ПРИАМУРЬЕ И ПРИМОРЬЕ

Н.С. Коваленко¹, Т.А. Фокина¹, Д.А. Сафонов^{1,2}

¹Сахалинский филиал ФИЦ ЕГС РАН, г. Южно-Сахалинск, kovalenko@seismo.sakhalin.ru ²Институт морской геологии и геофизики ДВО РАН, г. Южно-Сахалинск, d.safonov@imgg.ru

Сеть станций. Условия для непрерывной регистрации землетрясений на территории Приамурья и Приморья в 2011 г., по сравнению с таковыми в 2010 г. [1], не изменились.

На территории региона продолжили свою работу восемь аналоговых сейсмических станций («Бомнак» (BMKR), «Кировский» (KROS), «Октябрьский» (ОСТВ), «Зея» (ZEA), «Горный» (GRNR), «Экимчан» (EKMR), «Николаевск-на-Амуре» (NKL), «Терней» (TEY)), на трех станциях («Горный», «Зея», «Терней») велась параллельная регистрация цифровыми комплектами аппаратуры, а также три станции («Хабаровск» (KHBR), «Горнотаежное» (GRTR), «Охотск» (ОКНТ)) были чисто цифровыми. Данные о станциях и параметры аппаратуры приведены в [2].

Длительность простоев в работе сейсмических станций в 2011 г. значительно сократилась по сравнению с таковыми в 2010 г., что в целом положительно повлияло на результаты сводной обработки. Лишь простои на сейсмической станции «Кировский» в третьем квартале 2011 г. несколько негативно отразились на результатах в этот период времени.

Карта представительности M_{\min} в 2011 г. (рис. 1) претерпела небольшие изменения, по сравнению с аналогичной картой в 2010 г. [1], по причине отсутствия данных с сейсмической станции «Кульдур» [3].

Действующая в 2011 г. сеть станций (рис. 1) обеспечила в районе станций «Кировский», «Бомнак», «Зея», «Ясный», «Экимчан» представительный уровень магнитуды $M_{\min}^{-}=2.0$ ($K_{\min}\approx 8$). На значительной территории Приамурья и Приморья не должны быть пропущены землетрясения с *M*_{min}=3 (*K*_{min}≈9), но в южной части региона, на большей части территории Китая уверенно могут регистрироваться лишь события с М_{тіп}=3.5 (К_{тіп}≈10). Пересчет классов К_Р в магнитуды выполнен по формуле Т.Г. Раутиан из [4]: $M_{\text{pacy}} = (K_{\text{P}} - 4)/1.8$.

Методика обработки. Для локации землетрясений региона привлекались данные всех сейсмических станций сети Сахалинского филиала ГС РАН (Приамурья и Приморья [2], Сахалина [5], Курил [6]), а также станционные бюллетени Прибайкалья, Якутии, Сейсмологический бюллетень ГС РАН (MOS) [7], сведения агентств IDC, NEIC, JMA, ISC из бюллетеня ISC [8].

Рис. 1. Карта магнитудной представительности землетрясений *M*_{min} Приамурья и Приморья в 2011 г.

1 – сейсмическая станция; 2 – изолиния M_{\min} ; 3 – номер и граница района; 4 – граница региона; 5 – государственная граница.

Методика обработки данных [9–14], границы региона и сейсмоактивных районов [15] не изменились, по сравнению с таковыми в 2010 г. [1].

В региональный каталог [16], схема содержания которого изображена на рис. 2, включены основные параметры 1075 сейсмических событий, из них 451 – коровые ($h=3-24 \ \kappa m$) землетрясения, 3 – глубокофокусные с $h=420-555 \ \kappa m$, а 621 событие отнесено к категории «возможно взрыв».

Рис. 2. Схема содержания каталога землетрясений Приамурья и Приморья в 2011 г.

Рис. 3. Распределение ежемесячных чисел взрывов, землетрясений и всех сейсмических событий Приамурья и Приморья в 2011 г.

Рис. 4. Карта эпицентров взрывов на территории Приамурья и Приморья в 2011 г.

 энергетический класс K_P; 2 – сейсмическая станция;
площадка взрывных работ; 4 – граница условного района; 5 – граница региона Приамурья и Приморья; 6 – государственная граница. На рис. 3 дано помесячное распределение взрывов, землетрясений и всех событий вместе. Как видим, наибольшее число (N=73) землетрясений зарегистрировано в октябре, наименьшее (N=20) – в декабре.

Взрывы. Методика обработки взрывов не изменилась: продолжалась работа по распознаванию записей промышленных взрывов в соответствии с рекомендациями в [17]. Но, как и ранее, надо признать, что не всегда уверенно можно было идентифицировать записи событий и, возможно, небольшая часть взрывов попала в категорию тектонических землетрясений.

Изменения в местоположении площадок взрывных работ и карта эпицентров событий «возможно взрыв» представлены на рис. 4. Новая площадка взрывных работ появилась восточнее Экимчана – здесь начал работу Албынский рудник. Немного видоизменились площадки к западу от Зейского водохранилища. Не зарегистрированы взрывы в районе Кульдура, а также взрывы в окрестностях г. Хэган на территории Китая.

В итоге, суммарное число взрывов на территории Приамурья и приграничного Китая несколько уменьшилось и составило N=621 [16], а в 2010 г. их было N=771 [1]. В Приморском крае взрывы малых энергий не регистрируются по причине слабой оснащенности территории сейсмическими станциями.

Число техногенных событий в 2011 г. превосходило число зарегистрированных тектонических землетрясений в 1.4 раза (так же, как и в 2010 г. [1]). Максимальная активность взрывных работ отмечается в феврале (N=96) и в апреле (N=105) (рис. 3). Диапазон энергетических классов взрывов составил K_P =5.4–9.0, а величина суммарной сейсмической энергии равна $\Sigma E_{взp}$ =1.5·10¹⁰ Дж, что в полтора раза ниже суммарной энергии взрывов за 2010 г. ($\Sigma E_{взp}$ =2.5·10¹⁰ Дж [1]), но составляет менее 1 % годовой суммарной сейсмической энергии коровых землетрясений. Самый сильный (K_P =9.0) взрыв был зарегистрирован 16 августа в 02^h54^m западнее Экимчана, на площади Маломырского рудника.

Распределение взрывов по районам региона представлено в табл. 1. В Становом районе $N \ge 1$ их число уменьшилось в 1.6 раза (с N=293 в 2010 г. до N=182 в 2011 г.), при этом энергетический диапазон существенно не изменился и составил $K_P=5.4-8.4$. Также наблюдается некоторое

125

Зейско-Селемджинский

3

уменьшение объема взрывных работ в Янкан-Тукурингра-Джагдинском районе № 2 (с N=316 в 2010 г. до N=285 в 2011 г.). На 13 % больше зарегистрировано взрывов в Зейско-Селемджинском № 3. Число взрывов в Турано-Буреинском районе составило N=18, что соразмерно с таковым в 2010 г. (N=13). В Приграничном районе № 6 (на территории КНР) число зарегистрированных взрывов значительно уменьшилось (с N=35 в 2010 г. до N=11в 2011 г.). Зарегистрированы взрывы в районе карьера «Гулянь», на крайнем западе района. В районе № 5 существующей сетью станций взрывы не зарегистрированы.

№	Район	N_{Σ}	K _{min} –K _{max}	№	Район	N_{Σ}	$K_{\min}-K_{m}$
1	Становой	182	5.4-8.4	4	Турано-Буреинский	18	6.2-8.1
2	Янкан-Тукурингра-Джагдинский	285	5.4-9.0	5	Сихотэ-Алиньский	0	

6

Приграничный

6.4-8.4

11

Таблица 1. Распределение числа взрывов в регионе Приамурья и Приморья в 2011 г.

5.7-8.5

Карта эпицентров землетрясений представлена на рис. 5. Наибольшая плотность эпицентров землетрясений наблюдается в западной и северо-западной части региона. Высокий уровень сейсмической активности зафиксирован в районе № 2 на Южно-Тукурингрском разломе, где 14 октября 2011 г. в $06^{h}10^{m}$ в Сковородинском районе Амурской области произошло самое сильное (K_{P} =15.4, MLH=6.2) коровое (h=18±4 км) землетрясение (8) с интенсивностью I_{0} =7–8 баллов [18] по шкале MSK-64 [19]. Это землетрясение – самое сильное событие в указанном районе за весь период инструментальных сейсмологических наблюдений. Оно получило название «Сковородинское». Подробный обзор этого уникального события дан в отдельной статье наст. ежегодника [20].

Рис. 5. Карта эпицентров землетрясений Приамурья и Приморья в 2011 г.

1 – энергетический класс *K*_P; 2 – магнитуда *MPVA*; 3 – глубина *h* гипоцентра, *км*; 4 – стереограмма механизма очага, нижняя полусфера, зачернена область волн сжатия; 5, 6 – аналоговая и цифровая сейсмическая станция соответственно; 7 – номер и граница условного района; 8, 9 – граница региона и государственная соответственно.

На территории Амурско-Зейской равнины, а также в центральной и восточной областях хребта Сихотэ-Алинь наблюдалось сейсмическое затишье. Глубокофокусная сейсмичность представлена лишь тремя землетрясениями на юге Приморья. Остальная территория региона характеризуется умеренным, фоновым уровнем сейсмической активности.

В каталоге за 2011 г. имеются макросейсмические сведения еще по шести коровым землетрясениям. Три из них с интенсивностью $I_{max}=2-3$ балла явились афтершоками Сковородинского землетрясения. Землетрясение (2) с $K_P=12.7$, MLH=4.5, которое произошло 15 января в $00^{h}43^{m}$ с эпицентром на территории Китая, ощущалось жителями Благовещенска с интенсивностью I=2-3 балла. Интенсивность сотрясений от землетрясений 5 февраля в $12^{h}42^{m}$ с $K_P=11.7$ в районе сейсмической станции «Горный» и 15 ноября в $22^{h}43^{m}$ с $K_P=10.2$ – в районе Экимчана не превышала $I_{max}=3$ балла [16, 18].

Самое сильное (*MPVA*=6.2) глубокофокусное (h=554±8 км) землетрясение (5) произошло 10 мая в 15^h26^m западнее г. Владивосток. В его очаге выделилась энергия, равная ΣE =4.5·10¹⁴ Дж.

Для Сковородинского землетрясения и вышеназванного глубокофокусного события (1) определены механизмы очага (рис. 5, [21]).

В табл. 2 приведены распределение коровых землетрясений по энергетическим классам $K_{\rm P}$ и суммарная сейсмическая энергия ΣE по данным каталогов Приморья и Приамурья за 2000–2011 гг. [16, 22], а на рис. 6 показаны годовые числа коровых землетрясений и суммарная сейсмическая энергия за этот период. Сравнение значений N_{Σ} и ΣE за 2000–2011 гг. проводится для землетрясений с $K_{\rm P} \ge 7.6$. Здесь следует заметить, что, несмотря на проведенные работы по выявлению взрывов, в число тектонических землетрясений могут входить и взрывы, которые не удалось выявить при обработке. Энергетический класс промышленных взрывов на территории Приамурья и Приморья в редких случаях превышает $K_{\rm P} \ge 8.5$.

Как следует из табл. 2, число коровых землетрясений (N=186) с $K_P \ge 7.6$, зарегистрированных в регионе в 2011 г., немного ниже их среднегодового значения (N=200) в период наблюдений 2000–2010 гг. Тем не менее, суммарная сейсмическая энергия за 2011 г., равная $\Sigma E=2.5 \cdot 10^{15} Д ж$, повысилась примерно в 350 раз, по сравнению с таковой в 2010 г. ($\Sigma E=7.1 \cdot 10^{12} Д ж$). Исходя из данных табл. 2, следует заметить, что выделившаяся суммарная сейсмическая энергия коровых землетрясений в 2011 г. в 16 раз выше суммарного показателя выделившейся энергии за последние одиннадцать лет наблюдений.

			N	ΣΕ,						
Тод	8	9	10	11	12	13	14	15	N_{Σ}	10 ¹² Дж
2000	108	43	13	5	1				170	1.7
2001	131	35	10	3	2				181	2.8
2002	133	34	7	4	1				179	3.6
2003	193	44	17	1	6				261	9.1
2004	185	46	16	8	2	1			258	35.7
2005	138	52	15	5	5				215	8.9
2006	111	36	10	1	1				159	1.0
2007	100	50	7	3	4	2			166	46.2
2008	142	41	17	5	1		1		207	41.4
2009	121	46	19	9	2				197	3.5
2010	144	44	16	3	2	1			210	7.1
Сумма	1506	471	147	47	27	4	1		2203	161.0
Среднее	136.9	42.8	13.4	4.3	2.5	0.4	0.1		200.3	14.6
2011	94	53	27	8	2	1		1	186	2519.4

Таблица 3. Распределение коровых землетрясений по энергетическим классам и суммарная сейсмическая энергия Σ*E* за 2000–2011 гг. с *K*_P≥7.6

Графическое представление годовых значений числа коровых землетрясений и суммарной энергии из табл. 2 дано на рис. 6.

Рис. 6. Изменение ежегодного числа коровых землетрясений Приамурья и Приморья и суммарной сейсмической энергии Σ*E* за 2000–2011 гг.

Рис. 7. Изменение числа коровых землетрясений и суммарной сейсмической энергии по месяцам в течение 2011 г.

Число всех зарегистрированных коровых землетрясений в 2011 г. в регионе «Приамурье и Приморье» равно N=451, что на 17 % ниже соответствующего числа в 2010 г. (N=543) [1]. Несмотря на это, суммарная сейсмическая энергия коровых землетрясений (табл. 3, рис. 6) повысилась до величины $\Sigma E=2.519\cdot10^{15} \ Д ж$, что в 352 раза выше такового значения ($\Sigma E=7.1\cdot10^{12} \ Д ж$) в 2010 г. [1]. Наибольший всплеск коровой сейсмической активности пришелся на октябрь месяц, когда произошло Сковородинское землетрясение и выделилось $\Sigma E=2.512\cdot10^{15} \ Д ж$ (рис. 7) энергии, что составляет 99.7 % от суммарной годовой сейсмической энергии коровых землетрясений, что делает события октября 2011 г. уникальными относительно всего периода инструментальных наблюдений.

Таблица 4. Распределение коровых землетрясений по энергетическому классу K_P, глубокофокусных – по магнитуде *MPVA* и суммарная сейсмическая энергия Σ*E* по районам Приамурья и Приморья в 2011 г.

h≤30 км														
N⁰	Районы		K _P									N_{Σ}	ΣE ,	
		5	6	7	8	9	10	11	12	13	14	15		10 ¹² Дж
1	Становой	5	35	54	17	5	2	1					119	0.092
2	Янкан-Тукурингра-Джагдинский	2	50	79	56	22	16	5	1			1	232	2513.52
3	Зейско-Селемджинский		5	7	4	1							17	0.001
4	Турано-Буреинский		4	15	15	14	7	2	1				58	0.768
5	Сихотэ-Алиньский				1	3	1						5	0.012
6	Приграничный		2	7	1	7	2			1			20	5.033
	Всего	7	96	162	94	52	28	8	2	1		1	451	2519.426

h≥200 км

№	Районы		MF	N_{Σ}	ΣE ,		
		4	5	6	7	_	10 ¹² Дж
5	Сихотэ-Алиньский	1	1	1		3	454.583
6	Приграничный						0
	Всего						454.583

Примечание. При составлении таблицы величина глубокофокусных землетрясений приводилась к магнитуде *M* путем пересчета из магнитуды *MPVA* по формуле – *MS* =1.85 ·*MPVA*–4.9 (*h*>390 км) из [23]; сейсмическая энергия затем рассчитывалась по формуле Гуттенберга-Рихтера – lg*E*, *Дж*=4.8+1.5 *MS* [24].

В 2011 г. в регионе «Приамурье и Приморье» существующей немногочисленной сетью станций зарегистрировано лишь три глубокофокусных землетрясения против пяти в 2010 г. Их суммарная сейсмическая энергия составила $\Sigma E=4.5 \cdot 10^{14} \ Дж$, что в 8 раз ниже выделившейся энергии в 2010 г. [1]. Эпицентры глубокофокусных землетрясений располагались на юге Приморского края, в районе № 5 (рис. 5).

В табл. 3 дано распределение числа коровых землетрясений по энергетическому классу $K_{\rm P}$, а глубокофокусных – по магнитуде *MPVA*, а также рассчитана суммарная сейсмическая энергия по районам региона за 2011 г. Наибольшее число (*N*=232) землетрясений с очагами в земной коре, как и в 2010 г., произошло в Янкан-Тукурингра-Джагдинском районе (*N*2). И лишь пять коровых землетрясений в 2011 г. было зарегистрировано в Сихотэ-Алиньском районе (*N*5), т.е. на два события больше, чем в 2010 г.

На рис. 8 приведены распределения числа коровых землетрясений и суммарной сейсмической энергии по районам региона, а на рис. 9 показано сравнительное распределение величины сейсмической энергии по районам за 2010–2011 гг. Максимальное количество (99.8 %) высвобожденной сейсмической энергии коровых землетрясений отмечено в Янкан-Тукурингра-Джагдинском районе (№ 2) (табл. 3, рис. 8 и 9).

Рис. 8. Распределение числа коровых землетрясений (1) и суммарной сейсмической энергии (2) Σ*E* по шести районам Приамурья и Приморья в 2011 г.

Рис. 9. Изменение суммарной сейсмической энергии Σ*E* коровых землетрясений по районам Приамурья и Приморья в 2010–2011 гг.

Далее приводится обзор сейсмичности в каждом из условно выделенных районов региона.

В Становом районе (\mathbb{N} 1) в 2011 г. уровень сейсмической активности заметно снизился. Здесь зарегистрировано 119 коровых землетрясений, что на 26 % меньше числа зарегистрированных землетрясений в 2010 г. (N=161) [1]. Их суммарная сейсмическая энергия, равная ΣE =0.092·10¹² Дж, ниже соответствующей величины (ΣE =5.6·10¹¹ Дж) в 2010 г. в 6 раз (табл. 3, рис. 8 и 9).

Наиболее сильное (K_P =10.8) землетрясение (7) произошло 4 августа в 23^h34^m с h=10±8 км. Эпицентр землетрясения находился на стыке 1, 2, 4 районов, на правобережной части среднего течения р. Уда. Сведений по интенсивности не поступало.

Еще одно заметное (K_P =10.2) землетрясение произошло 6 июля в 14^h03^m на севере района, в хребте Тонинский Становик, являющемся частью Станового хребта (рис. 5). Данное землетрясение в течение последующих десяти дней сопровождалось четырьмя афтершоками с K_P =7.1–8.4.

В течение всего 2011 г. регистрировались слабые (K_P =5.3–9.6) события севернее Бомнака, на границе с Якутией и в западной части района (рис. 5). Весьма вероятно, что небольшая часть событий этих мест имеет техногенное происхождение.

Крайняя восточная часть района слабо оснащена сейсмическими станциями и отчасти по этой причине имеет дефицит событий низких энергетических классов.

Янкан-Тукурингра-Джагдинский район (№ 2) явился самым сейсмоактивным в 2011 г. Здесь было зарегистрировано N=232 коровых землетрясения (табл. 3, рис. 8 и 9), что на 15 % больше, чем в 2010 г. (N=198), а количество выделившейся суммарной сейсмической энергии в данном районе увеличилось в $28\cdot10^3$ раз по сравнению с таковой в 2010 г. ($\Sigma E=2.513\cdot10^{15}$ Дж вместо $\Sigma E=8.9\cdot10^{10}$ Дж [1]). Причиной столь высокого показателя энергии в данном районе является сильное Сковородинское землетрясение (8), которое произошло 14 октября с MLH=6.2, и сопутствующие ему афтершоки (наиболее сильные – 9, 10, 11, 12, 13, 14) [16, 20].

В итоге, наиболее активным на территории района остается Тукурингро-Джагдинский пояс, к которому относится и очаг Сковородинского землетрясения. Также к нему приурочено

и наибольшее число эпицентров землетрясений данного района. Несколько землетрясений с $K_P \leq 10.5$ зарегистрированы в непосредственной близости к южной части Зейского водохранилища, пересекая его в широтном направлении. Наиболее сильное ($K_P=10.5$) землетрясение на этом участке произошло 23 июня в $17^{h}13^{m}$ западнее водохранилища, в отрогах хребта Тукурингра, на глубине $h=17\pm2 \kappa M$.

В восточной части района, ранее находившейся в спокойном сейсмическом состоянии, северо-западнее Экимчана, 15 ноября $22^{h}43^{m}$ произошло ощутимое землетрясение с $K_{P}=10.2$ и $h=11\pm1 \ \kappa m$. В пос. Токур интенсивность вызванных им колебаний составила 3 балла, в пос. Экимчан – 2–3 балла [18].

В Зейско-Селемджинском районе (№ 3) в 2011 г. число зарегистрированных землетрясений соизмеримо с таковым в 2010 г. (*N*=17 в 2011 г. против *N*=19 в 2010 г.) [1], количество суммарной сейсмической энергии района также соответствует показателю в 2010 г. (табл. 3, рис. 8 и 9).

Наиболее сильное (*K*_P=8.7) землетрясение произошло 10 декабря в 19^h45^m с *h*=10±2 км в северо-восточной части Амурско-Зейской равнины. Вся центральная и восточная части района являются в 2011 г. асейсмичной зоной.

Большая часть слабых (K_P =5.6–7.8) землетрясений группируется в северо-западной части района (рис. 5). Здесь не исключается засорение каталога взрывами, поскольку, так же как и в 2010 г., в этом месте проводились взрывные работы (рис. 4).

Некоторое слабое проявление сейсмичности отмечено вдоль границы с КНР.

В **Турано-Буреинском районе** (№ 4) в 2011 г. уровень сейсмической активности заметно снизился. Отчасти на показатель числа зарегистрированных событий повлияло отсутствие данных с сейсмической станции «Кульдур».

На 41 % уменьшилось число зарегистрированных землетрясений (N=58) по сравнению с таковым в 2010 г. (N=99). Количество выделившейся суммарной сейсмической энергии также уменьшилось до ΣE =7.7·10¹¹ Дж, что в 7 раз ниже соответствующей величины (5.3·10¹² Дж [1]) в 2010 г. (табл. 3, рис. 8, 9).

Самое сильное (K_P =11.7, MLH=4.0) землетрясение (3) в данном районе произошло 5 февраля в 12^h42^m с h=14±4 км. Эпицентр землетрясения располагался в отрогах Баджальского хребта. В поселках Джамку, Амгунь интенсивность сотрясений составила I_{max} =3 балла. Оно в этот же день (в 15^h21^m) сопровождалось слабым афтершоком с K_P =8.6 [16].

Небольшое скопление эпицентров землетрясений наблюдалось в окрестностях пос. Кульдур. Наиболее значительное ($K_{\rm P}$ =11.0) здесь событие (4) произошло 3 апреля в 07^h43^m на глубине *h*=9±3 км.

Южнее пос. Экимчан, в отрогах хребта Туран, 26 июня в $15^h 34^m$ произошло землетрясение (6) с $K_P=10.7$ и $h=15\pm 2$ км.

Некоторое небольшое скопление эпицентров землетрясений наблюдается юго-западнее пос. Экимчан. Насколько известно, здесь в 2011 г. началось промышленное освоение этих (оставить одно из выделенных слов) земель и появилась вероятность попадания в каталог землетрясений техногенного происхождения.

Энергетический класс остальных землетрясений, эпицентры которых более или менее равномерно расположились по территории района, исключая асейсмичную восточную часть района, не превышал K_P =10.4.

В Сихотэ-Алиньском районе (№ 5) в 2011 г. зарегистрировано пять коровых землетрясений с $K_P=8.2-9.9$, суммарная сейсмическая энергия которых составила $\Sigma E=1.2 \cdot 10^{10} \ \mathcal{Д} \mathscr{W}$. (табл. 3, рис. 8 и 9), немного превысив аналогичный показатель в 2010 г. ($\Sigma E=1.1 \cdot 10^{10} \ \mathcal{Д} \mathscr{W}$), когда число землетрясений равнялось трем. Два наиболее заметных коровых землетрясения с $K_P=9.4$ и 9.9 зарегистрированы последовательно друг за другом 22 сентября в 15^h00^m и 15^h01^m, соответственно, западнее оз. Ханка, на границе с Китаем. На этом же пространстве в феврале было зарегистрировано землетрясение с $K_P \leq 8.2$.

Эпицентры двух более слабых ($K_P \leq 8.7$) землетрясений расположились восточнее и западнее Хабаровска (рис. 5).

Число зарегистрированных глубокофокусных землетрясений в районе в 2011 г. снизилось (с *N*=7 в 2010 г. до *N*=3 в 2011 г.). Их эпицентры располагаются на континентальной части юга Приморского края (рис. 5). Суммарная сейсмическая энергия глубокофокусных землетрясений

района снизилась в 13 раз, по сравнению с таковой в 2010 г., и составила $\Sigma E=4.5 \cdot 10^{14} \ Дж$. Наиболее сильное (*MPVA*=6.2) глубокофокусное землетрясение (5) произошло 10 мая в $15^{h}26^{m}$ западнее Владивостока. Гипоцентр землетрясения находился на глубине $h=554\pm8 \ \kappa M$. Данных о макросейсмических проявлениях этого события из населенных пунктов Приморья не поступало. Ранее, 7 января, в этом же месте на глубине $h=555\pm5 \ \kappa M$ было зарегистрировано землетрясение (1) с *MPVA*=5.4, в очаге которого реализовалась подвижка типа взбросо-сдвиг.

Еще одно глубокофокусное событие здесь произошло 25 февраля в $17^{h}00^{m}$ юго-западнее Тернея с *MPVA*=4.4 и *h*=420 км (рис. 5).

Существующая сеть сейсмических станций не позволяет надежно регистрировать глубокие землетрясения, относящиеся к Приморской части Камчатско-Курило-Японской зоны субдукции. Для более полного представления о сейсмичности района № 5 следует отметить, что в бюллетене ISC [8] имеется еще 8 событий с магнитудой m_b =3.2–3.5, произошедших на глубине h=350–576 км. Параметры этих землетрясений приведены в дополнительном каталоге [25].

В Приграничном районе (№ 6) число коровых землетрясений (N=20) уменьшилось на 31.7 %, по сравнению с таковым в 2010 г. (N=63 [1]). Несмотря на это, суммарная сейсмическая энергия коровых землетрясений, равная $\Sigma E=5.0 \cdot 10^{12} \ \mathcal{Д} \mathcal{K}$ (табл. 3, рис. 8 и 9), возросла в 4 раза, по сравнению с таковой в 2010 г. ($\Sigma E=1.2 \cdot 10^{12} \ \mathcal{Д} \mathcal{K}$ [1]).

Самое сильное (K_P =12.7, MLH=4.5) коровое землетрясение (2) произошло 15 января в 00^h43^m на территории Китая, к северо-западу от известного курорта Удалянчи, территория которого входит в вулканический ареал Удалянчи-Эркэшань-Келуо [26]. Очаг землетрясения был локализован на глубине h=15±3 км.

Наибольшее число эпицентров коровых землетрясений с K_P =8.7–9.7 концентрируется в восточной части района, вблизи разломной зоны Тан-Лу. Западная часть района характеризуется слабой сейсмичностью. Энергетический класс происходивших здесь немногочисленных землетрясений не превышал K_P =8.1. В районе западной границы района продолжают регистрироваться промышленные взрывы (рис. 4).

В Приграничном районе в 2011 г. глубокофокусных землетрясений не зарегистрировано.

В заключение можно сказать, что в целом 2011 год стал самым сейсмоактивным за все время инструментальных наблюдений, начиная с 1901 г. Явный всплеск коровой сейсмической активности пришелся на октябрь месяц, когда в Янкан-Тукурингра-Джагдинском районе (№ 2), в Амурской области произошло сильное Сковородинское землетрясение, вызвавшее на земной поверхности проявления с интенсивностью до 7–8 баллов.

В остальных районах сохранялся умеренный уровень сейсмической активности.

Особенностью 2011 г., также как и 2010 г., явилось большое число взрывов, превосходящее число тектонических землетрясений.

Литература

- 1. Коваленко Н.С., Фокина Т.А., Сафонов Д.А. Приамурье и Приморье // Землетрясения Северной Евразии, 2010 год. Обнинск: ФИЦ ЕГС РАН, 2016. С. 178–189.
- 2. Михайлов В.И. (отв. сост.). Сейсмические станции Приамурья и Приморья в 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- 3. Результаты комплексных сейсмологических работ (отчет СФ ГС РАН за 01.01.2011– 31.12.2011). – Южно-Сахалинск: Фонды СФ ГС РАН, 2011. – 217 с.
- 4. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности. (Труды ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 5. Костылев Д.В. (сост.). Стационарные сейсмические станции и сеть цунами Сахалина в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 6. Костылев Д.В. (сост.). Сейсмические станции Курило-Охотского региона в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 7. Сейсмологический бюллетень (ежедекадный) за 2011 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2011–2012. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2011*.

- 8. International Seismological Centre (ISC), On-line Bulletin, Internatl. Seis. Cent., Thatcham, United Kingdom, 2014. URL: *http://www.isc.ac.uk/iscbulletin/search/bulletin/.*
- Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. Методические работы ЕССН. – М.: Наука, 1989. – С. 32–51.
- Оскорбин Л.С., Бобков А.О. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т.VI. (Проблемы сейсмической опасности Дальневосточного региона). – Южно-Сахалинск: ИМГиГ, 1997. – С. 179–197.
- 11. Шолохова А.А., Оскорбин Л.С., Рудик М.И. Землетрясения Приамурья и Приморья // Землетрясения в СССР в 1985 году. М.: Наука, 1987. С. 135–139.
- Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология. Вып. 12). – М.: Наука, 1979. – С. 45–58.
- Поплавская Л.Н., Нагорных Т.В., Рудик М.И. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока // Землетрясения Северной Евразии в 1995 году. – М.: ГС РАН, 2001. – С. 95–99.
- 14. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 192 с.
- 15. Габсатарова И.П. Границы сейсмоактивных регионов России с 2004 г. // Землетрясения России в 2004 году. Обнинск: ГС РАН, 2007. С. 139.
- Коваленко Н.С. (отв. сост.), Авдеева Л.И., Донова Т.Я. (отв. сост.). Каталог землетрясений и взрывов Приамурья и Приморья за 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- 17. Годзиковская А.А. Местные взрывы и землетрясения. Личный архив, 2000. 108 с.
- Коваленко Н.С. (отв. сост.), Сафонов Д.А., Радзиминович Я.Б., Артёмова Е.В. (сост.). Макросейсмический эффект ощутимых землетрясений в населенных пунктах Приамурья и Приморья в 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- 19. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с
- Сафонов Д.А., Коваленко Н.С., Радзиминович Я.Б. Сковородинское землетрясение 14 октября 2011 г. с К_Р=15.4, Мw=6.0, I₀=8 (Верхнее Приамурье) // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – С. 405–417.
- 21. Сафонов Д.А. (отв. сост.). Каталог механизмов очагов землетрясений Приамурья и Приморья за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 22. Каталоги землетрясений и взрывов Приамурья и Приморья за 2000–2010 гг. // Землетрясения Северной Евразии, 2000–2010 гг. Обнинск: ГС РАН, 2006–2016. (На СD).
- Кондорская Н.В., Горбунова И.В., Киреев И.А., Вандышева Н.В. О составлении унифицированного каталога сильных землетрясений Северной Евразии по инструментальным данным (1901–1990 гг.) // Сейсмичность и сейсмическое районирование Северной Евразии. Вып. 1. М.: АН СССР, 1993. С. 70–79.
- 24. Gutenberg B., Richter C. Magnitude and energy of earthquakes // Ann. di Geofisika, 1956. 1. N 9. 1–15 p.
- Артёмова Е.В., Коваленко Н.С. (сост.). Дополнение к каталогу землетрясений Приамурья и Приморья за 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- 26. **Сахно В.Г.** Новейший и современный вулканизм юга Дальнего Востока. Владивосток: Дальнаука, 2008. 128 с