УІ. СЕЙСМИЧЕСКИЙ МОНИТОРИНГ ВУЛКАНОВ

УДК 550.348.(517.66)

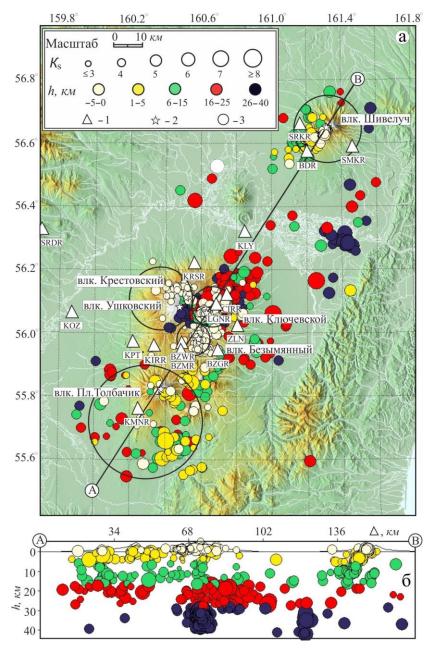
ВУЛКАНЫ КАМЧАТКИ

С.Л. Сенюков, И.Н. Нуждина

Камчатский филиал ФИЦ ЕГС РАН, г. Петропавловск-Камчатский, ssl@emsd.ru

В 2011 г. был продолжен мониторинг активных вулканов Камчатки. Положение активных вулканов, описание различных видов наблюдений, с помощью которых проводился мониторинг, его цели и задачи представлены в работе [1]. Для сейсмического мониторинга вулканов использовались станции радиотелеметрической сети (РТСС) Камчатского филиала Геофизической службы (КФ ГС) РАН [2–5], позволяющие проводить детальные наблюдения для Северной (влк. Шивелуч, Ключевской, Безымянный, Плоский Толбачик, Ушковский и Крестовский), Авачинской (влк. Авачинский и Корякский), Мутновско-Гореловской (влк. Горелый и Мутновский) групп вулканов и влк. Кизимен в режиме, близком к реальному времени.

К вулканическим землетрясениям принято относить события, происходящие в земной коре вблизи вулканов в диапазоне глубин от $h=-5~\kappa m$ до $h=40~\kappa m$. В 2011 г. для расчета параметров вулканических землетрясений применялась программа «DIMAS» [6] с возможностью поиска решений положений гипоцентров землетрясений выше уровня моря, т.е. отрицательных глубин. Для Северной и Авачинской групп вулканов использовались локальные годографы [1], для Мутновско-Гореловской группы и вулкана Кизимен при расчете положений гипоцентров использовалась одномерная скоростная модель Камчатского региона [7].


Ниже приведены данные о сейсмической активности Северной, Авачинской, Мутновско-Гореловской групп вулканов и отдельно влк. Кизимен. Анализируются сейсмические события из районов, ограниченных для Северной группы вулканов координатами ϕ =55.52–56.80°N, λ =159.82–161.60°E; Авачинской группы — ϕ =53.10–53.40°N, λ =158.50–159.00°E; Мутновско-Гореловской группы — ϕ =52.30–52.70°N, λ =157.70–158.40°E; района влк. Кизимен — ϕ =54.90–55.54°N, λ =159.82–160.80°E. Все события сгруппированы в четыре каталога [8–11], включающих 6396 землетрясений по Северной группе [8], 420 — по Авачинской [9], 18 — по Мутновско-Гореловской [10] и 41452 — по влк. Кизимен [11]. В соответствии с принятой системой разделения каждому землетрясению в каталогах [8–11] присвоено название соответствующего вулкана, если оно произошло в пределах установленного радиуса выборки для этого вулкана. Если событие локализовано в соответствующем районе, но вне радиусов выборок для вулканов, то событию присваивалось название вулканического района и ниже по тексту статьи в соответствующих таблицах оно обозначалось «вне вулканов».

Северная группа вулканов. Каталог землетрясений Северной группы вулканов за 2011 г. [8] содержит 6396 землетрясений I–III типов [12]. Распределение землетрясений по вулканам и по энергетическим классам [13] представлено в табл. 1. Карта эпицентров землетрясений и условные зоны сейсмичности рассматриваемых вулканов показаны на рис. 1.

Из анализа табл. 1 следует, что в 2011 г. суммарное число землетрясений, локализованных в районе Северной группы вулканов, составило N_{Σ} =6396, суммарная энергия – ΣE =12.07·10⁸ \mathcal{J} ж (табл. 1), тогда как в 2010 г. было N_{Σ} =7013, ΣE =11.382·10⁸ \mathcal{J} ж [14], т.е. число землетрясений немного уменьшилось, а энергии, наоборот, выделилось больше. Увеличение количества высвобожденной сейсмической энергии произошло за счет увеличения числа землетрясений с K_{Σ} =8, произошедших на влк. Ключевской и Плоский Толбачик.

Таблица 1. Распределение числа землетрясений по энергетическим классам K_S и суммарная сейсмическая энергия землетрясений в районе Северной группы вулканов в 2011 г.

Название	$R_{30{ m Hb}}$,				N_{Σ}	ΣE ,				
вулкана	км	2	3	4	5	6	7	8		10 ⁸ Дж
Безымянный	6	2	63	83	5				153	0.014
Ключевской	7		1	2340	3162	82		1	5586	6.529
Плоский Толбачик	20			30	34	12	2	1	79	0.455
Шивелуч	12			143	122	35	3		303	0.648
Крестовский и Ушковский	10		2	34	8				44	0.016
Вне вулканов			1	76	117	25	10	2	231	4.408
Всего		2	67	2706	3448	154	15	4	6396	12.07

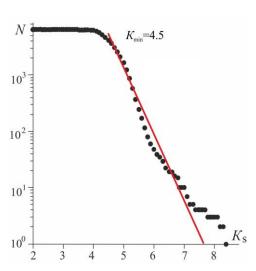
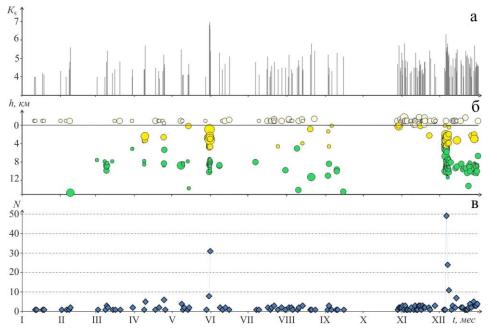


Рис. 1. Карта эпицентров (а) землетрясений Северной группы вулканов за 2011 г. и проекция гипоцентров (б) на вертикальную плоскость, проходящую по линии A–B

1 — сейсмическая станция; 2 — активный вулкан; 3 — окружность, оконтуривающая область выборки землетрясений, принадлежащих вулкану. Радиусы областей для разных вулканов равны: Шивелуч — $12~\kappa M$, Ключевской — $7~\kappa M$, Крестовский и Ушковский — $10.1~\kappa M$, Безымянный — $6~\kappa M$, Плоский Толбачик — $20~\kappa M$.

Самой сейсмически активной зоной в 2011 г. был влк. Ключевской. Здесь произошло 83.3 % землетрясений от общего числа событий, вошедших в каталог, а их суммарная сейсмическая энергия составила 54.1 % от всей высвобожденной энергии района Северной группы вулканов (табл. 1). На протяжении нескольких лет (2007–2010 гг.) наиболее активной по числу землетрясений была зона влк. Шивелуч. В эти годы доля событий, произошедших на данном вулкане, составляла от 69.8 % в 2008 г. до 86.8 % в 2010 г. от суммарного числа локализованных землетрясений в исследуемом районе [14–17], тогда как в 2011 г. эта доля составила всего лишь 4.7 % (табл. 1).


Уровень надежной регистрации для землетрясений Северной группы вулканов определен по графику повторяемости (рис. 2). Для построения графика и определения угла его наклона использовался пакет программ ZMAP [18]. Из графика следует, что в 2011 г. представительными для района Северной группы вулканов являются землетрясения с K_{min} =4.5. Надо отметить, что уровень K_{min} меняется в зависимости от событий, происходящих на вулканах. Например, при регистрации сильного непрерывного вулканического дрожания обрабатывать слабые землетрясения невозможно, и в таких случаях значение K_{\min} повышается. Так в 2010 г. из-за сильного непрерывного вулканического дрожания, сопровождавшего мощное извержение влк. Ключевской, представительный класс составил K_{min} =5.1 [14]. Наклон графика повторяемости в 2011 г. получился равным у=1.18±0.07. Среднее значение угла наклона, определенное по данным за 2000-2010 гг., составило у=1.28 [14, 15]. Землетрясение с максимальным классом K_S =8.4 произошло 22 февраля в $00^h 37^m$ на глубине $h=15.4 \ \kappa M$ под постройкой влк. Ключевской [8].

Puc. 2. График повторяемости землетрясений Северной группы вулканов в 2011 г.

Ниже приводится описание активности шести вулканов Северной группы по инструментальным и визуальным наблюдениям.

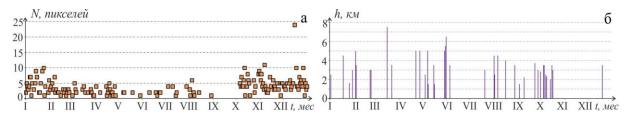
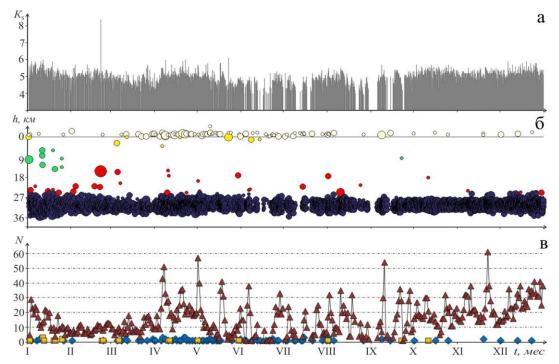

Вулкан Шивелуч. Конфигурация сети сейсмических станций (рис. 1 а) позволяет регистрировать без пропусков землетрясения из района влк. Шивелуч, начиная со значения K_{min} =4.0 [19].

Рис. 3. Изменение во времени энергетического класса $K_{\rm S}$ (а), глубины гипоцентров h (б) и количества N (в) вулканических землетрясений, произошедших в радиусе 12 κm от влк. Шивелуч в 2011 г.

В 2011 г. наблюдалось снижение сейсмической активности влк. Шивелуч (табл. 1). Число землетрясений с $K_{\rm S}$ =3.7–7.0, локализованных в радиусе 12 κm и диапазоне глубин h= -1.7–15 κm (рис. 3 а, б), а также высвобожденная ими энергия по сравнению с таковыми в 2010 г. (N=6085, ΣE =8.312·10⁸ $\mathcal{J}_{\mathcal{H}}$ [14]) уменьшились соответственно в 20 и 12.8 раз. Представительный класс, рассчитанный по программе ZMAP, оказался ниже, чем в 2010 г. ($K_{\rm min}$ =5.1) и составил $K_{\rm min}$ =4.0. Наклон графика повторяемости γ =0.64±0.06 стал более пологим по сравнению с таковым в 2010 г. (γ =1.7) [14]. Землетрясение с максимальным классом $K_{\rm S}$ =7.0 произошло 31 мая в 03 $^{\rm h}$ 14 $^{\rm m}$ на глубине h=0.9 κm под постройкой вулкана [8]. В течение года было зарегистрировано два всплеска сейсмической активности: 30–31 мая (N=39) и 6–8 декабря (N=84) (рис. 3 в) [8]. Надо отметить, что в сентябре—октябре станция «BDR» (рис. 1) не работала, поэтому локализовать землетрясения из района влк. Шивелуч в этот период было невозможно.

В исследуемый период продолжалось извержение влк. Шивелуч, начавшееся еще в декабре $2006\ \Gamma$.

Рис. 4. Изменение во времени размера термальной аномалии на влк. Шивелуч по данным спутников NOAA16 и NOAA17 (а); высота газо-пепловых выбросов над уровнем моря по видеоданным и визуальным наблюдениям сотрудников сейсмической станции «Ключи» (б)


По-прежнему в течение всего года на спутниковых снимках регистрировалась термальная аномалия (рис. 4 а), свидетельствующая о присутствии на поверхности горячего материала. Выход на поверхность магматического материала из-за резкого сброса давления вызывал новые извержения, которые сопровождались пепловыми выбросами и сходом пирокластических потоков (рис. 4 б). По видеоданным газо-пепловый выброс с максимальной высотой 10 км над уровнем моря был зафиксирован 16 марта.

При плохих погодных условиях или в темное время суток оценка высоты возможной эксплозии проводилась по сейсмическим данным по методике [20]. В 2011 г. «оранжевый» код опасности присваивался вулкану в течение 68 дней, когда высота пепловой эмиссии превышала 1 км над куполом, но была меньше 8 км над уровнем моря (http://www.emsd.ru/~ssl/monitoring/main.htm). «Красный» код опасности объявлялся 12 раз: 27 февраля; 30 мая; 5, 15 и 19 июня; 23 августа; 11 сентября; 3, 4, 14, 17 и 21 октября. В эти дни расчетная высота пепловых выбросов могла превышать 8 км над уровнем моря. Эксплозии 30 мая и 5 июня были зафиксированы и подтверждены видео- и спутниковыми наблюдениями. Остальные 10 были скрыты облачностью или темным временем суток. Спутниковые данные подтвердили еще три эксплозивных извержения из последних 10: 27 февраля, 3 и 4 октября. Следует отметить, что одним из обязательных условий обнаружения пепловых облаков по спутниковым наблюдениям является превышение высоты пепловых облаков над метеорологическими, поэтому остается предположить, что в остальных семи случаях высота пепла не превышала высоты облачности. 21 октября в $15^{\rm h}26^{\rm m}$ было зарегистрировано поверхностное сейсмическое событие, возможно сопровождавшее самый сильный в 2011 г. пепловый выброс до 10.6 км над уровнем моря.

Вулкан Ключевской. Существующая сеть станций (рис. 1) позволяет локализовать при благоприятных условиях землетрясения, начиная с $K_{\rm S}{\ge}4.0$ [19]. Ближайшая телеметрическая станция «Логинов» расположена в 4 км от кратера, может регистрировать в районе кратера землетрясения с $K_{\rm S}{\ge}2.2$. В 2011 г. в радиусе 7 км от влк. Ключевской и диапазоне глубин $h{=}-4.5{-}35.5$ км было локализовано 5586 землетрясений (табл. 1), это в 7.4 раза больше, чем в 2010 г. ($N{=}755$, $\Sigma E{=}0.84{\cdot}10^8$ Дж [14]). Высвобожденная в очагах землетрясений энергия превышает таковую в 2010 г. в 7.8 раза (табл. 1). Карта эпицентров и проекция гипоцентров на вертикальный разрез представлены на рис. 1, а графики изменения во времени параметров сейсмической активности вулкана — на рис. 5. Характер сейсмичности Ключевского вулкана связан с притоком мантийных магм в промежуточный магматический очаг на глубинах $h{=}20{-}35$ км

и дальнейшим их подъемом в постройку вулкана при вершинном извержении [21–23]. Поэтому все землетрясения в 2011 г., как и в предыдущие годы, были разделены по трем слоям: поверхностные ($I \rightarrow : -5.0 \le h \le 5.0 \text{ км}$), промежуточные ($II \rightarrow 5.0 < h \le 20.0 \text{ км}$) и глубокие ($III \rightarrow 20 < h < 40.0 \text{ км}$) [14, 22].

График распределения глубины очагов землетрясений во времени (рис. 5 б) наглядно демонстрирует высокую сейсмическую активность в нижнем слое (III). Здесь генерируются глубокие длиннопериодные землетрясения, в образовании которых активную роль играет магматический расплав [24]. В 2011 г. в нижнем горизонте было локализовано 5461 землетрясение с K_S =3.9-6.0. В слоях I и II происходят, главным образом, вулкано-тектонические землетрясения, возникающие в твердой среде в результате хрупкого разрушения пород под действием сдвиговых и растягивающих напряжений, создаваемых активными магматическими процессами [21]. В слое (I) было локализовано 106 землетрясений с K_S =3.5-5.5.



Рис. 5. Изменение во времени энергетического класса K_S (а); глубины гипоцентров h вулканических землетрясений (б); ежесуточного числа поверхностных (ромб), промежуточных (квадрат) и глубоких (треугольник) землетрясений (в), произошедших в радиусе 7 κm от влк. Ключевской в 2011 г.

С помощью пакета программ ZMAP [18] были определены значения K_{\min} и угол наклона графика повторяемости для землетрясений в каждом слое. Для поверхностного слоя представительный класс получился равным K_{\min} =4.0 при угле наклона γ =0.73±0.04, т.е., по сравнению с 2010 г. при значениях K_{\min} =4.9, γ =1.78, когда во время мощного извержения влк. Ключевской с излиянием нескольких лавовых потоков регистрировалось сильное вулканическое дрожание и все землетрясения были связаны с магматическими процессами в постройке вулкана, в 2011 г. K_{\min} понизился практически на класс, а наклон графика стал пологим. Для глубоких землетрясений с h=20–40 κ m представительный класс в 2011 г. оказался равным K_{\min} =4.5 при угле наклона γ =1.30±0.08. Эти значения близки к таковым в 2010 г. (K_{\min} =4.6, γ =1.46). Среднее значение угла наклона, определенное по данным за 2000–2010 гг., составило γ =1.28 [14–17, 19]. В промежуточном слое (II) было локализовано всего 19 землетрясений с $K_{\rm S}$ =4.0–8.4 [8]. Для определения параметров K_{\min} и γ такого количества событий недостаточно.

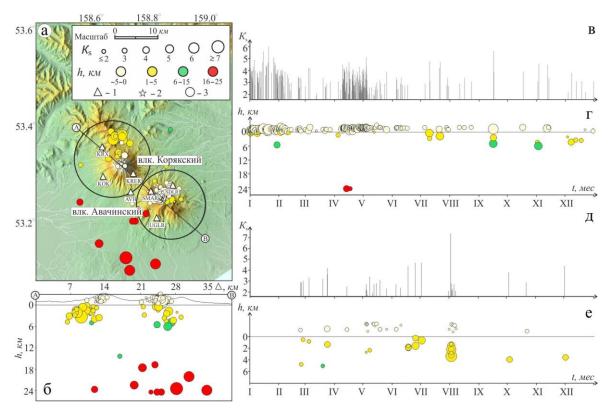
В течение 2011 г. на влк. Ключевской «желтый» код опасности был выставлен 139 раз. Из них семь дней только по спутниковым данным, когда на вулкане наблюдалась термальная аномалия, и остальные — из-за повышенной сейсмичности. В эти дни было зарегистрировано более 100 сейсмических событий IV типа [12], у которых невозможно уверенно выделить объемные волны, и локализовано 50 более глубоких землетрясений (рис. 5 в). Вулканическая активность в 2011 г. на влк. Ключевском проявлялась только в виде фумарольной деятельности.

Вулкан Безымянный. Ближайшая телеметрическая станция «Безымянный» (BZMR), расположенная в 7 км от растущего купола, позволяет регистрировать землетрясения с $K_{\rm S}{\ge}2.9$. 13 апреля 2011 г. на влк. Безымянный было зарегистрировано эксплозивное извержение. По сейсмическим данным извержение началось в $20^{\rm h}20^{\rm m}$ и продолжалось до $21^{\rm h}00^{\rm m}$, в этот период на станции «Зелёная» (ZLN) регистрировалось сейсмическое событие, амплитуда скорости которого достигала $A/T_{\rm max}{=}27.8$ мкм/с. К сожалению, вулкан был закрыт облачностью, но по данным мировой сети локации молний (World Wide Lightning Location Network) (http://wwlln.net/) вблизи влк. Безымянный в $20^{\rm h}34^{\rm m}$ регистрировались многочисленные вспышки молний. Также, по словам очевидцев, в районе пос. Красный Яр, расположенного в \sim 45 км на север—северо-запад от вулкана, наблюдался сильный пеплопад.

Рис. 6. Изменение во времени энергетического класса K_S (а); глубины гипоцентров h вулканических землетрясений (б); ежесуточного числа поверхностных землетрясений IV типа (в), произошедших в радиусе 6 км от влк. Безымянный в 2011 г. (стрелкой указано время эксплозивного извержения)

В 2011 г. в радиусе 6 κm от вулкана и диапазоне глубин h= -1.2–12.4 κm было локализовано 153 землетрясения с K_S =2.5–5.5 (табл. 1, рис. 6 б, в) [8]. Представительный класс для этих событий получился равным K_{min} =3.6 при угле наклона γ = 1.24 ± 0.04 . По сравнению с параметрами (N=124, K_{min} =3.7) в 2009 г., угол наклона графика повторяемости (γ =0.68 [15]) стал круче в два раза. Землетрясение с максимальным классом K_S =5.5 произошло 1 декабря в 16^h 5 7^m в постройке вулкана (h=-1.2 κm).

В течение 2011 г. на влк. Безымянный «желтый» код опасности выставлялся 45 раз. Из них девять — только по спутниковым данным, когда наблюдалась термальная аномалия. В остальных 36 случаях тревога объявлялась по сейсмическим данным, когда было локализовано хотя бы одно землетрясение с $K_S \ge 4.0$ или более 10 событий с $K_S \ge 3.3$ в диапазоне глубин h = -3.0 - 5.0 км. Дни, когда число зарегистрированных поверхностных событий IV типа превышало $N \ge 5$, также считались днями с превышением «фонового» уровня сейсмичности. Рост количества землетрясений IV типа, связанных с взрывами в кратере и сходом раскаленных лавин, является прогностическим признаком готовящегося извержения вулкана. Краткосрочный прогноз по данному предвестнику был передан в КФ РЭС 7 апреля [23]. Эксплозивное извержение произошло 13 апреля («красный» код), и прогноз полностью оправдался.


Вулкан Плоский Толбачик. Ближайшая телеметрическая станция «Каменистая» (KMNR) расположена в 10 км от кратера вулкана и регистрирует землетрясения с $K_S \ge 3.3$. В 2011 г. в радиусе 20 км от вулкана было локализовано 79 землетрясений с $K_S = 3.6 - 7.7$ (табл. 1) в диапазоне глубин h = -1.8 - 23.7 км [8]. Уровень K_{\min} , рассчитанный по программе ZMAP, соответствует классу $K_{\min} = 4.4$, угол наклона графика повторяемости – $\gamma = 0.55 \pm 0.03$. Наклон графика практически не меняется на протяжении многих лет и близок к значению для регио-

нальных тектонических землетрясений (γ =0.5) [25]. Событие с максимальным классом K_S =7.7 произошло 6 октября в 17^h57^m на глубине h=1.3 км. На рис. 1 представлена карта эпицентров и проекция гипоцентров на вертикальный разрез. На протяжении 2011 г. в районе влк. Плоский Толбачик наблюдалась «обычная, фоновая» сейсмичность.

Вулканы Ушковский и Крестовский. Сеть сейсмических станций позволяет локализовать землетрясения с занесением в каталог, начиная с K_{\min} =4.0. Ближайшие телеметрические станции «Крестовский» (KRSR) и «Логинов» (LGNR) расположены в 12 км от вершины влк. Крестовский и регистрируют землетрясения с $K_{\rm S} \ge 3.5$. В 2011 г. в пределах окружности радиусом R=10.1 км, включающей оба вулкана (рис. 1), было локализовано 44 землетрясения с $K_{\rm S}$ =3.4–5.4 в диапазоне глубин h= –2.9–33.4 км [8]. Представительный класс землетрясений, рассчитанный по программе ZMAP, равен $K_{\rm min}$ =4.0 при угле наклона графика повторяемости γ =0.75±0.04. Карта эпицентров и проекция гипоцентров на вертикальный разрез представлены на рис. 1. В 2011 г. никаких проявлений вулканической активности не отмечено.

Авачинская группа вулканов. В Авачинскую группу вулканов входят два действующих вулкана: Авачинский и Корякский. Из всех вулканов они представляют наибольшую потенциальную опасность, т.к. расположены в 30 км от наиболее густонаселенных городов Камчатки – Петропавловска-Камчатского и Елизово.

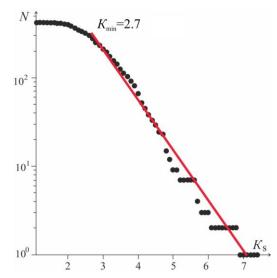
Координаты гипоцентров для Корякского и Авачинского вулканов рассчитывались по программе «DIMAS» [6] с использованием одномерной скоростной модели среды для влк. Авачинский [1]. Для сейсмических событий, расположенных вне этих вулканов приблизительно по изолинии 400 м, использовался в расчетах обычный региональный годограф [7]. Карта эпицентров и проекция гипоцентров на вертикальный разрез представлены на рис. 7.

Рис. 7. Карта эпицентров землетрясений Авачинской группы вулканов в 2011 г. (а) и проекция гипоцентров на вертикальный разрез по линии А–В (б), а также изменение во времени параметров вулканических землетрясений Авачинского (в, г) и Корякского (д, е) вулканов в 2011 г.

1 — сейсмическая станция; 2 — активный вулкан; 3 — окружность, оконтуривающая область выборки землетрясений вокруг Авачинского (R=8 κm) и Корякского вулканов (R=9 κm).

В 2011 г. в районе Авачинской группы вулканов было локализовано 420 землетрясений с K_S =1.6–7.4 [9], суммарная энергия которых ΣE =3.748·10⁷ Дж (табл. 2). Это чуть меньше аналогичных значений в 2010 г. (N=480, ΣE =4.113·10⁷ Дж) [14]. По сравнению со значениями

параметров (N=1920, $\Sigma E=40.43\cdot 10^7$ Джс) в 2009 г., когда на влк. Корякский наблюдалась высокая сейсмическая активность, аналогичные значения в 2011 г. ниже \sim в 4.6 и 10.8 раза соответственно [15]. В 2011 г. землетрясение с максимальным классом $K_S=7.4$ произошло 2 августа в $14^h 15^m$ на глубине h=3.4 км под постройкой Корякского вулкана [9]. Карта эпицентров и проекция гипоцентров на вертикальный разрез представлены на рис. 7.


Таблица 2. Распределение землетрясений Авачинской групп	ы вулканов по энергетическим
классам $K_{\rm S}$ в 2011 г.	

Название вулкана	$R_{30\text{HM}}$,			N_{Σ}	$\sum_{i} E_{i}$				
	км	2	3	4	5	6	7		10′ Дж
Авачинский	8	101	168	76	12	3		360	0.365
Корякский	9	14	19	10	4	1	1	49	2.599
Вне вулканов			3	4	1	2	1	11	0.785
Всего		115	190	90	17	6	2	420	3.748

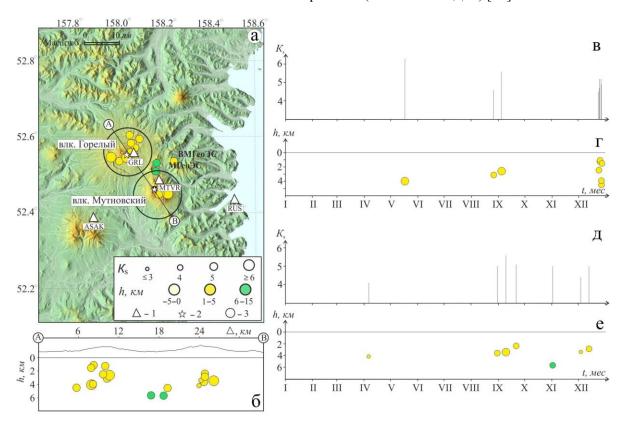
Представительный класс землетрясений Авачинской группы практически не изменился по сравнению с таковым (K_{\min} =2.5) в 2010 г. [14] и составил K_{\min} =2.7 (рис. 8). Угол наклона графика повторяемости практически не меняется последние годы. В 2011 г. он был равен γ =0.58±0.05, а среднее его значение за период 2006–2010 гг. $\gamma_{\rm cp.}$ =0.53 [14–17, 19]. На рис. 7 в–д представлены распределения во времени значений энергетического класса $K_{\rm S}$ и глубины землетрясений для каждого вулкана.

В 2011 г. в радиусе 8 κM от кратера влк. Авачинский и диапазоне глубин h=-3.0– $24.5 \kappa M$ было локализовано 360 землетрясений с $K_{\rm S}$ =1.6–6.0 (рис. 7 в, г). Землетрясение с максимальным классом $K_{\rm S}$ =6.0 произошло в постройке вулкана (h= $-1.1 \kappa M$) 21 января в $00^{\rm h}48^{\rm m}$ [9].

На влк. Корякский в 2011 г. в радиусе 9 км от вершины вулкана и диапазоне глубин h= -2.2–5.1 км было локализовано всего 49 землетрясений с K_S =1.6–7.4 (рис. 7 д, e) [9].

Рис. 8. График повторяемости землетрясений Авачинской группы вулканов за 2011 г.

Сейсмичность вулканов соответствует «фоновой». Вулканическая активность проявлялась только в виде фумарольной деятельности.


Мутновско-Гореловская группа вулканов расположена в 70 км к югу от г. Петропавловск-Камчатский и включает два действующих вулкана — Мутновский и Горелый. В районе этой группы вулканов расположены Мутновская и Верхне-Мутновская геотермальные электростанции.

Координаты гипоцентров для вулканов Мутновский и Горелый в 2011 г. рассчитывались по программе «DIMAS» [6], предусматривающей поиск решений по глубине выше уровня моря. В связи с отсутствием локальных скоростных моделей для этого района при расчете положений гипоцентров применялась одномерная скоростная модель Камчатского региона [7].

Таблица 3. Распределение землетрясений района Мутновско-Гореловской группы вулканов по энергетическим классам K_S в 2011 г.

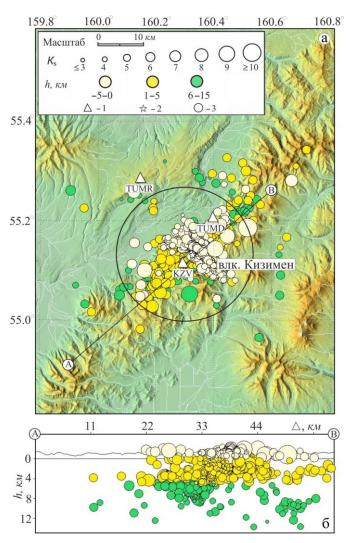
Название вулкана	$R_{30\mathrm{H}\mathrm{M}},$		K_{S}	N_{Σ}	ΣE ,	
	км	4	5	6		10 ⁷ Дж
Горелый	7	1	6	2	9	0.304
Мутновский	7	2	4	1	7	0.086
Вне вулканов			2		2	0.028
Всего	7	3	12	3	18	0.418

Отсутствие данных со станции «Мутновский» MTVR в январе–марте и июне–августе, а также регистрация сильного вулканического дрожания с отношением $A/T_{\rm max}$ до 2.5 мкм/с, источником которого является влк. Горелый, не позволили локализовать землетрясения с энергетическим классом $K_{\rm S}<4.0$. Возможно поэтому в 2011 г. (N=18, $\Sigma E=0.418\cdot10^7$ Джс) (табл. 3) в каталог вошло ~ в 159 раз меньше землетрясений по сравнению с таковым в 2009 г. (N=2858, $\Sigma E=9.18\cdot10^7$ Джс) [10], суммарная энергия которых в 22 раза ниже. По тем же причинам и в 2010 г. было локализовано только 57 землетрясений ($\Sigma E=9.18\cdot10^7$ Джс) [14].

Рис. 9. Карта эпицентров (а) и проекция гипоцентров на вертикальный разрез по линии A–B (б) для землетрясений Мутновско-Гореловской группы, а также изменение во времени энергетического класса K_S (в, д) и глубины гипоцентров h (г, е) вулканических землетрясений, произошедших в радиусе 7 κm от влк. Горелый и Мутновский соответственно

1 – сейсмическая станция; 2 – активный вулкан; 3 – окружность, оконтуривающая область выборки землетрясений вокруг вулканов Горелый и Мутновский.

Землетрясение с максимальным классом K_S =6.3 произошло 17 мая в 06^h35^m на глубине h=4.0 κn под западной частью постройки влк. Горелый [10].


Для построения в 2011 г. графика повторяемости землетрясений района Мутновско-Гореловской группы вулканов данных недостаточно.

Ближайшая к влк. Горелый станция «Горелый» (GRL) расположена в 4 κm от кратера и позволяет регистрировать землетрясения с $K_{\rm S}{\ge}2.2$. В исследуемый период практически вся сейсмичность была сосредоточена в районе влк. Горелый (табл. 3). В радиусе 7 κm от вершины и диапазоне глубин $h{=}1.1{-}4.5$ κm было локализовано 9 землетрясений $K_{\rm S}{=}4.5{-}6.3$ (рис. 9 в, г).

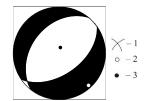
Станция «Мутновская» (MTVR) установлена на расстоянии $\sim 3~\kappa M$ от активного кратера (рис. 9). Минимальный уровень регистрируемой сейсмичности по этой станции соответствует $K_{\rm S}{\ge}2.0$. В 2011 г. в радиусе 7 κM от вулкана было локализовано всего 7 землетрясений с $K_{\rm S}{=}4.1{-}5.6$, диапазон глубин $h{=}{-}1.5{-}8.2~\kappa M$ (рис. 8 д, е). Землетрясение с максимальным классом $K_{\rm S}{=}5.6$ произошло 9 сентября в $17^{\rm h}02^{\rm m}$ под постройкой вулкана ($h{=}3.4~\kappa M$).

Вулкан Кизимен, самый южный из действующих вулканов Центральной Камчатской депрессии, по отношению к другим вулканам Камчатки занимает обособленное положение на западном склоне южной части хребта Тумрок [26].

Ближайшая телеметрическая станция «Кизимен» (KZV) расположена на склоне вулкана \sim в 2.5 км от вершины (рис. 10 а). 18 марта 2011 г. в районе Тумрокских источников, \sim в 9.4 км от влк. Кизимен, была установлена новая станция «Тумрок-источники» (TUMD) (рис. 10 а).

Рис. 10. Карта эпицентров (а) и проекция гипоцентров на вертикальную плоскость по линии А–В (б) для землетрясений района влк. Кизимен

1 — сейсмическая станция; 2 — активный вулкан; 3 — окружность, оконтуривающая область выборки землетрясений вокруг вулкана Кизимен.


При расчете положений гипоцентров землетрясений района влк. Кизимен, так же как и для землетрясений Мутновско-Гореловской группы вулканов, использовались одномерная скоростная модель Камчатского региона [7] и пакет программ «DIMAS» [6], предусматривающий поиск решений по глубине выше уровня моря.

В 2011 г. продолжалось извержение влк. Кизимен, начавшееся в ноябре 2010 г. Наиболее сильное землетрясение, зарегистрированное в процессе подготовки и хода извержения влк. Кизимен в 2009-2011 гг., произошло 27 ноября 2010 г. с *Mw*=5.1 [27]. Оно было зафиксировано мировой сетью сейсмических станций. Для этого землетрясения агентством GCMT был определен механизм очага, параметры которого приведены в табл. 4, а стереограмма - на рис. 11. При горизонтальном растяжении и вертикальном сжатии по наклонным плоскостям разрывов в очаге реализовались сбросовые смещения. Ось растяжения направлена вкрест простирания основных геологических структур хр. Тумрок. Нодальные плоскости простираются с северовостока на юго-запад, что хорошо согласуется с направлением хр. Тумрок и большой оси облака эпицентров землетрясений, сопровождающих извержение (рис. 10). Полученный механизм очага землетрясения 27 ноября 2010 г. позволяет высказать предположение о возможном внедрении магматического материала по разлому югозападного направления с глубины около

 $12~\kappa m$. Здесь следует отметить, что механизм очага главного толчка также хорошо согласуется с результатами исследований деформаций земной поверхности по спутниковым данным. Именно внедрение близвертикальной дайки размером примерно $14\times10~\kappa m$ с глубины $12~\kappa m$ и азимутом простирания AZM= 40° является наилучшим решением при интерпретации интерферограмм со спутников ALOS и ENVISAT [28].

Таблица 4. Параметры механизма очага землетрясения влк. Кизимен 27 ноября 2010 г. с K_S =11.8, Mw=5.1 (ϕ =55.21°, λ =160.46°)

Агент-	Дата,	t_0 ,	h_{Mex} ,	Маг	ниту,	ды	K_{P}	КР Оси гл			вных напряжений				Нодальные плоскости					
ство	д м	ч мин с	км	<i>MPSP</i>	$m_{\rm b}$	Mw	[1]		T		N		P		NP	1		NP2	2	точ-
				[29]	[27]	[27]		PL	AZM	PL	AZM	PL	AZM	STK	DΡ	SLIP	STK	DΡ	SLIP	ник
GCMT	27 12	19 29 35.4	12	5.4	5.2	5.1	11.8	7	137	8	228	79	8	55	52	-80	218	39	-103	[27]

Рис. 11. Стереограмма механизма очага землетрясения влк. Кизимен 27 ноября 2010 г. с K_S =11.8, Mw=5.1 в проекции нижней полусферы

1 – нодальные линии; 2, 3 – оси главных напряжений: растяжения и сжатия соответственно; зачернена область волн сжатия.

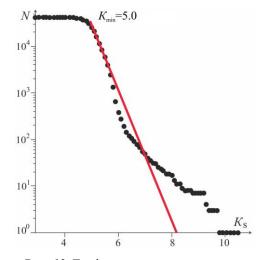
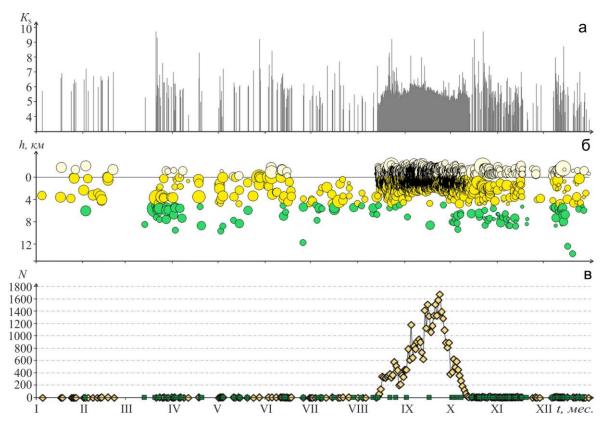
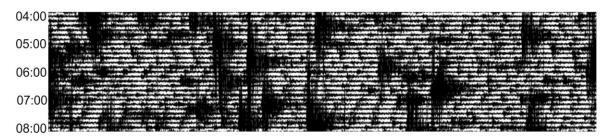

Извержение сопровождалось очень высокой сейсмической активностью. Всего в 2011 г. в районе вулкана в диапазоне глубин h=-2.5- $13.8 \, км$ было локализовано 41452 землетрясения [11], из них 41389 в радиусе 15 κm от вершины вулкана (табл. 5), это \sim в 14.5 раз больше, чем в 2010 г. (N=-2864). Несмотря на такое превышение числа землетрясений, энергии в их очагах высвобождено меньше в 24.9 раза (табл. 5), чем за предыдущий год (ΣE = $14.445\cdot10^{11} \, Дж$), когда выжимание интрузии перед сильнейшим извержением сопровождалось землетрясениями с K_S > $11 \, (N$ = $5) \, [14]$.

Таблица 5. Распределение землетрясений по энергетическим классам $K_{\rm S}$ в 2011 г.

Название	R_{3OHM} ,			N_{Σ}	ΣE ,						
вулкана	км	3	4	5	6	7	8	9	10		10 ¹⁰ Дж
Кизимен	15	3	2683	34833	3783	66	14	5	2	41389	2.618
Вне вулкана			3	26	29	3	1		1	63	3.176
Всего		3	2686	34859	3812	69	15	5		41452	5.794


Представительный класс землетрясений, рассчитанный по программе ZMAP [18], равен K_{\min} =5.0. Улучшение уровня надежной регистрации, по сравнению с таковым в 2009–2010 гг. (K_{\min} =5.7) [14, 15], связано с установкой станции «Тумрок-источники» (TUMD), образовавшей совместно со станциями «Тумрок» (TUMR) и «Кизимен» (KZV) (рис. 10 а) локальную сеть для детального сейсмического мониторинга. Наклон графика повторяемости в 2011 г. стал более крутым (γ =1.39±0.11) (рис. 12) в отличие от предыдущих значений в 2009 (γ =0.54) и 2010 гг. (γ =0.51). Крутизна наклона свидетельствует о сейсмичности, связанной с магматическими процессами [30, 31].

На рис. 13 представлены изменения во времени различных параметров землетрясений, эпицентры которых находятся внутри окружности радиусом $R=15~\kappa M$ от кратера вулкана.



Puc. 12. График повторяемости землетрясений вулкана Кизимен за 2011 г.

Отличительной особенностью сейсмичности в 2011 г. является квазипериодическое появление похожих по форме записи микроземлетрясений с одинаковой амплитудой, связанное с выжиманием вязкой магмы [32]. Временные интервалы появления землетрясений варьируют от десятков минут до десятков дней (рис. 14). Впервые подобная сейсмичность была отмечена 9 декабря 2010 г. за несколько часов до пепловых выбросов [14], и была, по-видимому, обусловлена выжиманием самой первой порции лавового материала. Затем подобные землетрясения были зарегистрированы 23 декабря 2010 г. и 23 января 2011 г., а с 13 мая 2011 г. микроземлетрясения с квазипериодичностью 8-50 с и энергетическими классами K_S =2.0-5.5 начали регистрироваться непрерывно. Наибольшее их количество регистрировалось с 15 августа по 12 октября (рис. 13). Максимальное число землетрясений (N=1676) за сутки было локализовано 24 сентября. При малых интервалах времени между микроземлетрясениями запись сливалась, становилась непрерывной и напоминала спазматическое вулканическое дрожание. В работах американских вулканологов режим квазирегулярного появления микроземлетрясений, зарегистрированных во время выжимания отдельных блоков вязкой магмы на экструзивном куполе вулкана Сент-Хеленс в 2004 г., был назван "drumbeats" – барабанным боем [33].

Рис. 13. Изменение во времени энергетического класса K_S (а), глубины гипоцентров h (б) и ежесуточного числа вулканических землетрясений N (в) с глубины $-3.0 \le h \le 5.0$ км (ромб) и $5.0 < h \le 20.0$ км (прямоугольник), произошедших в радиусе 15 км от влк. Кизимен в 2011 г.

Рис. 14. Четырехчасовой фрагмент записи «drumbeats», сопровождавших извержение влк. Кизимен, зарегистрированный станцией KZV на горизонтальном канале N–S 11 октября 2011 г. [32]

Всего за период активизации с 15 августа по 12 октября в каталог вошло 40878 землетрясений с K_S =3.7–9.2, произошедших в радиусе 15 κm от вулкана в диапазоне глубин h=-2.5–9.4 κm [11]. Землетрясение с максимальным классом K_S =10.5 произошло в районе влк. Кизимен вне радиуса выборки 21 августа в 02^h31^m на глубине h=-0.8 κm .

В 2011 г. продолжалось мощное эксплозивно-эффузивное извержение с пепловыми выбросами до 10 км над уровнем моря и вязкими лавовыми потоками, сопровождавшееся высокой сейсмической активностью. На протяжении всего года на влк. Кизимен был выставлен повышенный код активности: «оранжевый» — 235 дней, «желтый» — 98. Самый высокий «красный» код опасности в 2011 г. присваивался вулкану 6 раз, когда высота пепловой эмиссии по сейсмическим данным могла превышать 8 км над уровнем моря (http://www.emsd.ru/~ssl/monitoring/main.htm).

Заключение. В 2011 г. наблюдалась высокая активность вулканов Камчатки.

В течение всего года на влк. Ключевской наблюдалась высокая сейсмическая активность в диапазоне глубин h=25-36 км.

На влк. Шивелуч продолжалась высокая вулканическая активность с эксплозивными извержениями и сходом раскаленных лавин. При этом сейсмическая активность, сопровождавшая рост и обрушение купола, по сравнению с предыдущими годами была слабее.

С начала 2011 г. на влк. Безымянный регистрировалась сейсмическая активность, завершившаяся эксплозивным извержением 13 апреля. Увеличение числа сейсмических событий и их энергии перед эксплозией позволили сделать успешный краткосрочный прогноз времени, места и силы извержения.

В 2011 г. продолжалось извержение влк. Кизимен, начавшееся в ноябре 2010 г. после почти 80-летнего спокойствия. Извержение сопровождалось очень высокой сейсмической активностью. Впервые на активных вулканах Камчатки, на которых ведется сейсмический мониторинг, был зарегистрирован режим «drumbeats». Это квазирегулярное появление землетрясений, примерно 2–3 события в минуту, на длительных временных участках, от часа до нескольких месяцев, связанное с выжиманием вязкой магмы.

Вулканы Горелый и Мутновский представляют потенциальную опасность для геоэнергетического комплекса МГеоЭС и ВМГеоЭС. На протяжении всего 2011 г. на влк. Горелый наблюдалась повышенная сейсмическая активность («желтый» код) в виде спазматического вулканического дрожания с $A/T_{\rm cp.}$ =0.53 $m\kappa m/c$. К сожалению, регистрация станцией «Горелый» (GRL) вулканического дрожания, а также отсутствие данных со станции «Мутновская» (MTVR) не позволили зарегистрировать сейсмичность в районе влк. Мутновский в полном объеме.

Всего в 2011 г. в районе Северной, Авачинской, Мутновско-Гореловской групп вулканов, а также в районе влк. Кизимен было локализовано 48286 землетрясений, высвобожденная ими сейсмическая энергия составила $\Sigma E = 5.92 \cdot 10^{10} \mathcal{Д}ж$.

Литература

- 1. **Сенюков С.Л.** Мониторинг активности вулканов Камчатки дистанционными средствами наблюдений в 2000–2004 гг. // Вулканология и сейсмология. 2006. № 3. С. 68–78.
- 2. **Старовойт О.Е., Мишаткин В.Н.** Сейсмические станции Российской академии наук (состояние на 2001 г.) Москва Обнинск: ГС РАН, 2001. 86 с.
- 3. **Чебров Д.В., Матвеенко Е.А., Шевченко Ю.В., Ящук В.В., Музуров Е.Л. (сост.).** Сейсмические станции сети Камчатки и Командорских островов в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD ROM.
- 4. **Чебров В.Н., Сенюков С.Л., Дрознина С.Я.** Камчатка и Командорские острова // Землетрясения России, 2011 год. Обнинск: ГС РАН, 2013. С. 53–59.
- 5. **Чебров В.Н., Дрознин Д.В., Кугаенко Ю.А., Левина В.И., Сенюков С.Л., Сергеев В.А., Шевчен-ко Ю.В., Ящук В.В.** Система детальных сейсмологических наблюдений на Камчатке в 2011 г. // Вулканология и сейсмология. 2013. № 1. С. 18–40.
- 6. Дрознин Д.Д., Дрознина С.Я. Интерактивная программа обработки сейсмических сигналов «DIMAS» // Сейсмические приборы. М.: ИФЗ РАН, 2010. 46. № 3. С. 22–34.
- 7. **Кузин И.П.** Фокальная зона и строение верхней мантии в районе Восточной Камчатки. М.: Наука, 1974. 145 с.
- 8. **Нуждина И.Н.** (отв. сост.), Кожевникова Т.Ю., Толокнова С.Л., Напылова Н.А., Напылова О.А., Демянчук М.В., Соболевская О.В. (сост.). Каталог землетрясений Северной группы вулканов за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD ROM.
- 9. **Нуждина И.Н. (отв. сост.), Кожевникова Т.Ю., Толокнова С.Л., Соболевская О.В. (сост.).** Каталог землетрясений Авачинской группы вулканов за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD ROM.
- 10. **Нуждина И.Н. (отв. сост.), Кожевникова Т.Ю., Толокнова С.Л., Соболевская О.В. (сост.).** Каталог землетрясений Мутновско-Гореловской группы вулканов за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 11. **Нуждина И.Н.** (отв. сост.), Кожевникова Т.Ю., Толокнова С.Л., Напылова Н.А., Напылова О.А., Демянчук М.В., Назарова З.А., Соболевская О.В. (сост.). Каталог землетрясений вулкана Кизимен за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD ROM.
- 12. Токарев П.И. Вулканические землетрясения Камчатки. М.: Наука, 1981. 164 с.

- 13. **Федотов С.А.** Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд. М.: Наука, 1972. 117 с.
- 14. **Сенюков С.Л., Нуждина И.Н.** Вулканы Камчатки // Землетрясения Северной Евразии, 2010 год. Обнинск: ГС РАН, 2016. С. 382–395.
- 15. **Сенюков С.Л., Нуждина И.Н.** Вулканы Камчатки // Землетрясения Северной Евразии, 2009 год. Обнинск: ГС РАН, 2015. С. 353–365.
- 16. **Сенюков С.Л., Нуждина И.Н.** Вулканы Камчатки // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 453–462.
- 17. **Сенюков С.Л., Нуждина И.Н., Дрознина С.Я.** Вулканы Камчатки // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2012. С. 449–460.
- 18. Weimer S. A software package to analyze seismicity: ZMAP // Seism. Res. Lett. 2001. 72. №2. P. 374–383.
- 19. **Сенюков С.Л., Нуждина И.Н., Дрознина С.Я.** Вулканы Камчатки // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. С. 449–460.
- 20. **Senyukov S.L., Droznina S.Ya., Kozhevnikova T.Yu.** Experience of the detection of ash plume and estimation its height using local seismicity for Kamchatkan volcanoes during 2003–2011 (Kamchatka Peninsula, Russia) // Complex monitoring of volcanic activity: methods and results, New York: Nova Science Publishers, Inc. 2001. P. 35–52.
- 21. **Федотов С.А., Жаринов Н.А., Гонтовая Л.И.** Магматическая питающая система Ключевской группы вулканов (Камчатка) по данным об ее извержениях, землетрясениях, деформациях и глубинном строении // Вулканология и сейсмология. 2010. № 1. С. 3–35.
- 22. Сенюков С.Л., Дрознина С.Я., Нуждина И.Н., Гарбузова В.Т., Кожевникова Т.Ю. Исследования активности вулкана Ключевской дистанционными методами с 01.01.2001 г. по 31.07.2005 г. // Вулканология и сейсмология. -2009. -№ 3. C. 50–59.
- 23. **Сенюков С.Л.** Прогноз извержений вулканов Ключевской и Безымянный на Камчатке // Saarbrucken: LAP LAMBERTS Academic Publishing. 2013. 144 с.
- 24. **Горельчик В.И., Сторчеус А.В.** Глубокие длиннопериодные землетрясения под Ключевским вулканом, Камчатка // Геодинамика и вулканизм Курило-Камчатской островодужной системы. Петропавловск-Камчатский: ИВГиГ ДВО РАН, 2001. С. 373–389.
- 25. Салтыков В.А., Кравченко Н.М. Комплексный анализ сейсмичности Камчатки 2005–2007 гг. на основе регионального каталога // Вулканология и сейсмология. -2009. -№ 4. C. 53–63.
- 26. Действующие вулканы Камчатки / Под ред. С.А. Федотова, Ю.П. Масуренкова М.: Наука, 1991. II. С. 18–32.
- 27. **International Seismological Centre (ISC),** On-line Bulletin, Internatl. Seis. Cent., Thatcham, United Kingdom, 2014. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/.
- 28. **Ji L., Lu Z., Dzurisin D., Senyukov S.** Pre-eruption deformation caused by dike intrusion beneath Kizimen volcano, Kamchatka, Russia, observed by InSAR // Journal of Volcanology and Geothermal Research. 2013. **256**. P. 87–95.
- 29. Сейсмологический бюллетень (ежедекадный) за **2011** год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2011–2012. URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2011*.
- 30. **Murru M., Montuori C.** The locations of magma chambers at Mt. Etna, Italy, mapped by b-values // Geophysical research letters. 1999. **26**. N 16. P. 2553–2556.
- 31. **Wiemer Stefan, McNutt Stephen R.** Variations in the frequency-magnitude distribution with depth in two volcanic areas: Mount St. Helens, Washington, and Mt. Spurr, Alaska // Geophysical research letters. 1997. 24. N 2. P. 189–192.
- 32. **Фирстов П.П., Шакирова А.А.** Особенности сейсмичности в период подготовки и в процессе извержения вулкана Кизимен (Камчатка) в 2009–2013 гг. // Вулканология и сейсмология. 2014. № 4. С. 3–19.
- 33. **Iverson R.M., Dzurisin D., Gardner S.A. et. al.** Dynamics of seismogenetic volcanic extrusion at Mount St. Helens in 2004–2005 // Nature. 2006. **444**. P. 439–443.