δ=43.20°).

Амплитудные спектры, приведенные на рис. 3, рассчитаны по программе «Signal processing and analysis tools» [6]. Это интерактивная программа общего назначения, снабженная модулями спектрального анализа, позволяющая выделять, рассчитывать и анализировать спектральные данные сигналов. Аппроксимация спектров и расчет очаговых параметров проводился по [7–9]. Рассматривались записи на расстояниях менее 90°. Станционные спектры исправлялись за влияние амплитудно-частотной характеристики аппаратуры и приводились к очагу с учетом неупругого затухания m(f), частотной характеристики земной коры под

станцией c(f), геометрического расхождения $G(\Delta)$ фронта *P*-волн, направленности излучения из очага $R_{\theta\varphi}$. Первые два фактора m(f) и c(f) зависят от частоты, они приводят к изменению всей спектральной картины.

Рис. 3. Спектры Р-волн землетрясений 2011 г. из табл. 1

В настоящей работе величина поправки за направленность излучения из очага $R_{\theta\phi}$ принималась средней и равной 0.4 для всех землетрясений. В таблице в спектры TLY (№ 4) была введена поправка за кору, которая дала возможность нанести прямую на короткопериодную часть спектра и посчитать другие динамические параметры, а в каталоге [3] она не учитывалась, принимали поправку равной 2, поэтому значения сейсмических моментов M_0 в [3] и табл. 3 различаются, а именно: было $1.7 \cdot 10^{19}$ *H*·*м* для № 4 и $350 \cdot 10^{19}$ *H*·*м* – для № 3.

Спектральные и очаговые параметры для всех 13 землетрясений даны в табл. 3. Определены следующие спектральные характеристики: уровень Ω_0 длиннопериодной ветви спектра, частота f_{π} точки перелома спектра, частота угловой точки f_0 , точка пересечения двух прямых, описывающих спектр длиннопериодной и короткопериодной частей спектра. На их основе вычислялись динамические параметры: сейсмический момент M_0 , сброшенное $\Delta \sigma$ и кажущееся $\eta \sigma$ напряжения, а также длина L разрыва и подвижка \bar{u} в очагах по методике [7–9]. Для получения значений $L, \bar{u}, \Delta \sigma$ использовалась дислокационная модель Брюна [10], которая нашла широкое применение в сейсмологической практике.

На основе значений M_0 вычислена моментная магнитуда Mw. Расчет Mw выполнен по формуле Х. Канамори [11]:

$$Mw = \frac{2}{3}(\lg M_0 + 7) - 10.7.$$

Литература

- 1. Габсатарова И.П., Голубева И.В., Дягилев Р.А., Карпинский В.В., Мехрюшев Д.Ю., Надёжка Л.И., Петров С.И., Пивоваров С.П., Пойгина С.Г., Санина И.А., Французова В.И. Сведения о станциях на Восточно-европейской платформе и Урале // Землетрясения в России в 2011 году. Обнинск: ГС РАН, 2013. С. 22–24.
- Гилёва Н.А., Кобелева Е.А., Масальский О.К. (отв. сост.). Сейсмические станции Байкальского филиала ФИЦ ЕГС РАН (код сети ВҮКL) в 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- Болдырева Н.В. (отв. сост.), Аторина М.А., Бабкина В.Ф., Дуленцова Л.Г., Лёвкина А.В., Малянова Л.С., Рыжикова М.И., Щербакова А.И. (сост.). Каталог землетрясений Земли за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 4. Рогожин Е.А. Землетрясение Тохоку 11.03.2011 (М=9.0) в Японии: Тектоническая позиция очага, макросейсмические, сейсмологические и геодинамические проявления // Геотектоника. 2011. № 5. С. 3–16.
- Young J.B., Presgrave B.W., Aichele H., Wiens D.A. and Flinn E.A. The Flinn-Engdahl Regionalisation Scheme: the 1995 revision // Physics of the Earth and Planetary Interiors. – 1996. – 96. – P. 223–297.
- Golstein P., Dodge D., Firpoand M. and Lee M. SAC2000: Signal processing and analysis tools for seismologists and engineers // Invited contribution to «The IASPEI International Handbook of Earthquake and Engineering Seismology» / Ed. by W.H.K. Lee, H. Kanamori, P.C. Jennings and C. Kisslinger. – London: Academic Press, 2003.
- 7. Захарова А.И., Чепкунас Л.С. Динамические параметры очагов сильных землетрясений по спектрам продольных волн на станции «Обнинск» // Физика Земли. 1977. № 2. С. 9–17.
- 8. Аптекман Ж.Я., Дараган С.К., Долгополов Д.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – № 2. – С. 60–70.
- 9. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология 1989. № 2. С. 66–79.
- Brune I.N. Tectonic stress and the spectrum of seismic shear waves from earthquake // J. Geophys. Res. 1970. – 75. – N 26. – P. 4997–5009.
- Hanks T.C., Kanamori H. A Moment Magnitude Scale // J. Geophys. Res. 1979. 84. N 135. P. 2348–2350.