САХАЛИН

Т.А. Фокина¹, Д.А. Сафонов^{1,2}, В.И. Михайлов¹, Д.В. Костылев¹

¹Сахалинский филиал ФИЦ ЕГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru ²Институт морской геологии и геофизики ДВО РАН, г. Южно-Сахалинск, d.safonov@imgg.ru

Региональная сеть. В 2011 г. сейсмическая сеть Сахалинского филиала ФИЦ ЕГС РАН на о. Сахалин не менялась. Сейсмические станции региона, включающего территорию о. Сахалин с шельфом и восточную часть Приамурья, представлены в Приложении [1] вместе с их параметрами. Существующая региональная сеть станций Сахалина совместно со станциями Приамурья и Приморья [2] и Курило-Охотского региона [3] обеспечила на большей части региона регистрацию без пропусков землетрясений с расчетной магнитудой $M^{P}>3.0$ (рис. 1). Представительность землетрясений в регионе Сахалин, по сравнению с таковой в 2010 г. [4], не изменилась.

Рис. 1. Карта магнитудной представительности землетрясений *M*_{min} Сахалина

1 – широкополосная региональная сейсмическая станция; 2 – выносной пункт службы предупреждения о цунами; 3 – граница региона; 4 – изолиния M_{\min} .

Параметры землетрясений определялись на основе материалов наблюдений, полученных на четырех стационарных сейсмических станциях Сахалина: «Южно-Сахалинск» (YSS), «Тымовское» (TYV), «Углегорск» (UGL) и «Оха» (OKH) [1]. Данные цифрового комплекса IRIS-2 (STS-1, GS-13, FBA-23), действующего на станции «Южно-Сахалинск» с 14.06.1992 г. [5], в полной мере использовались в сводной обработке. Данные станций типа Datamark LS7000XT «Тымовское» и «Оха», оснащенных с 26.06.2005 г. аппаратурой L4C-3D, STS-2 [6], привлекались для определения координат гипоцентра.

Как отмечено выше, для определения параметров землетрясений региона Сахалин привлекались традиционно данные всех сейсмических станций Приамурья и Приморья, Курило-Охотского региона, а также бюллетени ФИЦ ЕГС РАН [7], JMA, ISC [8].

Локальная сеть, создаваемая с 1999 г. для наблюдений за сейсмичностью в южной, наиболее заселенной части о. Сахалин [9], в 2011 г. продолжала функционировать. Она состояла из временных полевых цифровых станций типа DAT японского производства. Сведения о станциях приведены в Приложении [10] вместе с их параметрами.

В 2011 г. конфигурация локальной сети не менялась, на протяжении года число одновременно работающих полевых станций колебалось от шести до девяти, все станции были оставлены работать в зимних условиях [11]. Конфигурация локальной сети на юге Сахалина и обеспечивае-

мая ею карта магнитудной представительности землетрясений изображены на рис. 2. Классификация локальных землетрясений осуществлялась по энергетическим классам K_P шкалы Т.Г. Раутиан [12] с переходом в случае необходимости к расчетным магнитудам M^P по формуле Т.Г. Раутиан [13]:

$$M^{\rm P} = (K_{\rm P} - 4)/1.8. \tag{1}$$

Изолинии представительной регистрации локальных землетрясений на рис. 2 показаны именно в расчетных магнитудах M^P с шагом ΔM^P =0.5 (M_{min} =1.5, 2.0 и 2.5, что соответствует K_P =6.7, 7.6 и 8.5).

Каталог землетрясений по данным локальной сети юга о. Сахалин [14] содержит параметры 745 землетрясений и 37 событий категории «возможно взрыв». Обзор сейсмичности юга Сахалина по данным локальной сети представлен в [11].

При определении параметров сильных землетрясений использовались данные запущенного в эксплуатацию в октябре 2008 г. программно-технического комплекса опорной широкополосной цифровой сейсмической станции для Службы предупреждения о цунами (ПТК ОШЩСС «Южно-Сахалинск»), который состоял из пяти пунктов наблюдения: центрального, оборудованного широкополосным велоси-метром СМG-3 с регистратором GSR-24, расположенного на сейсмической

Рис. 2. Карта магнитудной представительности землетрясений M_{\min} , временная сеть локальных сейсмических станций и станции ПТК ОШЦСС «Южно-Сахалинск» в 2011 г.

1 — широкополосная сейсмическая станция; 2 — сейсмическая станция локальной сети; 3 — выносной пункт ПТК ОШЦСС; 4 — изолиния M_{\min} .

станции «Южно-Сахалинск», и четырех выносных пунктов, оборудованных акселерометрами CMG-5T и теми же регистраторами GSR-24, размещенных в городах Корсаков (KOR), Невельск (NEV), Холмск (KHL) и Долинск (DOL). В 2010 г. на о. Сахалин были открыты два новых пункта – «Новоалександровск» (NVA), включенный в комплекс «Южно-Сахалинск», и «Ноглики» (NGLK) – на севере острова. Координаты всех пунктов приведены в Приложении [1], конфигурация сети на юге Сахалина – на рис. 2. На значение представительной магнитуды эта группа влияния не оказывает, поскольку регистрирует только довольно сильные землетрясения. Станция «Ноглики» позволила снизить представительную магнитуду на западном шельфе северной части Сахалина с M_{min} =3.5 до M_{min} =3.0.

Методика обработки сейсмологических данных описана в [15–25]. Границы региона [26], схема его деления на отдельные сейсмоактивные районы не изменились и остались такими же, как в 2010 г. [4]. Классификация землетрясений по региональной сети проводилась по энергетическим классам $K_{\rm C}$ С.Л. Соловьёва [15] и $K_{\rm P}$ Т.Г. Раутиан [13], а также магнитудам *MLH*, *MPV*, *MSH* по среднепериодной аппаратуре СКД [27]; *MPVA*, *MSHA* – по короткопериодной аппаратуре СКМ-3 [16, 27].

Для единой классификации всех землетрясений использовалась расчетная магнитуда M^P . Расчетная магнитуда M^P равняется магнитуде *MLH* при наличии таковой в каталоге, а при ее отсутствии вычисляется по формулам из [15, 16, 23, 24]:

$$M^{P} = (K_{C} - 1.2)/2$$
 для землетрясений с $h \le 80 \ \kappa m$, (2)

$$M^{P} = (MSH-1.71)/0.75$$
 при $h \ge 81 \ \kappa m$, (3)

$$M^{P} = (MSHA - 1.71)/0.75$$
 при $h \ge 81 \kappa M.$ (4)

Для землетрясений с известными классами K_P при отсутствии K_C была использована формула Т.Г. Раутиан:

$$M^{\rm P} = (K_{\rm P} - 4)/1.8. \tag{1}$$

Если магнитуда *MPVA* была единственной энергетической оценкой землетрясения, то

$$M^{\rm P} = (MPVA - 2.5)/0.65.$$
 (5)

Энергия землетрясений (в Дж) оценивалась по формуле Гуттенберга–Рихтера из [25]:

$$\lg E = 4.8 + 1.5 \cdot M^{P}$$
. (6)

В региональный каталог Сахалина за 2011 г. [28] включены параметры 385 сейсмических событий: из них 37 идентифицировано как «возможно взрыв». 340 землетрясений имеют глубину *h*≤17 *км*, 8 – глубокофокусные (*h*=131–395 *км*).

Карта эпицентров всех сейсмических событий приведена на рис. 3. Самое сильное (MLH=5.0, Mw_{GCMT} =5.1) в 2011 г. землетрясение (6) зафиксировано 12 декабря в 09^h28^m на глубине h=10 км. Землетрясение вызвало максимальные в 2011 г. сотрясения с интенсивностью I=5–6 баллов [29]. Для него удалось определить механизм очага [30]. Этому землетрясению, которое получило название Тымовское, посвящена отдельная статья в наст. ежегодника [31].

Для 15 землетрясений имеются макросейсмические сведения [29]. Максимальный (*I*=5-6 баллов) макросейсмический эффект наблюдался в поселке Тымовское (Δ =34 км) при землетрясении (6) 12 декабря, для остальных событий максимальная интенсивность сотрясений не превышала 4 баллов.

Распределение мелкофокусных событий Сахалина по часам суток местного времени представлено на рис. 4.

Диаграмма, построенная для землетрясений с глубиной $h \le 17 \ \kappa m$, демонстрирует максимум (24 события в час) в 17 часов местного времени, минимум (6 событий) в 9 часов. Среднее число составило: $N_{\rm cp}=14\pm5$ событий в час. Все события,

Рис. 3. Карта эпицентров землетрясений Сахалина в 2011 г.

1 – расчетная магнитуда M^P; 2 – глубина *h* гипоцентра, *км*;
3 – стереограмма механизма очага, нижняя полусфера, зачернена область сжатия;
4 – сейсмическая станция;
5 – граница и номер района.

идентифицированные как взрывы, произошли в период с 11 до 20 часов местного времени.

Рис. 4. Распределение числа мелкофокусных сейсмических событий Сахалина по часам суток местного времени: а – землетрясений (*h*≤17 км, *N*=340), б – взрывов (*h*=0 км, *N*=37) Сейсмичность региона рассматривается для мелкофокусных (табл. 1–3) и глубокофокусных (табл. 3) землетрясений. Сейсмическая активность мелкофокусных землетрясений Сахалина в 2011 г., по сравнению с таковой в 2010 г. [4], возросла в 1.2 раза по числу зарегистрированных землетрясений, но снизилась в 22 раза по уровню суммарной сейсмической энергии, высвобожденной в очагах землетрясений (табл. 1, рис. 5). При сравнении со средними за 2001–2010 гг. показателями в табл. 1 видно, что число землетрясений в 2011 г. (*N*=340) в 1.3 раза выше среднего (*N*_{ср}=256), но сейсмическая энергия – в 11.4 раза ниже среднего значения за указанный период.

Год					K _C					N_{Σ}	ΣΕ,
	≤6.5	7	8	9	10	11	12	13	14		10 ¹² Дж
2001	57	198	103	21	10	1				390	9.61
2002	32	95	77	15	1					220	1.73
2003	37	67	57	13	4		1			179	4.74
2004	35	60	36	10	3					144	2.89
2005	37	63	47	8	5	4				164	17.28
2006	95	63	44	14	2	2	1			221	48.38
2007	105	189	221	71	22	4	2	2	1	617	301.33
2008	69	66	36	9	2					182	1.04
2009	60	55	39	9	4					167	2.39
2010	84	120	48	13	7	4	1			277	94.62
Всего	611	976	708	183	60	15	5	2	1	2561	484.01
Среднее	61	98	71	18	6	1.5	0.5	0.2	0.1	256	48.4
2011	65	172	78	17	7		1			340	4.25

Таблица 1. Распределение мелкофокусных (*h*≤33 км) землетрясений по энергетическому классу *K*_C и суммарная сейсмическая энергия Σ*E* в регионе Сахалина в 2001–2011 гг.

Примечание. Для построения распределения по классам *K*_C в случае его отсутствия применялся пересчет из класса *K*_P по формуле: *K*_C=*K*_P-1.7 [32].

Сейсмичность по семи районам представлена в табл. 2 ежегодным числом мелкофокусных землетрясений и суммарной сейсмической энергией, высвобожденной в их очагах в 2001–2011 гг.

Рис. 5. Изменение ежегодного числа землетрясений N и величины суммарной сейсмической энергии ΣE, высвобожденной в регионе Сахалина мелкофокусными землетрясениями за период 2001–2011 гг.

1 – N; 2 – среднегодовое число землетрясений за 2001–2010 гг.; 3 – Σ*E*; 4 – среднегодовое значение высвобожденной энергии за 2001–2010 гг.

Таблица 2. Ежегодное число мелкофокусных землетрясений Сахалина в районах №№ 1–7 и суммарная сейсмическая энергия в единицах 10¹² Дж за 2001–2011 гг.

Год	Район													
		1		2		3		4		5		6		7
	N	Ε	N	E	N	E	N	Ε	N	E	N	E	N	E
2001	96	0.51	2	0.17	1	0.002	220	6.52	1	0.008	60	2.39	10	0.01
2002	65	0.38	6	0.06	1	0.0007	130	0.92	4	0.06	8	0.15	6	0.15
2003	82	0.86	2	0.1	2	0.003	86	3.74	3	0.03			4	
2004	56	0.37	3	0.01	6	0.01	67	2.48	4	0.01			8	0.01
2005	82	4.1	12	11.39	3	0.01	53	1.76	2	0.003	3	0.0004	9	0.02
2006	45	2.04	1	0.004	1	0.001	142	46.3	10	0.0006	19	0.045	3	0.01
2007	18	0.33	6	3.38			550	279.04	17	0.11	23	0.03	3	0.02
2008	20	0.28	3	0.07	2	0.004	125	0.59	5	0.003	23	0.007	4	0.09

Год	Район													
		1		2 3		3	4		5		6		7	
	N	E	N	Ε	N	E	N	E	N	Ε	N	E	N	E
2009	40	0.66	4	1.01	1	0.002	89	0.60	6	0.10	25	0.005	2	0.003
2010	135	92.30	4	0.071	4	0.057	111	2.179	9	0.014	11	0.0005	3	0.0035
Всего	639	101.83	43	16.27	21	0.09	1573	344.13	61	0.34	172	2.63	52	0.31
Среднее	64	10.18	4.3	1.63	2.1	0.009	157.3	34.41	6.1	0.03	17.2	0.26	5.2	0.031
2011	57	1.14	2	0.26	14	2.15	238	0.67	20	0.02	8	0.003	1	0.007

В табл. 3 дано распределение землетрясений по районам Сахалина в 2011 г., а на рис. 6 – графическое представление мелкофокусной активности региона. Из табл. 2, 3 и рис. 6 видно, что в 2011 г. самым активным по числу землетрясений был Западно-Сахалинский район (№ 4), а по суммарной сейсмической энергии – Восточно-Сахалинский район (№ 3), где 12 декабря произошло самое сильное землетрясение региона, которому в данном ежегоднике посвящена отдельная статья [31].

Глубокофокусная активность в 2011 г. представлена восемью землетрясениями. Магнитуда самого сильного из них составила *MSH*=5.2, суммарная сейсмическая энергия равна ΣE =3.75·10¹² Дж.

Таблица 3. Распределение коровых землетрясений по энергетическому классу *K*_C, а глубокофокусных – по магнитуде *M*^P, и суммарная сейсмическая энергия Σ*E* по районам Сахалина

	<u>h</u> ≤17 км										
N⁰	Районы		Kp							ΣE ,	
		≤6.5	7	8	9	10	11	12	-	10 ¹² Дж	
1	Северный	5	16	24	7	5			57	1.14	
2	Охотоморский шельф				1	1			2	0.26	
3	Восточно-Сахалинский	1	7	4	1			1	14	2.15	
4	Западно-Сахалинский	55	129	45	8	1			238	0.67	
5	Юго-Восточный	4	12	4					20	0.02	
6	Восточная часть Южного Сахалина		8						8	0.003	
7	Хабаровский приграничный			1					1	0.007	
	Всего	65	172	78	17	7		1	340	4.25	
	<i>h</i> ≥131 км										

№	Районы	M	N_{Σ}	ΣE ,	
		4.0	5.0	2	10 ¹² Дж
5	Юго-Восточный	4	4	8	3.75

Рис. 6. Соотношение числа *N* (а) и суммарной сейсмической энергии Σ*E* (б) мелкофокусных землетрясений по районам Сахалина в 2011 г.

1 - N (2011 г.); $2 - N_{cp.}$ за 2001–2010 гг. (а); $3 - \Sigma E$ (2011 г.); 4 - среднегодовое значение высвобожденной энергии по районам Сахалина за 2001–2010 гг. (б).

Распределение ощутимых землетрясений по районам региона представлено в табл. 4. Общее их число в 2011 г. равно N=15, что меньше, чем в 2010 г., когда их было 24 [4]. Как видно из табл. 4, в районах $N \ge 1$ и $N \ge 4$ отмечено по 5 ощутимых землетрясений, их максимальный макросейсмический эффект не превышал 3–4 баллов в первом и 4 баллов во втором случае. Максимальная интенсивность в 5–6 баллов наблюдалась при единственном ощутимом землетрясении Восточно-Сахалинского района ($N \ge 3$) – Тымовском землетрясении 12 декабря с Mw=5.1.

Таблица 4. Распределение ощутимых землетрясений по районам Сахалина, максимальная величина класса *К*_{Стах} или магнитуды *МSH*_{max} и максимальная интенсивность сотрясений *I*_{max}

N⁰	Район	Число ощутимых землетрясений	K _{Cmax}	MLH _{max}	MSH _{max}	I _{max} , балл
1	Северный	5	10.5	4.5	5.8	3–4
2	Охотоморский шельф	2	10.5	4.4		3
3	Восточно-Сахалинский	1	11.9	5.0	5.1	5-6
4	Западно-Сахалинский	5	9.7	4.0	4.4	4
5	Юго-Восточный	1	9.4		5.2	1-2
6	Восточная часть Южного Сахалина		6.9			
7	Хабаровский приграничный	1				2-3
	Всего	24				

Рассмотрим сейсмичность каждого из семи районов более детально.

В Северном районе (\mathbb{N} 1) зарегистрировано 57 коровых землетрясений, что в 2.4 раза меньше, чем в 2010 г., и в 1.1 раза меньше среднего значения (\mathbb{N} =64) за период 2001–2010 гг. (табл. 2). Суммарная сейсмическая энергия в 81 раз меньше, чем в 2010 г., и в 8.9 раза меньше среднегодовой (табл. 2 и 3, рис. 6). Самое сильное (MLH=4.5 [28]) землетрясение произошло 6 марта в 15^h48^m на глубине h=10 км.

В районе отмечено пять ощутимых землетрясений, интенсивность не превышала 3-4 баллов (табл. 4).

На Охотоморском шельфе (№ 2) произошло два толчка, что в 2 раза меньше среднего числа за период 2001–2010 гг. Оба землетрясения проявили макросейсмический эффект, но максимальная интенсивность не превышала 3 баллов. Суммарная энергия двух толчков, равная $\Sigma E=0.26 \cdot 10^{12} \ Дж$, в 6.3 раза меньше среднегодового значения за указанный период (табл. 2, 3, рис. 6).

В Восточно-Сахалинском районе (№ 3) произошел резкий всплеск сейсмической активности. Зарегистрировано 14 землетрясений, что почти в 7 раз выше среднего значения за период 2001–2010 гг., суммарная сейсмическая энергия в 239 раз превысила среднее значение за указанный период. В этом районе 12 декабря в 09^h28^m произошло самое сильное землетрясение региона за 2011 г., о котором уже упоминалось выше [31]. Кроме этого землетрясения, ощущавшегося с интенсивностью до 5–6 баллов, других ощутимых землетрясений в районе не отмечено (табл. 4).

Западно-Сахалинский район (№ 4) вернул себе лидерство по числу зарегистрированных землетрясений: *N*=238 (табл. 1, 2), что в 1.5 раза больше среднего значения за период 2001–2010 гг., но все они довольно слабы, сейсмическая энергия в 51 раз меньше среднего за этот период.

В районе № 4 в 2000–2007 гг. происходили наиболее сильные землетрясения региона, такие как Углегорско-Айнское 4(5) августа 2000 г. с $Mw_{\rm HRVD}$ =6.8 [33], Такойское 1 сентября 2001 г. с $Mw_{\rm HRVD}$ =5.2 [34], Горнозаводское 17 августа 2006 г. с $Mw_{\rm HRVD}$ =5.7 [35], Невельские 2 августа 2007 г. с $Mw_{\rm GCMT}$ =6.2 и 5.8 [17, 36]. В 2008 г. сейсмическая активность района снизилась, в 2009 г. снижение активности по числу зарегистрированных землетрясений продолжилось, по суммарной сейсмической энергии осталось практически на прежнем уровне. В 2010 г. сейсмическая активность несколько возросла – суммарная сейсмическая энергия стала в 3.6 раза больше, чем в 2009 г. В 2011 г. сильных землетрясений в районе не происходило, магнитуда не превышала M=4.

В районе произошло пять ощутимых землетрясений [30] (табл. 4), интенсивность не превышала 4 баллов. Ни одного глубокофокусного землетрясения в 2011 г. зафиксировано не было.

Юго-Восточный район (№ 5) представлен 20 мелкофокусными и 8 глубокофокусными землетрясениями, суммарная сейсмическая энергия первых в 1.5 раза меньше среднегодового значения за период 2001–2010 гг. (табл. 2).

Глубокофокусные землетрясения, зарегистрированные сетью СФ ФИЦ ЕГС РАН, находятся в диапазоне глубин $h=131-395 \ \kappa m$ [28] с эпицентрами в акватории зал. Анива (рис. 3). Одно из них ощущалось в Японии, на о. Хоккайдо, с интенсивностью в 2 балла.

По данным Международного сейсмологического центра (ISC), в Юго-Восточном районе произошло еще 14 землетрясений с *М*_{JMA}=2.9–4.4 на глубинах *h*=277–350 км [37]. Существующая в настоящее время сеть сейсмических станций СФ ГС РАН не позволяет регистрировать слабые глубокие землетрясения, поэтому упомянутые выше землетрясения не вошли в каталог [28].

В Восточной части Южного Сахалина ($\mathbb{N} \circ 6$) в 2011 г. было зарегистрировано 8 слабых ($K_{C} \sim 7$) мелкофокусных землетрясений, что в 2 раза меньше среднегодового значения за период 2001–2010 гг. (табл. 2), суммарная сейсмическая энергия почти в 87 раз меньше среднегодового значения. Ощутимых землетрясений не было (табл. 4).

В Хабаровском приграничном районе (№ 7) зарегистрировано одно мелкофокусное землетрясение, суммарная сейсмическая энергия в 4.4 раза меньше среднегодового значения.

В целом в 2011 г. сейсмическая активность Сахалина была низкой, за исключением Восточно-Сахалинского района (№ 3).

Литература

- 1. Костылев Д.В. (сост.). Стационарные сейсмические станции и сеть цунами Сахалина в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 2. Михайлов В.И. (отв. сост.). Сейсмические станции Приамурья и Приморья в 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- 3. Костылев Д.В. (сост.). Сейсмические станции Курило-Охотского региона в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 4. Фокина Т.А., Сафонов Д.А., Михайлов В.И. Сахалин // Землетрясения Северной Евразии, 2010 год. Обнинск: ФИЦ ЕГС РАН, 2016. С. 190–198.
- 5. Старовойт О.Е., Мишаткин В.Н. Сейсмические станции Российской академии наук. Москва-Обнинск: ГС РАН, 2001. – 88 с.
- 6. Фокина Т.А., Кислицына И.П., Сафонов Д.А., Михайлов В.И. Сахалин // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. С. 175–184.
- 7. Сейсмологический бюллетень (ежедекадный) за 2011 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2011–2012. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2011*.
- 8. International Seismological Centre, On-line Bulletin, Internatl. Seis. Cent., Thatcham, United Kingdom, 2014. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/.
- 9. Фокина Т.А., Паршина И.А., Сафонов Д.А., Сен Рак Се, Ким Чун Ун. Сахалин // Землетрясения Северной Евразии в 1999 году. Обнинск: ГС РАН, 2005. С. 148–158.
- 10. Михайлов В.И. (сост.). Локальная сеть сейсмических станций Сахалина в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 11. Михайлов В.И. III.I.2. Юг о. Сахалин // Землетрясения России в 2011 году. Обнинск: ГС РАН, 2013. С. 80–81.
- 12. Раутиан Т.Г. Об определении энергии землетрясений на расстоянии до 3000 км // Экспериментальная сейсмика. (Труды ИФЗ АН СССР; № 32(199)). – М.: Наука, 1964. – С. 88–93.
- 13. **Раутиан Т.Г.** Энергия землетрясений // Методы детального изучения сейсмичности (Труды ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 14. **Паршина И.А. (отв. сост.), Ферчева В.Н., Децик И.В., Рунова А.И. (сост.).** Каталог юга о. Сахалин // Землетрясения России в 2011 году. – Обнинск: ГС РАН, 2013. – На СD.
- 15. Соловьёв С.Л., Соловьёва О.Н. Скорость колебания земной поверхности в объемных волнах неглубокофокусных Курило-Камчатских землетрясений на расстояниях до 17° // Физика Земли. – 1967. – № 1. – С. 37–60.
- 16. Волкова Л.Ф., Поплавская Л.Н., Соловьёва О.Н. Шкалы *MPVA*, *MSHA* для определения магнитуд близких глубокофокусных землетрясений Дальнего Востока // Сейсмологические наблюдения на Дальнем Востоке СССР. Методические работы ЕССН. М.: Наука, 1989. С. 81–85.
- 17. Невельское землетрясение и цунами 2 августа 2007 года, о. Сахалин / Ред. Б.В. Левин, И.Н. Тихонов. М.: Янус-К, 2009. 204 с.

- 18. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. Методические работы ЕССН. М.: Наука, 1989. С. 32–51.
- Оскорбин Л.С., Бобков А.О. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т. VI. (Проблемы сейсмической опасности Дальневосточного региона). – Южно-Сахалинск: ИМГиГ, 1997. – С. 179–197.
- 20. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 192 с.
- 21. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.
- Поплавская Л.Н., Нагорных Т.В., Рудик М.И. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока // Землетрясения Северной Евразии в 1995 году. М.: ОИФЗ РАН, 2001. С. 95–99.
- 23. Соловьёв С.Л., Соловьёва О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. – 1967. – № 2. – С. 13–23.
- 24. Соловьёва О.Н., Соловьёв С.Л. Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. – М.: Наука, 1968. – С. 75–97.
- 25. Гутенберг Б., Рихтер К.Ф. Магнитуда, интенсивность, энергия и ускорение как параметры землетрясений (II) // Слабые землетрясения. М.: ИЛ, 1961. С. 72–119.
- 26. Габсатарова И.П. Границы сейсмоактивных регионов России с 2004 г. // Землетрясения России в 2004 году. Обнинск: ГС РАН, 2007. С. 139.
- 27. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 272 с.
- 28. Кислицына И.П., Паршина И.А. (отв. сост.), Ферчева В.Н., Децик И.В., Рунова А.И., Сохатюк А.С. (сост.). Каталог землетрясений Сахалина за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- Сохатюк А.С. (сост.). Макросейсмический эффект ощутимых землетрясений Сахалина в населенных пунктах Сахалина в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 30. Богинская Н.В. (отв. сост.). Каталог механизмов очагов землетрясений Сахалина за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 31. Семёнова Е.П., Сафонов Д.А., Михайлова Р.С. Тымовское землетрясение 12 декабря 2011 г. с K_P=13.6, Mw=5.1, I₀=6-7 (Центральный Сахалин) // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – С. 442–450.
- 32. Оскорбин Л.С., Волкова Л.Ф. Землетрясения Сахалина и Приморья в 1972 г. // Землетрясения в СССР в 1972 г. М.: Наука, 1976. С. 146–152.
- 33. Поплавская Л.Н., Нагорных Т.В., Фокина Т.А., Поплавский А.А., Пермикин Ю.Ю., Стрельцов М.И., Ким Чун Ун, Сафонов Д.А., Мельников О.А., Рудик М.И., Оскорбин Л.С. Углегорско-Айнское землетрясение 4(5) августа 2000 года на Сахалине // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 265–284.
- 34. Поплавская Л.Н., Фокина Т.А., Сафонов Д.А., Нагорных Т.В., Ким Чун Ун, Сен Рак Се, Урбан Н.А. Такойское землетрясение 1 сентября 2001 года с *M*=5.2, *I*₀=7 (Сахалин) // Землетрясения Северной Евразии в 2001 году. – Обнинск: ГС РАН, 2007. – С. 331–344.
- 35. **Фокина Т.А., Сафонов Д.А.** Горнозаводское землетрясение 17 августа 2006 г. с *MLH*=5.9, *K*_C=12.0, *I*₀=7 (Сахалин) // Землетрясения Северной Евразии в 2006 году. Обнинск: ГС РАН, 2012. С. 367–374.
- 36. Сафонов Д.А., Нагорных Т.В., Фокина Т.А. Невельские землетрясения 2 августа 2007 года с *MLH*=6.3 и *MLH*=6.0, *I*₀=8 (о. Сахалин) // Землетрясения Северной Евразии в 2007 году. Обнинск: ГС РАН, 2013. С. 396–407.
- 37. Артёмова Е.В. (сост.). Дополнение к каталогу землетрясений Сахалина за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.