КАМЧАТКА и КОМАНДОРСКИЕ ОСТРОВА

Д.В. Чебров¹, С.Я. Дрознина¹, Е.А. Матвеенко¹, С.В. Митюшкина¹, Е.И. Иванова¹, Е.М. Гусева¹, П.В. Воропаев¹, А.В. Ландер²

¹ Камчатский филиал ФИЦ ЕГС РАН, г. Петропавловск-Камчатский, sva07@emsd.ru ²Институт теории прогноза землетрясений и математической геофизики РАН, г. Москва, land@mitp.ru

В 2011 г. продолжилась работа по модернизации сети сейсмических станций Камчатки [1]. В течение года была открыта одна новая станция: «Тумрок источники»; шесть – модернизированы: «Авача», «Аэрологическая станция», «Жупаново», «Ключи», «Шипунский», «Ходутка». 6 октября 2011 г. введены в действие новые сооружения в п. Палана. Регистрирующая аппаратура станции «Палана» перенесена в новый павильон, расположенный за пределами поселка в 620 *м* от места прежней установки. На станции «Беринг» в связи с поломкой произведена замена велосиметра на аналогичную модель.

Сведения о сейсмических станциях Камчатки приведены в [2], их расположение представлено на рис. 1. Параметры новых и модернизированных станций даны в табл. 1 и 2.

Станция			Дата	К	оординать	J	Тип
Название	Код		открытия/ молернизации	φ°, N	λ°, Ε	$h_{\rm y}$,	аппаратуры
	межд.	рег.	станции			м	
Авача	AVH	AVH	2011.09.06	53.264	158.740	942	Телеметрия, цифровая
Аэрологическая станция	-	AER	2011.01.19	53.086	158.554	80	Цифровая, GSR-24
Беринг	BKI	BKI	2011.01.28	55.194	165.984	12	Цифровая, GSR-24, VSAT
Жупаново	-	GPN	2011.10.25	54.082	159.988	20	Цифровая, GSR-24
Ключи	KLY	KLY	2011.02.17	56.317	160.857	35	Телеметрия, цифровая
Палана	PALN	PAL	2011.10.06	59.094	159.968	70	Цифровая, GSR-24
Тумрок источники	TUMD	TUMD	2011.03.18	55.203	160.399	478	Цифровая, GSR-24
Ходутка	KDTR	KDT	2011.08.25	51.810	158.077	22	Цифровая, GSR-24
Шипунский	SPN	SPN	2011.07.08	53.106	160.011	95	Телеметрия, цифровая

Таблица 1. Сведения о сейсмических станциях, установленных и модернизированных Камчатским филиалом ФИЦ ЕГС РАН в 2011 г.

Таблица 2. Данные об аппаратуре цифровых и телеметрических станций, установленных и модернизированных Камчатским филиалом ФИЦ ЕГС РАН в 2011 г.

Название станции	Тип сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Гц	Разряд ность АЦП	Чувствительность, велосиграф – от- счет/(<i>м</i> / <i>c</i>), акселеро- граф – отсчет/(<i>м</i> / <i>c</i> ²)
Авача	CMG-6TD	BH (N, E, Z) v	0.033–40	100	24	$4.1 \cdot 10^9$
Аэрологическая станция	CMG-5T	HN (N, E, Z) a	0–40	100	24	$3.0 \cdot 10^5$
Беринг	CMG-3TB	BH (N, E, Z) v	0.0083-40	100	24	$1.1 \cdot 10^8$
Жупаново	CMG-5TD	HN (N, E, Z) a	0–40	100	24	$3.2 \cdot 10^5$
Ключи	CMG-5TD	HN (N, E, Z) a	0–40	100	24	$6.4 \cdot 10^5$
Ключи	KS-2000	BH (N, E, Z) v	0.01-40	100	24	$6.5 \cdot 10^8$
Палана	STS-2	BH (N, E, Z) v	0.0083-40	100	24	$7.9 \cdot 10^{9}$
Тумрок источники	CMG-6TD	BH(N, E, Z)v	0.033-40	100	24	$2.5 \cdot 10^{9}$
	CMG-5TD	HN (N, E, Z) a	0–40	100	24	$3.2 \cdot 10^5$

Название	Тип	Перечень	Частотный	Частота	Разряд	Чувствительность,
станции	сейсмометра	каналов	диапазон,	опроса	ность	велосиграф – от-
			Гц	данных,	ΑЦΠ	счет/(м/с), акселеро-
				Гц		граф – отсчет/(M/c^2)
Ходутка	CMG-6TD	BH (N, E, Z) v	0.033-40	100	24	$4.1 \cdot 10^9$
	CMG-5TD	HN (N, E, Z) a	0–40	100	24	$3.2 \cdot 10^5$
Шипунский	CMG-6TD	BH (N, E, Z) v	0.033-40	100	24	$4.1 \cdot 10^9$
	CMG-5TD	HN (N, E, Z) a	0–40	100	24	$3.2 \cdot 10^5$

Рис. 1. Сеть сейсмических станций Камчатки в 2011 г. из [2]

Камчатский филиал с 2010 г. перешел на новую, одноступенчатую, технологию создания регионального каталога [3]. Обработка сигналов сейсмических станций, расчет параметров гипоцентров и энергетических характеристик землетрясений производится при помощи программы DIMAS [4]. На основной части сейсмоактивной территории Камчатки расчетный уровень надежной регистрации в 2011 г. не изменился и составляет K_{\min} =8.5. Анализ сейсмичности в данной статье проводится по всем зарегистрированным Камчатской региональной сетью землетрясениям, начиная с $K_{\rm S} \ge 8.6$. Более детально параметры сейсмического режима проанализированы в работе [5].

Всего в 2011 г. определены эпицентры 4462 землетрясений в энергетическом диапазоне K_S =3.9–14.3, содержащиеся в оригинале каталога КФ [6]. Однако в каталог [7], публикуемый в настоящем ежегоднике, включено лишь 1097 землетрясений с $K_S \ge 8.6$. Из них 964 события находятся внутри зоны ответственности сети КФ ФИЦ ЕГС РАН (рис. 3), а 133 – за ее пределами. В каталоге присутствует 8 вулканических событий из района влк. Кизимен, активизация которого началась весной 2009 г. [8]. Все вулканические землетрясения имеют соответствующий признак в отдельной графе каталога.

На рис. 2 представлена карта эпицентров землетрясений с $K_S \ge 8.6$ и вертикальные разрезы поля гипоцентров (поперечный A-A' и продольный B-B').

Распределение землетрясений по энергетическим классам приведено в табл. 3, содержащей два ряда чисел: первый показывает число и суммарную энергию всех землетрясений, которые определены в Камчатском филиале, второй – только тех, что находятся внутри формальных границ ответственности сети КФ ФИЦ ЕГС РАН. На рис. 2 пронумерованы 38 сильных ($K_{\rm S} \ge 11.6$) землетрясений, из них 32 события относятся к Камчатскому региону.

Рис. 2. Карта эпицентров землетрясений Камчатки с *K*_S≥8.6 за 2011 г. (а) и их проекции на вертикальные плоскости A–A' (б) и B–B' (в)

1 – энергетический класс $K_{\rm S}$; 2 – глубина гипоцентра *h*, *км*; 3 – граница региона; 4 – линия вертикального разреза вкрест (*A*–*A*') и вдоль (*B*–*B*') фокальной зоны; 5 – изобаты 6000 и 7000 *м*; числа 1–38 соответствуют номерам сильных ($K_{\rm S}$ ≥11.6) землетрясений в каталоге [7].

Таблица 3. Распределение числа землетрясений по энергетическим классам K_S и суммарная сейсмическая энергия Σ*E* в 2011 г.

Ks	4	5	6	7	8	9	10	11	12	13	14	N_{Σ}	ΣЕ, Дж
N _{всего}	9	79	641	1488	1148	629	338	92	25	11	2	4462	$5.27 \cdot 10^{14}$
N _{зона отв.}	9	79	641	1488	1146	586	270	75	24	7	1	4326	$2.46 \cdot 10^{14}$

Уровень сейсмичности в регионе Камчатки и Командорских островов оценивался исходя из величины функции распределения F выделившейся в 2011 г. сейсмической энергии. Методика расчета функции распределения F и градации шкалы уровня сейсмичности «СОУС'09» описаны в [9, 10]. В 2011 г. суммарная энергия зарегистрированных в зоне ответственности Камчатского филиала землетрясений составила $\Sigma E=2.46 \cdot 10^{14} \ Дж$. Функция распределения F выделившейся за год сейсмической энергии построена по данным за 1962–2011 гг. (рис. 3). Для 2011 г. $F=0.38\pm0.07$, что соответствует фоновому среднему уровню по шкале «СОУС'09».

На рис. 4 а, б представлено ежесуточное число N землетрясений с К_S≥8.6 и кумулятивный график выделившейся энергии ΣЕ. В среднем регистрируется 2-4 события в день. Максимум числа землетрясений на рис. 4 а равен N=14 и обязан сеафтершоков сильного рии $(K_{\rm S}=14.1, Mw=6.2^{1})$ события (2) произошедшего 20 февраля в 21^h43^m у восточного побережья Камчатки в северной части Камчатской сейсмофокальной зоны на глубине *h*=49±19 км [7]. Это

Кружком отмечено значение функции распределения *F* в 2011 г.; диаметр кружка равен величине погрешности определения *F*.

землетрясение с последующими афтершоками ответственно и за скачок на графике выделившейся сейсмической энергии (рис. 4 б).

На территории Камчатского края, Северных Курил и Командорских островов в 2011 г. ощущалось 77 землетрясений $K_{\rm S}$ =8.9–14.3 [7, 12] с интенсивностью I от 2 и до 5–6 баллов по шкале MSK-64 [13]. По таким событиям было собрано 479 сообщений о землетрясениях из 58 пунктов. Ощущались землетрясения в 44 пунктах [14].

Максимальная интенсивность сотрясений в 2011 г. составила $I_{\text{max}}=5-6$ баллов и наблюдалась в п. Усть-Камчатск ($\Delta=56 \ \kappa m$) и с. Крутоберегово ($\Delta=60 \ \kappa m$) [12] во время упомянутого выше землетрясения 20 февраля с $K_{\text{S}}=14.1$ в Камчатском заливе.

Пятибалльные сотрясения наблюдались на маяке РНС Подгорная (Δ =121 км) при землетрясении (11), зафиксированном 14 марта в 20^h41^m с K_S=12.8, Mw=5.1, h=124 км. Такая же ин-

¹ Здесь и далее *Мw=Мw*_{GCMT} из [11].

² Номера событий здесь и далее соответствуют таковым в каталоге [7].

тенсивность отмечена и на ГМС Семячик (Δ =75 км) при землетрясении (14) 27 марта в 12^h15^m с $K_{\rm S}$ =11.6, $M_{\rm S}$ =3.9³, h=53.9 км [7].

В г. Петропавловск-Камчатский сотрясения с интенсивностью *I* от 2 до 3–4 баллов ощущались в совокупности 28 раз от землетрясений разных классов в диапазоне *K*_S=10.3–14.1 [12].

Механизмы очагов в [15] определены по знакам первых вступлений объемных волн для 37 из 38 зарегистрированных в 2011 г. землетрясений с *K*_S≥11.6 по программе FA2011 (усовершенствованная программа FA2002 [16, 17]). Использовались данные региональных станций и знаки вступлений *P*-волн из бюллетеней NEIC [18], ГС РАН [19] и ISC [11]. Из распределения землетрясений по типам подвижек в табл. 4 выделяется ежегодно преобладающий тип – взбросо-сдвиг (58 % событий).

Таблица 4. Распределение сильных землетрясений Камчатки и Командорских островов 2011 г. по типам подвижек в их очагах

Тип подвижки	Номер землетрясений по [5]	Ni	$N_{i}/N_{\Sigma},$
Сбросо-сдвиг	2, 3, 4, 11, 20, 26, 34	7	18
Взбросо-сдвиг	1, 5, 6, 8, 9, 10, 12, 14, 16, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 35	22	58
Сдвиг	7, 17, 33	3	8
Взброс	30, 36, 37, 38	4	10
Сброс	15	1	3
Не определен	13	1	3
Сумма		38	100

Рассмотрим особенности сейсмического процесса региона по 10 зонам и их слоям, перечисленным в графах 2, 3 табл. 5. Подробное описание зон дано в работах [20, 21]. Статистические характеристики по зонам приведены для землетрясений, входящих в регион ответственности КФ ФИЦ ЕГС РАН на двух энергетических срезах – $K_S \ge 8.6$ и $K_S \ge 11.6$. Они сравниваются с соответствующими средними значениями за весь период инструментальных наблюдений с 1962 г. по 2010 г.

Таблица 5. Распределение числа землетрясений с *K*_S≥8.6 и *K*_S≥11.6, а также выделенной энергии по зонам за 2011 г. в сопоставлении с их средними оценками за период 1962–2010 гг. внутри границ региона Камчатки и Командорских островов

N⁰	Зона	Слой	й Средние значения за 1962–2010 гг. Значения за 2011 г.						Значения за 2011 г. N/N_{Σ} , N 9 ($K_{S} \ge 11.6$) 1 9 10 26 3 10.5 1 2.4 1 31.0 17 7.4 3 11.1 4 0.5 1 5.6 1 0.7 .	
			N	N/N_{Σ} ,	N	ΣE ,	N	N/N_{Σ} ,	N	ΣE ,
			$(K_{\rm S} \ge 8.6)$	%	$(K_{\rm S} \ge 11.6)$	10 ¹⁴ Дж	$(K_{\rm S} \ge 8.6)$	%	$(K_{\rm S} \ge 11.6)$	10 ¹⁴ Дж
1	2	3	4	5	6	7	8	9	10	11
1	Сейсмофокальная	Ι	167	18.6	9	1.23	250	26	3	0.05
	зона Курил и Южной	II	44	4.9	2	0.55	101	10.5	1	0.07
	Камчатки	III	6	0.7	<1	1.39	23	2.4	1	0.17
2	Северная часть	Ι	367	40.8	14	1.59	299	31.0	17	1.70
	Качатской сейсмо-	IIa	85	9.4	2	2.55	71	7.4	3	0.13
	фокальной зоны	IIIa	<1	< 0.1	<1	0.02				
3	Командорский сегмент	Ι	114	12.6	5	1.22	107	11.1	4	0.19
	Алеутской дуги	II	1	0.1	<1	< 0.01	5	0.5	1	0.01
4	Тихий океан	Ι	51	5.6	1	0.11	54	5.6	1	0.13
		II	<1	< 0.1	<1	< 0.01	7	0.7		< 0.01
5	Северные Курилы	Ι	2	0.2		< 0.01				
6	Континентальные	Ι	42	4.6	<1	0.11	9	0.9		< 0.01
	области Камчатки									
7	Корякский сейсми-	Ι	19	2.1	<1	1.70	34	3.5	1	0.02
	ческий пояс	II	<1	<0.1		< 0.01				

³ Здесь и далее *Ms*=*Ms*_{ISC} из [10].

N⁰	Зона	Слой	Средние	е значен	ия за 1962–	2010 гг.	Значения за 2011 г.				
			N	N/N_{Σ} ,	N	ΣΕ,	N	N/N_{Σ} ,	N	ΣΕ,	
			$(K_{\rm S} \ge 8.6)$	%	$(K_{\rm S} \ge 11.6)$	10 ¹⁴ Дж	$(K_{\rm S} \ge 8.6)$	%	$(K_{\rm S} \ge 11.6)$	10 ¹⁴ Дж	
1	2	3	4	5	6	7	8	9	10	11	
8	Берингово море	Ι	<1	< 0.1		< 0.01					
9	Залив Шелихова	Ι	1	0.1	<1	< 0.01	3	0.3		< 0.01	
10	Охотия	Ι	<1	< 0.1	<1	< 0.01					
	Всего		901	100	34	10.5	963	100	32	2.46	

Примечание. Для зон № 1 и № 2 в графе 3 цифрами I, II и III обозначены поверхностный (0≤h≤70 км), промежуточный (70<h≤350 км) и глубокий (h> 350 км) слои соответственно; зона № 2 имеет границы зон промежуточного (70<h≤380 км) и глубокого (h>380 км) слоев, отличные от других; они обозначаются как IIа и IIIа соответственно.

Сейсмофокальная зона Курил и Южной Камчатки № 1 превысила свой среднегодовой фон сейсмичности по числу землетрясений с $K_S \ge 8.6$ (табл. 5). События распределились по трем глубинным сейсмическим слоям следующим образом: поверхностные – N=250 (26 % всех событий), промежуточные – N=101 (10.5 %) и глубокие – N=23 (2.4 %). Зафиксировано 5 сильных землетрясений с $K_S \ge 11.6$ (рис. 5).

Рис. 5. Карта эпицентров и стереограммы механизмов очагов землетрясений Курило-Камчатской зоны субдукции (зоны № 1 и № 2) за 2011 г.

1 – номер зоны из табл. 5; 2 – граница зоны (обозначениями: =0=, =70=, =350 (380)= показаны границы слоев с *h*=0, *h*=70, *h*=350 или 380 км соответственно, в зонах № 1 и № 2); 3 – граница региона; 4 – изобаты 6000 и 7000 м; число возле стереограммы соответствует номеру землетрясения в каталоге [7].

В этой зоне произошло 18 ощутимых землетрясений с $K_{\rm S}$ =8.9–14.3 и интенсивностью сотрясений I от 2 до 5 баллов [12] (из них 2 события вне региона ответственности КФ ФИЦ ЕГС РАН).

Сильнейшее в каталоге Камчатки и Командорских островов в 2011 г. землетрясение (22) с $K_{\rm S}$ =14.3, Mw=6.1 зарегистрировано за пределами зоны ответственности Камчатского филиала 4 августа в 13^h51^m в поверхностном слое сейсмофокальной зоны № 1 на глубине h=50.9 км

(рис. 2). Механизм его очага оценен в [15] как взброс с компонентой сдвига (рис. 5). Оно ощущалось с интенсивностью *I*_{max}=2–3 балла в г. Северо-Курильске (Δ=253 км).

В промежуточном слое 14 марта в $20^{h}41^{m}$ на глубине $h=124 \ \kappa m$ зарегистрировано сильное ($K_{\rm S}=12.8, \ Mw=5.1$) землетрясение (11), вызвавшее максимальные для зоны № 1 сотрясения в 2011 г. Интенсивность сотрясений $I_{\rm max}=5$ баллов наблюдалась на РНС Подгорная ($\Delta=121 \ \kappa m$). Подвижка в его очаге была типа сброс с элементами сдвига [15].

В глубоком слое было зафиксировано одно сильное (K_S =13.2, Mw=5.5) событие (20) 18 июля в 18^h15^m с h=530 км. Оно возникло под действием растягивающих напряжений, ориентированных в субширотном направлении. Подвижка в его очаге, согласно [15], – сброс с компонентами сдвига. Благодаря этому землетрясению количество выделенной энергии в глубинном слое превысило суммарное ее значение в двух других слоях зоны, несмотря на минимальное число землетрясений.

В северной части Камчатской сейсмофокальной зоны № 2 произошло 370 землетрясений с $K_S \ge 8.6$ (38.4 % всех событий), из них 31 % поверхностных (N=299), 7.4 % – промежуточных (N=71). В глубоком слое в 2011 г. землетрясений не было. Зарегистрировано 20 сильных событий с $K_S \ge 11.6$ (рис. 5). Макросейсмические проявления имели 39 землетрясений с $K_S=9.7-14.1$ с интенсивностью сотрясений *I* от 2-х до 5–6 баллов [7, 12].

В 2011 г. выделяются две довольно многочисленные группы землетрясений. Обе зарегистрированы в поверхностном слое северной части Камчатской сейсмофокальной зоны: событие (2) с последующей афтершоковой активностью и роевая последовательность, включающая землетрясение (5).

Землетрясение (2) 20 февраля в 21^h43^m с K_s=14.1, Mw=6.2, h=48.8 км произошло в Камчатском заливе, в самой северной части зоны № 2. Землетрясение сопровождалось серией афтершоков, выделенных из общего каталога Камчатского филиала на основе анализа пространственновременного распределение землетрясений. Афтершоковая последовательность состояла из 331 землетрясения с $K_{\rm S}$ =5.5–11.4 и представлена в каталоге [22]. Область пространственного распределения эпицентров имеет форму эллипса и простирается с севера на юг с главным событием в центральной части (рис. 6). Большая часть афтершоков реализовалась в первые 15 суток после главного толчка, далее до конца года регистрировались одиночные события из эпицентральной зоны. В очаге землетрясения (2) пре-

Рис. 6. Карта эпицентров афтершоков из [22] и главного толчка землетрясения 20 февраля в 21^h43^m с *K*_S=14.1

1 – граница эпицентральной зоны; 2 – граница северной части Камчатской сейсмофокальной зоны № 2; 3 – эпицентр главного толчка; $K_{\rm S}$ – энергетический класс.

обладали близгоризонтальные напряжения растяжения и наблюдался сброс по близмеридиональным плоскостям разрыва [15]. Направление простирания плоскостей разрыва совпадает с направлением длинной оси облака афтершоков (рис. 6). Следует отметить, что еще два землетрясения (15, 26), произошедшие в зоне стыка Курило-Камчатской и Алеутской островных дуг, имеют аналогичные механизмы очагов (рис. 5).

Землетрясение (2) ощущалось на значительной территории полуострова. В ближайших населенных пунктах Усть-Камчатск (Δ =56 км) и Крутоберегово и (Δ =60 км) сотрясения достигли *I*=5–6 баллов, что явилось максимальным значением интенсивности для Камчатского региона в 2011 г. В табл. 6 приведены сведения об интенсивности сотрясений в населенных пунктах Камчатки из [12]. На рис. 7 представлена карта «Пункты-баллы», построенная по данным этой таблицы. Для построения карты изосейст информации недостаточно.

Данное событие предварялось аномалиями в сейсмическом режиме. В течение двух недель перед землетрясением наблюдалось снижение регионального уровня сейсмичности, а в территориальной близости от эпицентра двумя независимым методами (*Z* и *RTL*) были выявлены предвестниковые сейсмические затишья и группа кластеров [23].

№	Пункт	Δ, км	φ°, Ν	λ°, Ε	
	<u>5-6 баллов</u>				_
1	Усть-Камчатск	56	56.237	162.536	
2	Крутоберегово	60	56.255	162.705	
	<u>4-5 баллов</u>				
3	Ключи	121	56.318	160.836	
4	ГМС Кроноки	151	54.585	161.197	
	<u>4 балла</u>				
5	Козыревск	166	56.049	159.870	
6	Лазо	171	55.539	159.762	
7	Атласово	178	55.606	159.639	
8	Никольское	231	55.196	166.002	
	<u>3-4 балла</u>				,
9	Мыс Африка	75	56.184	163.356	

Таблица 6. Макросейсмические данные о землетрясении 20 февраля 2011 г. с K_S=14.1 Мw=6.2

Рис. 7. Карта пунктов-баллов землетрясения 20 февраля 2011 г. в 21^h43^m с *K*_S=14.1

№	Пункт	Δ, км	φ°, Ν	λ°, Ε
10	<u>2–3 балла</u> Петропавловск- Камчатский	390	53.02	158.65
	Не ощущалось			
11	Таежный	201	55.274	159.375
12	Долиновка	225	55.12	159.07
13	ГМС мыс Озерной	227	57.719	163.302
14	ГМС Семячик	243	54.182	159.986
15	Мильково	269	54.7	158.63
16	Ивашка	315	58.565	162.299
17	Кострома	370	59.04	163.166
18	Карага	377	59.108	163.123
19	Occopa	392	59.244	163.067
20	Рыбачий	404	52.917	158.523
21	Вилючинск	408	52.93	158.404

В Тихом океане, напротив мыса Шипунский. 4-20 марта был зарегистрирован рой землетрясений. За это время здесь локализовано 100 событий с K_s=6.1-12.5 (76 произошло в первые 6 суток), девять из них имели K_S≥11.6. Гипоцентры преимущественно находились в диапазоне глубин 6-48 км. Суммарная энергия зарегистрированных событий составила $\Sigma E=8.8 \cdot 10^{12} \, \square \mathcal{M}$. Сильнейшее (K_s=12.5, Mw=5.2) землетрясение (5) роя произошло 5 марта в $00^{h}35^{m}$ на глубине *h*=40.8 км. Оно ощущалось в г. Петропавловске-Камчатский (∆=202 км) с интенсивностью 2-3 балла. Согласно [15], движение в его очаге – левосторонний сдвиг по крутой (DP=61°) плоскости NP2 югозападного простирания, либо правосторонний сдвиг по вертикальной плоскости NP1 юго-восточного простирания с компонентами взброса южного крыла.

Всего в поверхностном слое северной части Камчатской сейсмофокальной зоны произошло 17 сильных (*K*_S≥11.6) землетрясений.

В промежуточном слое зоны № 2 зарегистрировано 3(три) сильных ($K_{\rm S} \ge 11.6$) землетрясения (18, 30, 32), все они имели

макросейсмические проявления. Интенсивность сотрясений для событий (30), (32) достигала 4– 5 баллов на ГМС Кроноки (Δ=31 км) и 4–5 баллов на маяке Круглый (Δ=97 км) соответственно.

В Командорском сегменте Алеутской дуги (зона \mathbb{N}_2 3) произошло 112 землетрясений с $K_S \ge 8.6$ (рис. 8). Из них пять событий (1, 17, 27, 33, 36) имеют $K_S \ge 11.6$, четыре из которых реализовались в поверхностном слое и одно – в промежуточном. Максимальное ($K_S = 13$, Mw = 5.2)

в зоне событие (17) произошло 12 июня в $11^{h}16^{m}$ с $h=7.3 \ \kappa m$, тип подвижки в очаге – чистый правосторонний сдвиг. Данный тип механизма наиболее типичен для зоны № 3, за исключением событий, происходящих вблизи побережья Камчатки, где наблюдаются взбросы (36) и области сочленения желобов, где зафиксирована, в частности, вертикальная подвижка (27).

В зоне № 3 зафиксировано 11 ощутимых землетрясений с $K_{\rm S}$ =9.3–12.5 и интенсивностью сотрясений *I* от 2 до 4–5 баллов [12]. Из пяти сильных землетрясений зоны только для двух наблюдался макросейсмический эффект: событие (27) ощущалось в с. Никольское (Δ =75 км) с интенсивность $I_{\rm max}$ =4 балла; событие (36) – с интенсивностью $I_{\rm max}$ =3–4 балла на мысе Африка (Δ =14 км), в п. Усть-Камчатск и с. Крутоберегово (Δ =55 км и Δ =64 км соответственно).

В Тихом океане (зона № 4) за 2011 г. произошло 61 землетрясение с $K_{\rm S} \ge 8.6$ [7], из них одно сильное ($K_{\rm S} = 13.1$, Mw = 5.4) событие (31) зарегистрировано 1 октября в 09^h23^m с $h = 40.2 \ \kappa M$. Решение механизма очага для этого события в [15] соответствует взбросу с компонентами левостороннего сдвига или сдвигу с компонентами взброса (рис. 8).

В континентальных областях Камчатки (зона № 6) зафиксировано 9 землетрясений с *K*_S=8.7–10.5 [7], 8 из которых являются вулканическими из района влк. Кизимен, из них для пяти землетрясений гипоцентр определен выше уровня моря.

Рис. 8. Карта эпицентров землетрясений зон № 3-№ 10 за 2011 г.

1 – номер зоны из табл. 5; 2, 3 – граница зоны и региона соответственно; 4 – изобаты 6000 и 7000 м; число возле стереограммы соответствует номеру землетрясения в каталоге [7].

В Корякском сейсмическом поясе (зона № 7) произошло 34 землетрясения с $K_S \ge 8.6$, все локализованы в поверхностном слое, эпицентры большинства из них находятся в очаговой области Олюторского землетрясения 20.04.2006 г. [24]. Единственное сильное ($K_S = 12.0$) землетрясение (13), зафиксированное в зоне 17 марта в $23^{h}50^{m}$ с $h=40.9 \ \kappa m$, проявилось с интенсивностью сотрясений $I_{max}=3-4$ балла в пос. Тиличики ($\Delta=36 \ \kappa m$); 3 балла – в пунктах Левтыринываям ($\Delta=26 \ \kappa m$), Ледяное ($\Delta=26 \ \kappa m$); 2–3 балла – в с. Хаилино ($\Delta=42 \ \kappa m$) и в пос. Корф ($\Delta=43 \ \kappa m$).

Всего в зоне № 7 ощущалось девять событий с $K_{\rm S}$ =10.1–12.0 и интенсивностью сотрясений от 2 до 4–5 баллов. Пять из них, зафиксированных 24 марта и 25 апреля в северной части Карагинского залива, вызвали сотрясения от 2 до 4–5 баллов в ближайших от эпицентров населенных пунктах [12]. Предыдущее ощутимое в этом районе землетрясение наблюдалось девятью годами ранее, 11.02.2002 г. с $K_{\rm S}$ =11.0, h=0 км [25], с максимальной интенсивностью сотрясений I=3–4 балла в пос. Ильпырском.

В зоне № 9, залив Шелихова, зафиксировано три слабых (K_S =8.9–9.3) землетрясения. В зонах Северные Курилы (№ 5), Берингово море (№ 8) и Охотия (№ 10) в 2011 г. Камчатской региональной сетью станций землетрясений с $K_S \ge 8.6$ не зарегистрировано. Для этих зон низкая сейсмическая активность является типичной.

Сильные движения. В 2011 г. сетью цифровых акселерографов [26] получено 247 записей сильных движений грунта с пиковым ускорением, превышающим $0.5 \ cm/c^2$. В табл. 7 приведен список из 20 землетрясений с $a_{nuk} \ge 3.0 \ cm/c^2$.

N⁰	Дата,	t_0	Эпи	центр	h,	Ks	Mw	N⁰	Дата,	t_0	Эпи	центр	h,	Ks	Mw
	д м	ч мин с	φ°, Ν	λ°, Ε	КМ				д м	ч мин с	φ°, Ν	λ°, Ε	КМ		
1	05.02	01 59 23	50.17	157.36	51	10.9		11	07.09	01 23 31	55.58	163.36	65	13.0	5.4
2	05.02	06 58 12	49.79	157.38	15	10.5		12	22.09	22 43 07	52.51	159.59	35	11.3	
3	20.02	21 43 23	55.73	162.47	49	14.1	6.2	13	24.09	17 29 19	50.06	157.20	16	10.4	
4	17.03	23 50 03	60.75	166.20	41	12.0		14	10.10	01 14 57	51.98	159.73	71	13.0	5.3
5	30.04	14 07 16	55.78	162.45	69	11.4		15	14.10	10 03 16	56.19	163.27	18	10.9	
6	12.06	11 16 35	55.97	164.26	7	13.0	5.2	16	09.11	22 00 58	52.25	160.25	50	13.2	5.3
7	20.06	00 12 52	60.71	165.60	6	10.9		17	21.11	03 00 45	56.11	163.05	8	9.8	
8	20.08	12 54 12	50.81	157.68	62	11.6		18	01.12	12 18 37	50.20	157.21	16	10.4	
9	22.08	00 47 53	49.99	156.70	77	10.6		19	04.12	15 55 25	56.14	163.56	26	12.5	5.3
10	05.09	00 49 01	56.15	163.24	20	10.2		20	15.12	13 18 30	52.52	159.90	54	11.6	

Таблица 7. Параметры землетрясений 2011 г. с пиковыми ускорениями $a_{\text{пик}} \ge 3.0 \ cm/c^2$

В табл. 8 приведены пиковые значения ускорений и скоростей для каждого землетрясения из табл. 7, данные той станции, которая записала это землетрясение с наибольшей амплитудой. Значения пиковых скоростей получены путем интегрирования записей ускорений.

В качестве иллюстрации на рис. 9 для землетрясения 20 февраля в 21^h43^m показаны его акселерограммы на станции «Крутоберегово» (КВG) для трех компонент и сглаженные спектры Фурье по ускорению. Спектр Фурье этого землетрясения имеет форму, характерную для камчатских землетрясений [27].

N⁰	Дата,	<i>t</i> ₀ ,	Код*	Δ,	r,	Ks	$X_{\rm S}$ Амплитуда $a_{\rm пик}, c M/c^2$		_{ік} , <i>см/c</i> ²	Скорость U _{пик} , <i>см/с</i>			
	дм	ч мин с	станции	КМ	КМ		К	омпонен	пта	K	Сомпонент	a	
							N	E	Z	N	E	Z	
1	05.02	01 59 23	SKR	104	116	10.9	4.66	5.90	2.52	0.0772	0.0991	0.0306	
2	05.02	06 58 12	SKR	133	134	10.5	4.71	2.99	2.11	0.0650	0.0497	0.0278	
3	20.02	21 43 23	KBG	60	78	14.1	22.6	36.2	13.3	2.19	3.80	1.52	
4	17.03	23 50 03	TIL	34	53	12.0	10.2	5.10	2.54	0.408	0.203	0.0891	
5	30.04	14 07 16	KBG	55	88	11.4	2.90	3.27	1.46	0.125	0.123	0.0551	
6	12.06	11 16 35	KBG	101	101	13.0	3.22	2.98	1.14	0.373	0.235	0.125	
7	20.06	00 12 52	TIL	42	42	10.9	3.07	2.36	0.945	0.115	0.0690	0.0298	
8	20.08	12 54 12	SKR	111	128	11.6	7.29	5.15	2.22	0.0995	0.0907	0.0280	
9	22.08	00 47 53	SKR	87	116	10.6	4.31	3.36	1.27	0.0994	0.0547	0.0198	
10	05.09	00 49 01	KBG	34	40	10.2	7.62	8.78	2.79	0.187	0.304	0.101	
11	07.09	01 23 31	KBG	85	107	13.0	5.73	4.63	3.53	0.496	0.410	0.243	
12	22.09	22 43 07	VIL	92	99	11.3	3.18	3.60	3.15	0.0970	0.107	0.0628	
13	24.09	17 29 19	SKR	103	104	10.4	3.07	2.71	1.65	0.0667	0.0432	0.0221	
14	10.10	01 14 57	RIB	132	150	13.0	2.50	7.93	2.49	0.0859	0.390	0.0955	
15	14.10	10 03 16	KBG	35	39	10.9	4.29	4.64	4.03	0.229	0.207	0.123	
16	09.11	22 00 58	RIB	137	146	13.2	8.78	6.63	2.61	0.639	0.437	0.195	

Таблица 8. Пиковые ускорения и скорости землетрясений из табл. 7 для той станции, которая записала это землетрясение с наибольшей амплитудой

КАМЧАТКА и КОМАНДОРСКИЕ ОСТРОВА Д.В. Чебров, С.Я. Дрознина, Е.А. Матвеенко, С.В. Митюшкина, Е.И. Иванова, Е.М. Гусева, П.В. Воропаев, А.В. Ландер

N⁰	Дата,	<i>t</i> ₀ ,	Код*	Δ,	r,	Ks	Амплитуда $a_{\text{пик}}, c_{M}/c^{2}$			Скор	Скорость U _{пик} , <i>см/с</i>			
	дм	ч мин с	станции	КМ	КМ		Компонента			Компонента				
							N	E	Ζ	N	E	Ζ		
17	21.11	03 00 45	KBG	27	28	9.8	4.32	3.06	2.05	0.0950	0.0819	0.0321		
18	01.12	12 18 37	SKR	94	95	10.4	3.85	2.86	1.95	0.0401	0.0426	0.0162		
19	04.12	15 55 25	KBG	54	59	12.5	5.44	7.73	2.89	0.590	0.442	0.274		
20	15.12	13 18 30	RIB	102	115	11.6	3.53	2.84	1.14	0.0777	0.108	0.0455		

Рис. 9. Три компоненты записи ускорения грунта на станции « Крутоберегово» (КВG) от землетрясения 20 февраля в $21^{h}43^{m}$ с K_{s} =14.1и сглаженные амплитудные спектры Фурье этих записей

В 2011 г. среднегодовой фон сейсмичности по числу землетрясений с $K_S \ge 8.6$ превышен лишь в зоне № 1 – сейсмофокальная зона Курил и Южной Камчатки, и в поверхностном слое зоны № 7 – Корякский сейсмический пояс. Для остальных зон параметры близки или ниже средних значений за период наблюдений 1962–2010 гг. Северная часть Камчатской сейсмофокальное значение выделившейся энергии в сравнении с другими зонами. Здесь произошло 20 сильных землетрясений, одно из которых сильнейшее в зоне ответственности КФ ФИЦ ЕГС РАН в 2011 г. В целом сейсмический режим является обычным для региона: большая часть землетрясений относится к зоне субдукции Тихоокеанской плиты.

Литература

- 1. **Чебров В.Н., Дрознина С.Я., Сенюков С.Л.** Камчатка и Командорские острова // Землетрясения России в 2011 г. Обнинск: ГС РАН, 2013. С. 53–59.
- 2. Чебров Д.В., Матвеенко Е.А., Шевченко Ю.В., Ящук В.В., Музуров Е.Л. (сост.). Сейсмические станции сети Камчатки и Командорских островов в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- Чебров В.Н., Левина В.И., Ландер А.В., Чеброва А.Ю., Сенюков С.Л., Дрознин Д.В., Дрознина С.Я. Региональный каталог землетрясений Камчатки и Командорских островов 1962–2010 гг.: технология и методика создания // Землетрясения Северной Евразии, 2010 год. Обнинск: ГС РАН, 2016. С. 396–406.
- 4. Дрознин Д.В, Дрознина С.Я. Интерактивная программа обработки сейсмических сигналов DIMAS // Сейсмические приборы. –2010. – 46. – № 3. – С. 22–34.
- 5. Салтыков В.А., Кравченко Н.М. Количественный анализ сейсмичности Камчатки // Землетрясения России в 2011 году. Обнинск: ГС РАН, 2013. С. 67–74.
- 6. Сенюков С.Л., Дрознина С.Я. (отв. сост.), Козлова Н.И., Карпенко Е.А., Леднева Н.А., Митюшкина С.В., Назарова З.А., Напылова Н.А., Раевская А.А., Ромашева Е.И. (сост.). Каталог (оригинал) землетрясений Камчатки и Командорских островов за 2011 г. (*N*=4462). Петропавловск: Фонды КФ ФИЦ ЕГС РАН, 2012.
- Сенюков С.Л., Дрознина С.Я. (отв. сост.), Козлова Н.И., Карпенко Е.А., Леднева Н.А., Митюшкина С.В., Назарова З.А., Напылова Н.А., Раевская А.А., Ромашева Е.И. (сост.). Каталог землетрясений Камчатки и Командорских островов за 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.

- Сенюков С.Л., Нуждина И.Н., Дрознина С.Я., Гарбузова В.Т., Кожевникова Т.Ю., Соболевская О.В. Сейсмичность вулкана Кизимен // Труды третьей научно-технической конференции. Проблемы комплексного геофизического мониторинга Дальнего Востока России. Петропавловск-Камчатский, 9–15 октября 2011 г. Обнинск: ГС РАН, 2011. С. 140–144.
- Чебров В.Н., Чеброва А.Ю., Матвеенко Е.А., Ландер А.В., Митюшкина С.В., Иванова Е.И., Гусева Е.М., Салтыков В.А., Кугаенко Ю.А., Воропаев П.В. Камчатка и Командорские острова // Землетрясения Северной Евразии, 2009 год. – Обнинск: ГС РАН, 2015. – С. 180–195.
- 10. **Салтыков В.А.** Статистическая оценка уровня сейсмичности: методика и результаты применения на примере Камчатки // Вулканология и сейсмология. 2011. № 2. С. 53–59.
- 11. International Seismological Centre (ISC), On-line Bulletin, Internatl. Seis. Cent., Thatcham, United Kingdom, 2014. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/.
- 12. Митюшкина С.В. (отв. сост.), Раевская А.А. (сост.). Макросейсмический эффект ощутимых землетрясений в населенных пунктах Камчатки в 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD ROM.
- 13. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- Митюшкина С.В., Раевская А.А., Пойгина С.Г. (сост.). Сведения о пунктах, для которых имеется информация о макросейсмических проявлениях ощутимых землетрясений Камчатки за 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- Иванова Е.И. (сост.). Каталог механизмов очагов землетрясений Камчатки и Командорских островов за 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- 16. Комплексные сейсмологические и геофизические исследования Камчатки и Командорских островов (отчет за 01.01.2003–31.12.2003). Петропавловск-Камчатский: Фонды КФ ГС РАН, 2004. 350 с.
- 17. Комплексные сейсмологические и геофизические исследования Камчатки и Командорских островов (отчет за 01.01.2005–31.12.2005). Петропавловск-Камчатский: Фонды КФ ГС РАН, 2006. 478 с.
- 18. USGS National Earthquake Information Centre. URL: ftp://hazards.cr.usgs.gov/edr/.
- 19. Сейсмологический бюллетень (ежедекадный) за 2011 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2011–2012. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2011*.
- 20. Левина В.И., Ландер А.В., Митюшкина С.В., Чеброва А.Ю. Сейсмичность Камчатского региона 1962–2011 гг. // Вулканология и сейсмология. 2013. № 1. С. 41–64.
- 21. Чебров В.Н., Дрознина С.Я., Сенюков С.Л., Ландер А.В. Камчатка и командорские острова // Землетрясения России в 2013 году. – Обнинск: ГС РАН, 2015. – С. 58–65.
- 22. Ландер А.В., Матвеенко Е.А. (отв. сост.), Дрознина С.Я., Ромашева Е.И. (сост.). Каталог афтершоков землетрясения 20 февраля K_S=14.1, Mw=6.2 // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD_ROM.
- 23. Салтыков В.А., Кравченко Н.М. Аномалии в сейсмическом режиме Камчатки, предшествовавшие землетрясению 20 февраля 2011 г. (*M*=6.2) // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Труды Третьей научно-технической конференции. Петропавловск-Камчатский, 9–15 октября 2011 г. / Отв. ред. В.Н. Чебров. Обнинск: ГС РАН, 2011. С. 248–251.
- 24. Олюторское землетрясение (20 (21) апреля 2006 г., Корякское нагорье). Первые результаты исследований / Отв. ред. В.Н. Чебров. Петропавловск-Камчатский: ГС РАН, 2007. 290 с.
- 25. Левина В.И., Лепская Т.С. (отв. сост.), Бахтиарова Г.М., Карпенко Е.А., Кривогорницына Т.М., Митюшкина С.В., Пархоменко С.А., Пилипенко Л.В., Шевченко Н.А. Камчатка и Командорские острова // Землетрясения Северной Евразии, 2002. Обнинск: ГС РАН, 2008. (На CD).
- 26. Чебров В.Н., Дрознин Д.В., Кугаенко Ю.А., Левина В.И., Сенюков С.Л., Сергеев В.А., Шевченко Ю.В., Ящук В.В. Система детальных сейсмологических наблюдений на Камчатке в 2011 г. // Вулканология и сейсмология. – 2013. – № 1. – С. 18–40.
- 27. Гусев А.А., Петухин А.Г., Гусева Е.М., Гордеев Е.И., Чебров В.Н. Средние спектры Фурье сильных движении грунта при землетрясениях Камчатки // Вулканология и сейсмология. 2006. № 5. С. 60–70.