КУРИЛО-ОХОТСКИЙ РЕГИОН

Т.А. Фокина¹, Д.А. Сафонов^{1,2}, Е.Н. Дорошкевич¹, Д.В. Костылев¹

¹Сахалинский филиал ФИЦ ЕГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru ²Институт морской геологии и геофизики ДВО РАН, г. Южно-Сахалинск, d.safonov@imgg.ru

Региональная сеть и карта M_{min} . Сеть сейсмических станций на территории Курило-Охотского региона в 2011 г. состояла из четырех станций: «Северо-Курильск» (SKR), «Курильск» (KUR), «Южно-Курильск» (YUK) и «Шикотан» (SHO). Станция «Шикотан» на о. Шикотан в пос. Малокурильское, работавшая ранее с 01.11.1958 г. [1] по ноябрь 1996 г. [2] в координатах φ =43.87°N, λ =146.83°E, h=55 M, открыта заново 28 ноября 2009 г. в координатах φ =43.87°N, λ =146.834°E, h=30 M с новым названием «Малокурильское» [3] уже в рамках мероприятия № 18 Федеральной целевой программы «Снижение рисков и смягчение последствий чрезвычайных ситуаций природного и техногенного характера в РФ до 2010 года» (рис. 1). Код

станции «SHO» остался прежним [3, 4]. В октябре 2010 г. в рамках этой же ФЦП на о. Парамушир были открыты два выносных пункта станции «Северо-Курильск»: «Плато» и «Шумшу», а в 2011 г. на о. Кунашир открыты четыре выносных пункта станшии «Южно-Курильск»: «Головнино», «Лагунное», «Менделеево» и «Туман», карта представительности землетрясений от этого не меняется, поскольку, во-первых, пункты оборудованы акселерометрами, которые регистрируют только сильные землетрясения, во-вторых, они расположены близко к своим опорным станциям и потому эти группы (станция и ее выносные пункты) являются, по сути, точками относительно Курильской эпицентральной зоны.

Сведения о местоположении курильских станций и регистрирующей аппаратуре приведены в Приложении к наст. ежегоднику [5].

Сейсмическая сеть из курильских станций совместно со станциями Приамурья–Приморья [6] и Сахалина [7] обеспечила на значительной части территории Курило-Охотского региона регистрацию без пропусков землетрясений с расчетной магнитудой $M^P>4.0$ ($K_C>9$), а на территории Онекотан-Матуанского района и северо-восточной части Охотского моря без пропусков могут регистрироваться лишь события с $M^P>4.5$

Рис. 1. Карта магнитудной представительности землетрясений M_{\min} Курило-Охотского региона в 2010 г.

1 – изолиния *M*_{min}; 2 – сейсмическая станция; 3 – граница и номер района соответственно; 4 – граница региона; 5 – ось глубоководного Курило-Камчатского желоба.

 $(K_{C} \ge 10)$. И только на небольшом участке юго-западной части Охотского моря, находящемся в окружении трех региональных станций, представительными являются землетрясения с $M^{P} \ge 3.5$ ($K_{C} \ge 8$). Карта магнитудной представительности в пределах границ Курило-Охотского региона показана на рис. 1, она не изменилась по сравнению с картой за 2010 г. [8].

Методика обработки землетрясений, изложенная в [9–17], не изменилась. Попрежнему для определения параметров землетрясений региона привлекались инструментальные данные сейсмических станций Приамурья и Приморья [6] и Сахалина [7], а также бюллетени ГС РАН [18], ЈМА и ISC [19]. Границы региона оставались в рамках изменений 2004 г., когда северо-восточная часть региона вошла в зону ответственности Камчатского филиала ГС РАН, а юго-западная часть (о. Хоккайдо и Японское море) была исключена из зоны ответственности СФ ГС РАН, т.к. для этой территории существуют значительно более представительные каталоги, составляемые в Японии [20, 21]. Но небольшая восточная часть острова, отрезанная по меридиану λ=144° (рис. 1), осталась как район № 6.

Для расчета энергии землетрясений используются расчетные магнитуды M^P . Если для мелкофокусных ($h \le 80 \text{ км}$) толчков определена магнитуда MLH по стандартной методике [22], то она и берется в качестве расчетной магнитуды. Для всех остальных землетрясений производится пересчет (или из класса K_C , или из разных магнитуд MPV, MPVA, MSH, MSHA) по формулам связи магнитуд по объемным и поверхностным волнам С.Л. Соловьёва и О.Н. Соловьёвой из [14–16]:

– для событий с глубиной *h*≤80 км: M^{P} =*MLH*; M^{P} =(*K*_C−1.2)/2; M^{P} =(*MSH*−1.71)/0.75; M^{P} =(*MPV*−2.5)/0.65; M^{P} =(*MSH*−1.71)/0.75; M^{P} =(*MPV*−2.5)/0.65;

– для событий с $h>80 \ \kappa M$: $M^{P}=(MSH-1.71)/0.75$; $M^{P}=(MPV-2.5)/0.65$; $M^{P}=(K_{C}-1.2)/2$; $M^{P}=(MSHA-1.71)/0.75$; $M^{P}=MLH$; $M^{P}=(MPVA-2.5)/0.65$.

Каталоги региона в 2011 г. Результаты обработки записей землетрясений, сбора сведений о знаках первых вступлений *P*-волн, о макросейсмических данных представлены в наст. ежегоднике в четырех Приложениях на CD – это каталог всех землетрясений Курило-Охотского региона [23], каталог только ощутимых землетрясений с представлением всех пунктов ощутимости [24], каталог механизмов очагов некоторых землетрясений [25] и список названий населенных пунктов [26], в которых один или более раз отмечены сотрясения земной поверхности в 2011 г.

В региональный каталог землетрясений [23] включены параметры 758 землетрясений с $M^P = 2.5 - 6.0$ (что на 41 событие больше, чем в 2010 г. [27]). Гипоцентры 555 землетрясений (73.2 % от общего числа) локализованы в верхнем глубинном интервале с $h \le 80 \ \kappa m$, 175 (23.1 %) – в промежуточном слое с $h = 81 - 300 \ \kappa m$, а в нижнем интервале глубин $h > 300 \ \kappa m$ зарегистрировано 28 землетрясений, т.е. 3.7 %. Распределение всех землетрясений по глубине дано на рис. 2.

Существовавшая в 2011 г. сеть СФ ГС РАН не позволила зарегистрировать и обработать значительное число землетрясений, произошедших в регионе. Поэтому для получения более подробной картины сейсмичности *ред*. был составлен каталог дополнительных событий по

Рис. 2. Распределение землетрясений Курило-Охотского региона по глубине гипоцентра *h*, *км* в 2011 г.

данным международных агентств и Камчатского филиала ГС РАН [28]. В него вошли 120 событий в диапазоне магнитуд *М*=3–4 по данным [19, 29].

Для 22 землетрясений получены сведения о макросейсмических проявлениях в населенных пунктах Курильских островов. Максимальная интенсивность сотрясений на территории региона не превышала *I*=4 баллов [23, 24]. Гипоцентры ощутимых землетрясений находились в глубинном диапазоне *h*=46–157 *км*, 10 из них зафиксировано на глубине менее 80 *км*.

Помимо указанного выше числа ощутимых землетрясений, в каталоге [24] имеются сведения о 51 курильском событии, ощущавшемся на территории Японии. Сведения об этих землетрясениях добавлены *ped*. в [24]. В дополнение к имеющимся в каталоге [24] сведениям о макросейсмических проявлениях 22 курильских землетрясений в населенных пунктах Курило-Охотского региона в этот же каталог добавлены сообщения о сотрясениях на территории Японии и Камчатки для 17 событий. Наиболее сильный макросейсмический эффект отмечен для землетрясения, произошедшего 14 июня в $12^{h}48^{m}$ (Mw_{GCMT} =5.0) на востоке о. Хоккайдо, здесь наблюдались сотрясения интенсивностью *I*=IV по шкале JMA [30], что примерно соответствует *I*=7 баллов по шкале MSK-64 [31, 32]. Механизмы очагов в 2011 г. определены методом полярности первых смещений [33, 34] для 23 землетрясений Курило-Охотского региона [25], что на 4 механизма больше, чем в 2010 г. [8].

Карта эпицентров и механизмов очагов землетрясений Курило-Охотского региона в 2011 г. приведена на рис. 3. Как всегда, основная часть землетрясений располагается под западным склоном Курило-Камчатского глубоководного желоба, углубляясь в северозападном направлении.

Рис. 3. Сейсмическая сеть и карта эпицентров землетрясений Курило-Охотского региона в 2011 г.

1 – магнитуда M^P ; 2 – глубина *h* гипоцентра, *км*; 3 – стереограмма механизма очага в проекции на нижнюю полусферу, зачернены области сжатия; 4 – сейсмическая станция; 5 – граница и номер района соответственно; 6 – граница зоны ответственности сети СФ ФИЦ ЕГС РАН; 7 – ось глубоководного Курило-Камчатского желоба. Самое сильное в регионе мелкофокусное землетрясение (12) с *MLH*=6.0 произошло 4 августа в 13^h51^m в Тихом океане в 100 км к востоку от о. Шиашкотан. Оно вызвало макросейсмический эффект 2–3 балла в г. Северо-Курильск (245 км от эпицентра).

Сейсмичность региона. В табл. 1 и 2 даны распределения землетрясений по магнитудам в поверхностном (*h*≤80 *км*) и глубоком (*h*≥81 *км*) сейсмоактивных слоях в 2001–2011 гг.

Год	M ^P								N_{Σ}	N_{Σ}	ΣΕ,	ΣE ,
	≤4	4.5	5	5.5	6	6.5	7	8		$(M^{P} \ge 4.5)$	10 ¹² Дж	10 ¹² Дж (M ^P ≥4.5)
2001	239	108	26	5	4		1		383	144	4362.23	4343.75
2002	217	85	10	2	3	1			318	101	734.72	717.02
2003	256	140	33	15	9	2			455	199	1959.97	1937.82
2004	173	155	24	8	2	2	2		366	193	3887.31	3874.87
2005	150	79	16	2	2				249	99	242.22	230.36
2006	405	371	75	21	7	5	1	1	886	481	66766.49	66730.70
2007	545	283	49	8	4	1		1	891	346	89918.32	89877.22
2008	270	114	19	4	2	1			410	140	476.93	460.21
2009	316	88	15	4	2	2	1		428	112	2505.76	2489.66
2010	431	87	17	3	3				541	110	301.56	285.51
Сумма	3002	1510	284	72	38	14	5	2	4927	1925	171155.51	170947.12
Среднее	300	151	28	7	4	1.5	0.5	0.2	493	193	17115.55	17094.71
2011	465	76	11	2	1				555	90	140.35	119.03

Таблица 1. Число мелкофокусных (*h*≤80 *км*) землетрясений разных магнитуд *N*(*M*) и их суммарная сейсмическая энергия Σ*E* в Курило-Охотском регионе в 2001–2011 гг.

Примечание. Распределение землетрясений по магнитудам построено для следующих диапазонов: M^P =4.0 для M=3.8–4.2; M^P =4.5-> M=4.3-4.7; M^P =5.0-> M=4.8–5.2; M^P =5.5-> M=5.3–5.7 и т.д.

Год	M ^P							N_{Σ}	N_{Σ}	ΣΕ,	ΣΕ,		
	≤4	4.5	5	5.5	6	6.5	7	8	8.5		$(M^{\rm P} \ge 4.5)$	10 ¹² Дж	$10^{12} Дж$
													$(M \geq 4.3)$
2001	64	53	25	8	4	3	1			158	94	6087.98	6083.70
2002	64	53	32	11	3	2	1	1		167	103	65492.03	65487.96
2003	54	55	31	19	4		1			164	110	1479.57	1476.04
2004	25	21	24	13	3		1			87	62	1852.69	1851.02
2005	24	17	20	17	3	1				82	58	741.38	739.79
2006	16	22	48	31	4	2				123	107	1241.02	1240.30
2007	38	41	23	13	5	3	1			124	86	3851.16	3848.15
2008	79	46	14	18	3	1			1	162	83	380945.37	380939.56
2009	70	28	12	10	3	2				125	55	1978.18	1973.28
2010	102	46	19	8	1					176	74	190.09	185.36
Сумма	536	382	248	148	33	14	5	1	1	1368	832	463859.47	463825.16
Среднее	54	38	25	15	3	1.4	0.5	0.1	0.1	137	83	46385.95	46382.52
2011	149	34	11	7	2		1			203	54	203.59	197.21

Таблица 2. Число глубокофокусных (*h*>80 *км*) землетрясений разных магнитуд *N*(*M*^P) и суммарная сейсмическая энергия Σ*E* в Курило-Охотском регионе в 2001–2011 гг.

По совокупности данных за 2010 г. [8] были построены графики повторяемости землетрясений разных магнитуд M^P , из которых следовало, что в 2010 г. для поверхностных землетрясений можно считать представительной магнитуду M^P =4.0, для глубоких – M^P =4.5. Поскольку в 2011 г. условия регистрации существенно не менялись, представительность

землетрясений осталась прежней. Для единообразия дальнейший сравнительный анализ сейсмичности региона в 2011 г. проведен для землетрясений с *M*^P≥4.5.

Число поверхностных землетрясений с $M^P \ge 4.5$ (N=90) в 2.1 раза ниже среднего значения за 2001–2010 гг., это минимальное число за последние 11 лет. Сейсмическая энергия, высвобожденная поверхностными очагами в 2011 г. ($\Sigma E=119.03 \cdot 10^{12} \ Дж$), почти в 144 раза меньше среднего значения за предыдущие десять лет.

Рис. 4. Распределение числа мелкофокусных (а) и глубокофокусных (б) землетрясений с *M*^P≥4.5 и величины суммарной сейсмической энергии Σ*E* Курило-Охотского региона за 2001–2011 гг.

1 – число землетрясений N; 2 – среднее число землетрясений по данным за 2001–2010 гг.; 3 – сейсмическая энергия ΣE; 4 – средняя величина энергии за период 2001–2010 гг.

Глубокофокусная (*h*>80 км) сейсмическая активность оставалась умеренной: число землетрясений с $M^{p} \ge 4.5$ в 1.5 раза меньше среднего значения за 2001–2010 гг., сейсмическая энергия, высвобожденная глубокофокусными очагами в 2011 г., равная $\Sigma E=197 \cdot 21^{12} \ Дж$, в 235 раз меньше среднего значения за предыдущие десять лет.

Сейсмичность районов региона. Рассмотрим особенности сейсмического процесса в каждом из семи районов Курило-Охотского региона.

№	Район			ΣN	ΣΕ,					
		<4	4	4.5	5	5.5	6		10 ¹² Дж	
1	Парамуширский		2					2	0.12	
2	Онекотан-Матуанский	23	35	13	3		1	75	75.04	
3	Симушир-Урупский	20	81	23	2			126	18.65	
4	Северо-Итурупский	39	50	13	1			103	8.46	
5	Кунашир-Шикотанский	80	96	15	4	2		197	31.65	
6	Восток о. Хоккайдо	6	21	9	1			37	4.73	
8	Охотское море	7	5	3				15	1.70	
	Всего	175	290	76	11	2	1	555	140.35	
	h>80 км									
1	Парамуширский									
2	Онекотан-Матуанский	8	16	5	1		1	31	35.17	
3	Симушир-Урупский	3	19	9	1	3	1	36	91.19	
4	Северо-Итурупский	6	8	5	1			20	3.81	
5	Кунашир-Шикотанский	22	24	10	6	2		64	32.39	
6	Восток о. Хоккайдо	2	3	1				6	0.43	
8	Охотское море	22	16	4	2	2		46	40.61	
	Всего	63	86	34	11	7	2	203	203.59	

Таблица 3. Распределение землетрясений по магнитудам *M*^P и суммарная сейсмическая энергия Σ*E* по районам Курило-Охотского региона в 2011 г.

				1				
N⁰	Район	һ км	N_{Σ}	<i>N</i> ощут.	I _{max}	K _{C max}	M	max
							MLH	MSH
1	Парамуширский	0–30	1			8.7		
		31-45	1			9.4		
2	Онекотан-Матуанский	0-30	18			10.5		
	-	31-80	57	2	3	13.1	6.0	6.5
		81-195	31			11.9	4.5	
3	Симушир-Урупский	0-30	14			9.6		
		31-80	112			12.0	5.1	5.7
		81-175	36	1	2	12.8	4.7	6.1
4	Северо-Итурупский	0-30	21			9.2		
		31-80	82	2	2-3	12.7	4.7	5.3
		81-172	20			11.0		
5	Кунашир-Шикотанский	0-30	28			9.6		
		31-80	169	5	4	12.4	5.0	5.7
		81-170	64	11	3-4	12.1	4.5	5.6
6	О. Хоккайдо	0-30	1			9.0		
		31-80	36			10.8	4.4	
		81-144	6			9.8		
8	Охотское море	0-30	3			10.1		
	_	31-80	12	1	2-3	11.2	4.7	
		81-596	46			9.7	5.5	5.9

Таблица 4. Распределение землетрясений по интервалам глубины *h*, максимальные значения интенсивности сотрясений *I*_{max}, энергетического класса *K*_{Cmax} и магнитуд *MLH*, *MSH* в районах Курило-Охотского региона в 2011 г.

Представление о вариациях сейсмического режима в отдельных районах Курило-Охотского региона можно получить из анализа табл. 5 и рис. 5, где приведены ежегодные числа землетрясений и величина сейсмической энергии в каждом из районов за 2001–2011 гг. Сопоставление параметров сейсмичности проведено для землетрясений с магнитудой $M^P \ge 4.5$.

Год	Район									
		Nº 2		<u>№</u> 3		<u>№</u> 4]	Nº 5	Nº 8	
	N_{Σ}	ΣE								
h≤80 км										
2001	12	50.19	21	79.76	38	4078.94	35	69.10	1	0.25
2002	12	40.79	16	5.98	21	510.43	26	95.72		
2003	17	101.79	15	13.08	31	89.03	28	50.75		
2004	23	416.02	28	21.47	32	147.53	65	2047.56		
2005	12	87.63	20	18.18	17	6.89	25	13.42		
2006	220	1084.34	199	65584.81	18	16.97	38	1.58		
2007	130	89572.74	143	238.91	32	26.96	32	27.88	1	0.50
2008	24	24.61	58	400.13	24	9.97	27	19.18		
2009	29	1493.13	42	907.55	12	19.64	20	15.76	3	0.18
2010	23	16.61	31	101.83	26	148.28	25	17.51		
Сумма	502	92887.85	573	67371.7	251	5054.64	321	2358.46	5	0.93
Среднее	50.2	9288.79	57.3	6737.17	25.1	505.46	32.1	235.85	0.5	0.09
2011	17	72.49	25	12.22	14	4.98	21	24.78	3	1.24
h>80 км										
2001	5	710.14	17	357.56	10	12.79	13	4005.37	27	880.33
2002	13	1426.10	10	89.16	17	19.09	17	435.59	21	63315.52
2003	11	17.76	20	67.88	5	15.29	21	75.60	13	55.21
2004	5	32.49	13	1508.37	10	88.04	16	66.29	13	119.44

Таблица 5. Число землетрясений с *М*^P≥4.5 и их суммарная сейсмическая энергия (в единицах 10¹² Дж) по некоторым районам Курило-Охотского региона за 2001–2011 гг.

Puc. 5. Распределение ежегодных чисел землетрясений с *M*^P≥4.5 и величины суммарной сейсмической энергии Σ*E* в поверхностном (а) и глубоком (б) слое по районам Курило-Охотского региона в 2001–2011 гг.

В районах № 2 и № 3 на рис. а гистограмма числа событий ограничена значением *N*=100 в целях более наглядного представления малых значений. Усл. обозначения те же, что и на рис. 4.

В Парамуширском районе (\mathbb{N} 1) зарегистрировано лишь два мелкофокусных землетрясения, произошедшие 11 августа в 18^h55^m с K_C =8.7, h=25 км и 2 декабря в 07^h09^m с K_C =9.4, h=45 км, для которых макросейсмический эффект не отмечен. Ни одного землетрясения в промежуточном слое не зафиксировано.

Сейсмичность **Онекотан-Матуанского** (№ 2) района немного повысилась по сравнению с таковой в 2010 г., оставаясь, в целом, на низком уровне. Зарегистрировано 75 мелкофокусных землетрясений, из них 17 имеют $M^P \ge 4.5$, что в 1.4 раза меньше, чем в 2010 г., и в 3 раза меньше среднего значения за период 2001–2010 гг., суммарная сейсмическая энергия, равная

 $\Sigma E=72.49 \cdot 10^{12} \ \square m$, увеличилась в 4.4 раза, по сравнению с энергией в 2010 г., оставаясь ниже среднего значения за указанный период (табл. 5, рис. 5 а).

Сейсмическая активность в промежуточном слое тоже немного возросла: зарегистрировано 36 землетрясений, из них 7 – с $M^P \ge 4.5$, что на 2 события больше, чем в 2010 г., но меньше среднего значения за период 2001–2010 гг. При этом суммарная сейсмическая энергия, равная $\Sigma E=34.09 \cdot 10^{12} \ Дж$, увеличилась в 19 раз, по сравнению с энергией в 2010 г., оставаясь в 8.8 раза меньше среднего ее значения за указанный период (табл. 5, рис. 5 а).

Самое сильное (MLH=6.0) мелкофокусное ($h=55 \ \kappa m$) землетрясение произошло 4 августа в 13^h51^m (12 на рис. 3), оно, как уже упоминалось выше, ощущалось в г. Северо-Курильск ($\Delta=245 \ \kappa m$) с интенсивностью I=2-3 балла. Кроме этого землетрясения, в районе зафиксировано еще одно ощутимое мелкофокусное землетрясение с интенсивностью I=3 балла в г. Северо-Курильск (табл. 4). Согласно полученному механизму очага, землетрясение стало результатом взброса вдоль разрыва, ориентированного параллельно глубоководному желобу и падающего либо в направлении островной дуги, либо более круто в направлении океана. Механизм очага землетрясения соответствует региональному полю напряжения.

Самое сильное (MPV=6.3) землетрясение с гипоцентром в промежуточном слое ($h=109 \ \kappa m$) произошло 16 октября в $09^{h}47^{m}$ (22), макросейсмический эффект отмечен не был (табл. 5, рис. 5 б). Механизм очага можно классифицировать как взброс с небольшой сдвиговой компонентой, землетрясение произошло в условиях горизонтального субмеридионального сжатия.

В каталоге [25] имеются определения механизмов очагов четырех землетрясений (12, 13, 18, 22).

В Симушир-Урупском районе (\mathbb{N} 3) продолжался спад сейсмической активности в очагах двух Симуширских землетрясений (15.11.2006 г. с Mw=8.3 и 13.01.2007 г. с Mw=8.1 [35]). В 2011 г. здесь зарегистрировано 126 мелкофокусных землетрясений, из них 25 событий с $M^{P} \ge 4.5$, что в 2.3 раза меньше среднего значения за период 2001–2010 гг., а суммарная сейсмическая энергия в 551 раз меньше среднего значения за указанный период (табл. 5, рис. 5 а).

Самое сильное (*MLH*=5.1) в районе мелкофокусное землетрясение (16 на рис. 3) произошло 19 августа в 11^h39^m на глубине 40 км. Механизм очага можно классифицировать как сбросо-сдвиг, при этом одна из возможных плоскостей разрыва, ориентированная вдоль островной дуги, субвертикальна, а вторая, юго-восточного простирания, падает на юго-запад.

В слое $h=81-175 \ \kappa m$ зарегистрировано 36 землетрясений, из них 14 имеют магнитуду с $M^{P} \ge 4.5$, что в 1.5 раза меньше среднего значения за период 2001–2010 гг., суммарная сейсмическая энергия почти в 7 раз меньше среднего значения за этот период (табл. 5, рис. 5 б). Самое сильное (*MSH*=6.1) землетрясение в промежуточном ($h=100 \ \kappa m$) слое произошло 19 ноября в $22^{h}05^{m}$ (23).

Землетрясения, происходящие на Средних Курилах, как правило, на флангах Курильской гряды не ощущаются, кроме самых сильных. В 2011 г. макросейсмический эффект отмечен для одного землетрясения с эпицентром в Симушир-Урупском районе. Оно произошло 3 марта в $11^{h}52^{m}$ на глубине $h=157 \ \kappa m$ с магнитудой MSH=5.7, и ощущалось в г. Южно-Курильск ($\Delta=522 \ \kappa m$) с интенсивностью в 2 балла.

Для четырех землетрясений (3, 8, 11, 16) определены механизмы очагов.

В Северо-Итурупском районе (\mathbb{N} 4) слабая мелкофокусная сейсмическая активность еще снизилась по сравнению с 2010 г.: на глубине $h \leq 80 \ \kappa m$ произошло 103 землетрясения, из них 14 с $M^P \geq 4.5$, что в 1.9 раза меньше, чем в предыдущем году, в 1.8 раза меньше среднего значения за период 2001–2010 гг. Сейсмическая энергия в 29.8 раза меньше, чем в 2010 г., и в 101 раз меньше среднегодового значения за указанный период (табл. 5, рис. 5 а).

Самое сильное (MLH=4.7) мелкофокусное землетрясение района произошло 19 мая в 08^h55^m на глубине *h*=48 км. Оно ощущалось в г. Курильск (Δ =151 км) с интенсивностью *I*=2-3 балла.

Кроме названного землетрясения, макросейсмический эффект проявило еще одно, зарегистрированное 2 марта в $05^{h}59^{m}$ на глубине $h=52 \ \kappa m$, он также составил I=2-3 балла в г. Курильск ($\Delta=134 \ \kappa m$).

В промежуточном слое в интервале *h*=81−172 км зарегистрировано 20 землетрясений, из них 6 с *M*^P≥4.5, что в 1.6 раза меньше среднегодового числа за 2001–2010 гг., суммарная

сейсмическая энергия в 53 раза меньше среднегодового значения за указанный период (табл. 5, рис. 5 б).

Самое сильное (K_c =11.0) землетрясение с гипоцентром в промежуточном слое произошло 22 ноября в 13^h18^m на глубине *h*=116 км.

Для двух землетрясений (2, 20) определены механизмы очагов (рис. 3).

В Кунашир-Шикотанском районе (\mathbb{N} 5) мелкофокусная сейсмическая активность оставалась на невысоком уровне: общее число мелкофокусных землетрясений достигло N=197. Число землетрясений с $M^P \ge 4.5$ (N=21) в 1.5 раза, а величина сейсмической энергии – в 9.5 раза оказались ниже среднегодовых значений, рассчитанных для этого района по данным 2001–2010 гг. (табл. 5, рис. 5 а).

В промежуточном слое $h=81-170 \ \kappa m$ число землетрясений с $M^P \ge 4.5 \ (N=18)$ равно среднегодовому значению, а величина сейсмической энергии – в 19 раз ниже среднегодового значения за период 2001–2010 гг. (табл. 5, рис. 5 б).

Самое сильное (K_c =11.8) мелкофокусное землетрясение в районе произошло 15 мая в 19^h34^m на глубине *h*=56 км. Самое сильное (K_c =12.2) землетрясение промежуточного слоя произошло 28 декабря в 09^h18^m на глубине *h*=81 км, оно ощущалось в пос. Малокурильское (Δ =38 км) с интенсивностью в 3–4 балла, в пос. Южно-Курильск (Δ =108 км) – 2 балла.

Всего в населенных пунктах Кунашир-Шикотанского района ощущались 16 землетрясений. Максимальная интенсивность сотрясений составила 4 балла (табл. 4).

Для пяти землетрясений (4, 9, 15, 24, 25) определены механизмы очагов [25].

Восток о. Хоккайдо (№ 6) составляет лишь малую часть прежней территории района до 2004 г., в связи с чем сопоставления параметров сейсмического режима с данными 2001–2010 гг. не проводится.

Здесь в верхнем интервале глубины $h \le 80 \ \kappa m$ было зарегистрировано 37 землетрясений с магнитудой $M^P = 3.4 - 4.7$; в интервале глубины $h = 81 - 144 \ \kappa m$ — шесть землетрясений с магнитудой $M^P = 3.3 - 4.4 \ [23]$.

Макросейсмический эффект не отмечен.

В Охотском море (\mathbb{N} 8) зарегистрировано 15 мелкофокусных и 45 глубокофокусных (*h*=81–596 км) землетрясений, из них 8 с $M^P \ge 4.5$, что в 1.9 раза меньше среднего значения за период 2001–2010 гг. При этом суммарная сейсмическая энергия на три порядка меньше среднего значения за указанный период (табл. 5, рис. 5 б).

Одно мелкофокусное землетрясение, зарегистрированное 29 марта в $08^{h}28^{m}$ на глубине $h=47 \ \kappa m \ (MLH=4.7)$, ощущалось с интенсивностью I=2-3 балла в г. Курильск ($\Delta=105 \ \kappa m$).

Для восьми землетрясений (1, 5, 6, 7, 10, 14, 19, 21) определены механизмы очагов [25].

В целом, судя по преимущественной ориентации осей максимального сжатия ортогонально островной дуге, Курило-Охотский регион продолжает пребывать в состоянии тектонического сжатия, соответствующего процессу поддвига Тихоокеанской океанической литосферной плиты под Охотскую микроплиту. Среди определенных механизмов очага землетрясений преобладают взбросы и надвиги (11), также отмечены 6 преимущественно сдвиговых сейсмодислокаций и 6 сбросовых.

Литература

- 1. Фокина Т.А., Давыдова Н.А., Рудик М.И., Бобков А.О., Брагина Г.И. Курило-Охотский регион // Землетрясения Северной Евразии в 1996 году. М.: ГС РАН, 2002. С. 110–118.
- 2. Фокина Т.А., Давыдова Н.А., Рудик М.И., Бобков А.О. Курило-Охотский регион // Землетрясения Северной Евразии в 1997 году. Обнинск: ГС РАН, 2003. С. 129–139.
- 3. Михайлов В.И. (сост.). Сейсмические станции Курило-Охотского региона в 2009 г. // Землетрясения Северной Евразии, 2009 год. – Обнинск: ГС РАН, 2015 – (На СD).
- 4. Старовойт О.Е., Мишаткин В.Н. Сейсмические станции Российской академии наук (состояние на 2001 г.). Москва–Обнинск: ГС РАН, 2001. 86 с.
- 5. Костылев Д.В. (сост.). Сейсмические станции Курило-Охотского региона в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 6. Михайлов В.И. (отв. сост.). Сейсмические станции Приамурья и Приморья в 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.

- 7. Костылев Д.В. (сост.). Стационарные сейсмические станции и сеть цунами Сахалина в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 8. Фокина Т.А., Сафонов Д.А., Дорошкевич Е.Н., Михайлов В.И. Курило-Охотский регион // Землетрясения Северной Евразии, 2010 год. – Обнинск: ФИЦ ЕГС РАН, 2016. – С. 199–210.
- Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. Методические работы ЕССН. – М.: Наука, 1989. – С. 32–51.
- 10. Миталёва Н.А., Бойчук А.Н. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1985 году. М.: Наука, 1988. С. 144–154.
- 11. Поплавская Л.Н., Миталёва Н.А., Бобков А.О., Бойчук А.Н., Рудик М.И. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1990 году. – М.: Наука, 1996. – С. 91–100.
- Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.
- Тараканов Р.З., Ким Чун Ун, Сухомлинова Р.И. Закономерности пространственного распределения гипоцентров Курило-Камчатского и Японского регионов и их связь с особенностями геофизических полей // Геофизические исследования зоны перехода от Азиатского континента к Тихому океану. – М.: Наука, 1977. – С. 67–75.
- Соловьёв С.Л., Соловьёва О.Н. Скорость колебания земной поверхности в объемных волнах неглубокофокусных Курило-Камчатских землетрясений на расстояниях до 17° // Физика Земли. – 1967. – № 1. – С. 37–60.
- 15. Соловьёв С.Л., Соловьёва О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. – 1967. – № 2. – С. 13–23.
- 16. Соловьёва О.Н., Соловьёв С.Л. Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. – М.: Наука, 1968. – С. 75–97.
- 17. Вермишева Л.Ю., Гангнус А.А. Применение типизации подвижек в очагах землетрясений для решения сейсмотектонических задач // Физика Земли. 1977. № 3. С. 103–109.
- 18. Сейсмологический бюллетень (ежедекадный) за 2011 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2010–2011. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2011*.
- 19. International Seismological Centre, On-line Bulletin, Internatl. Seis. Cent., Thatcham, United Kingdom, 2014. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/.
- 20. Фокина Т.А., Дорошкевич Е.Н., Нагорных Т.В., Сафонов Д.А. Курило-Охотский регион // Землетрясения Северной Евразии, 2004 год. Обнинск: ГС РАН, 2010. С. 180–187.
- 21. **Габсатарова И.П.** Границы сейсмоактивных регионов с 2004 г. // Землетрясения России в 2004 году. Обнинск: ГС РАН, 2007. С. 139.
- 22. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 272 с.
- 23. Дорошкевич Е.Н. (отв. сост.), Пиневич М.В., Швидская С.В. (сост.). Каталог землетрясений Курило-Охотского региона за 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- 24. Дорошкевич Е.Н., Артёмова Е.В., Левина В.И. (сост.). Макросейсмический эффект ощутимых землетрясений в населенных пунктах Курило-Охотского региона и прилегающих территорий в 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD ROM.
- Богинская Н.В. (отв. сост.). Каталог механизмов очагов землетрясений Курило-Охотского региона за 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- Дорошкевич Е.Н., Пойгина С.Г., Артёмова Е.В. (сост.). Сведения о пунктах, для которых имеется информация о макросейсмических проявлениях ощутимых землетрясений Курило-Охотского региона в 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.

- 27. Дорошкевич Е.Н. (отв. сост.), Пиневич М.В., Швидская С.В. (сост.). Каталог землетрясений Курило-Охотского региона за 2010 г. // Землетрясения Северной Евразии, 2010 год. Обнинск: ФИЦ ЕГС РАН, 2016 (На СD).
- Артёмова Е.В., Левина В.И. (сост.). Дополнение к каталогу землетрясений Курило-Охотского региона за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD ROM.
- 29. Сенюков С.Л., Дрознина С.Я. (отв. сост.), Козлова Н.И., Карпенко Е.А., Леднева Н.А., Митюшкина С.В., Назарова З.А., Напылова Н.А., Раевская А.А., Ромашева Е.И. (сост.). Каталог землетрясений Камчатки и Командорских островов за 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- 30. **Hisada T., Nakagawa K.** Present Japanese Development in Engincering Seismology and their Application to Buildings. Japan: 1958.
- 31. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 32. Миталева Н.А. (отв. сост.), Брагина Г.И., Пиневич М.И., Шолохова А.А., Садчикова А.А., Левит Е.В. Курило-Охотский регион // Землетрясения Северной Евразии в 1993 году. М.: ГС РАН, 1999. С. 195–211.
- 33. Snoke J.A., Munsey J.W., Teague A.C., Bollinger G.A. A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data // Earthquake Notes. 1984. 55. N. 3. P. 15.
- 34. Сафонов Д.А., Коновалов А.В. Апробация вычислительной программы FOCMEC для определения фокальных механизмов землетрясений Курило-Охотского и Сахалинского регионов // Тихоокеанская геология. 2013. **32**. № 3. С. 102–117.
- 35. Рогожин Е.А., Левина В.И. Симуширские землетрясения 15 ноября 2006 г. (I) и 13 января 2007 г. (II) с *Мw*=8.3 и *Mw*=8.1 (Средние Курилы) // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2013. С. 326–338.