## СИЛЬНЫЕ ЗЕМЛЕТРЯСЕНИЯ ЗЕМЛИ

## С.Г. Пойгина, Л.С. Чепкунас, Н.В. Болдырева

ФИЦ ЕГС РАН, г. Обнинск, sveta@gsras.ru

Исходными для анализа сильных землетрясений Земли в 2011 г. являются оперативные сейсмологические бюллетени [1] и сейсмологические каталоги [2] ГС РАН. На их основе составлен Каталог землетрясений Земли за 2011 г., приведенный в Приложении к наст. ежегоднику [3]. При составлении ежедекадных оперативных сейсмологических каталогов и сейсмологических бюллетеней в 2011 г. использовались данные 777 сейсмических станций ГС РАН, ГС СО РАН, других российских ведомств и мировой сети [4], изображенных на рис. 1, против 728 станций в 2010 г. [5]. Как видно, подавляющее число используемых в 2011 г. станций размещено в северном полушарии, особенно в районах самой высокой плотности населения – в Европе. Список всех станций дан в Приложении к наст. ежегоднику [4].



*Рис.* 1. Сейсмические станции мира, данные которых использовались при определении основных параметров землетрясений за 2011 г. в [1, 2]

Рассмотрим содержание и объем исходного каталога землетрясений Земли по данным ГС РАН за 2011 г. [3].

**Методика** определения основных параметров землетрясений, по сравнению с таковыми в [6], не изменилась. Как и ранее [6], кинематические параметры (координаты гипоцентра ( $(\phi, \lambda, h)$ ) и время  $t_0$  возникновения землетрясения) определялись по программе ЭПИ-74 [7] с использованием телесейсмических [8–10] и региональных [11, 12] годографов на основании данных о временах прихода продольных P(PKIKP)-волн на сейсмические станции. Максимум поверхностных волн *LRM* выделялся в соответствии с годографами [13, 14].

Определение магнитуд *MS*, *MPSP* и *MPLP* производилось по максимальной скорости смещения  $(A/T)_{max}$  в поверхностных и объемных волнах и соответствующим калибровочным кривым [15–19]. Кроме того, в каталог [3] включены сейсмические моменты  $M_0$  по методике [20, 21] и моментные магнитуды Mw по методике Канамори [22] из работы [23], а также метки о наличии механизмов очагов по определениям ГС РАН методом первых вступлений *P*-волн из [24]. Итоговый сейсмологический каталог [3] за 2011 г. включает параметры 5882 землетрясений мира (против 4840 в 2010 г. [25]).

Из каталога [3] следует, что для всех 5882 землетрясений определены только магнитуды *MPSP* по объемным волнам. Остальных динамических параметров определено значительно меньше, а именно: MS – для 1381 землетрясения; MPLP – для 162;  $M_0$  и Mw – для 14; механизмы очагов – для 23 событий. Приведенные объемы измерений повлекли за собой необходимость проведения двух дополнительных процедур при создании каталога сильных ( $M \ge 6.0$ ) землетрясений Земли [26].

Первая процедура связана с практической необходимостью из имеющихся сведений получить для всех землетрясений магнитуду MS по поверхностным волнам, как наиболее устойчивую. Более того, только эта магнитуда используется в практике сейсмического районирования для перехода от землетрясений к сотрясениям и расчетам макросейсмической интенсивности по уравнениям макросейсмического поля типа  $I=f(MS, \Delta)$ . Стандартным решением этой проблемы является пересчет магнитуд MPSP в магнитуды  $MS^*$ . Расчетная магнитуда  $MS^*$  найдена, как и ранее [6], по формуле (1) для землетрясений с  $h \le 70 \ \kappa m$ , по формулам (2) и (3) – для промежуточных и глубокофокусных землетрясений соответственно:

$$MS^* = 1.59 MPSP - 3.67, h \le 70 \kappa M.$$
(1)

$$MS^* = 1.77 MPSP - 5.2, h = 71 - 390 \kappa M, \tag{2}$$

Сейсмическая энергия рассчитывалась из MS(MS\*) по формуле из [28]:

$$\lg E, \ \mathcal{I}\mathcal{H} = 4.8 + 1.5 \ MS.$$
 (4)

Вторая процедура выполнена авторами настоящей статьи впервые и связана с разумным восполнением недостающих значений сейсмических моментов  $M_0$  и моментных магнитуд Mw в каталоге сильных ( $M \ge 6.0$ ) землетрясений Земли [26], привлекая для этого данные международных центров [29–31]. Кроме того, каталог [26] дополнен макросейсмическими сведениями [32] о сильных землетрясениях из различных источников и координатами сотрясенных населенных пунктов [33] на территории Северной Евразии из [34].

Основной целью настоящей работы является анализ наиболее сильных ( $M \ge 6.0$ ) землетрясений Земли, суммарное число которых в 2011 г. составило  $N_{\Sigma}=297$  [26]. Как и ранее [6], процедура выборки из каталога [3] сильных землетрясений решалась композитно – к таковым отнесены все землетрясения, у которых хотя бы одна из четырех магнитуд (MS, MPLP, MPSP, Mw) $\ge 6.0$ . Географическое распределение гипоцентров сильных землетрясений показано на рис. 2. В основном оно соответствует известной мировой статистике наблюдаемых на земном шаре землетрясений.



*Рис. 2.* Карта эпицентров сильных (*M*≥6.0) землетрясений Земли за 2011 г. 1 – магнитуда *MS/MS*\*; 2 – глубина *h* гипоцентра, *км*; 3 – граница сейсмического пояса.

На рис. 2 показаны границы основных сейсмических поясов по [35] – Тихоокеанского (I), Трансазиатского (II), Атлантического (III), Индийского (IV) и Африканского грабена (V).

Распределение землетрясений Земли с M (MS, MPLP, MPSP, Mw) $\geq$ 6.0 в зависимости от магнитуды, но без дифференциации их по глубинам очагов, приведено в табл. 1 в сопоставлении с аналогичными данными за предыдущие 19 лет [6, 36]. Как видим, в 2011 г. число землетрясений в интервале M=6.0–6.9 составило N=272, что значительно выше среднего  $\overline{N}$ =157.2 за 19 лет; в диапазоне M=7.0–7.9 оно равно N=24 и значительно выше среднего значения  $\overline{N}$ =15.2.

| Год  |         | $N(\Delta M)$ |      | $N_{\Sigma}$ | Год       |         | $N_{\Sigma}$ |      |       |
|------|---------|---------------|------|--------------|-----------|---------|--------------|------|-------|
|      | 6.0-6.9 | 7.0-7.9       | ≥8.0 |              |           | 6.0-6.9 | 7.0-7.9      | ≥8.0 |       |
| 1992 | 117     | 13            |      | 130          | 2004      | 153     | 14           | 3    | 170   |
| 1993 | 97      | 7             |      | 104          | 2005      | 190     | 13           | 1    | 204   |
| 1994 | 136     | 14            | 1    | 151          | 2006      | 154     | 15           | 2    | 171   |
| 1995 | 242     | 28            |      | 270          | 2007      | 185     | 20           | 3    | 208   |
| 1996 | 217     | 15            |      | 232          | 2008      | 174     | 14           | 1    | 189   |
| 1997 | 151     | 5             |      | 156          | 2009      | 152     | 18           | 1    | 171   |
| 1998 | 113     | 12            |      | 125          | 2010      | 174     | 22           | 1    | 197   |
| 1999 | 159     | 21            |      | 180          | Сумма     | 2986    | 289          | 16   | 3291  |
| 2000 | 169     | 17            |      | 186          | за 19 лет |         |              |      |       |
| 2001 | 126     | 16            | 1    | 143          | Charman   | 157.0   | 15.2         | 1.6  | 172.2 |
| 2002 | 139     | 11            |      | 150          | среднее   | 137.2   | 13.2         | 1.0  | 1/3.2 |
| 2003 | 138     | 14            | 2    | 154          | 3a 19 Jer |         |              |      |       |
|      |         |               |      |              | 2011      | 272     | 24           | 1    | 297   |

*Таблица 1.* Распределение числа землетрясений Земли с *М*≥6.0 в различных интервалах магнитуд за 1992–2011 гг.

Распределение суммарной сейсмической энергии, выделившейся в 2011 г. при землетрясениях с  $M \ge 6.0$  в пяти различных сейсмических поясах, представлено в табл. 2. При составлении таблицы использованы наблюденные магнитуды землетрясений *MS* по поверхностным волнам для тех землетрясений, у которых эта магнитуда есть в каталоге [26], а для остальных, как указано выше, выполнен пересчет магнитуд *MPSP* по объемным волнам в магнитуды (*MS*\*) по поверхностным волнам по формулам (1–3).

*Таблица 2.* Распределение числа землетрясений Земли с *M*≥6.0 и их суммарной сейсмической энергии Σ*E* по сейсмическим поясам в 2011 г.

| N⁰  | Сейсмический пояс   | Число земле | грясений с М | $\Sigma E$ ,        | %       |
|-----|---------------------|-------------|--------------|---------------------|---------|
|     |                     | 6.0-6.9     | ≥7.0         | 10 <sup>15</sup> Дж |         |
| Ι   | Тихоокеанский       | 238         | 19           | 3011.7              | 99.03   |
| II  | Трансазиатский      | 13          | 3            | 26.6                | 0.87    |
| III | Атлантический       | 6           | -            | 1.3                 | < 0.001 |
| IV  | Индийский           | 16          | -            | 1.6                 | < 0.001 |
| V   | Африканские грабены | 1           | —            | 0.002               | —       |
|     | Сумма               | 275         | 22           | 3041.202            |         |

Из табл. 2 следует, что более 99 % всей сейсмической энергии высвобождено в очагах землетрясений Тихоокеанского сейсмического пояса (I) и менее 1 % – в Трансазиатском поясе (II). В пределах остальных трех поясов уровень высвобожденной сейсмической энергии очень низкий: в Атлантическом (III) и Индийском (IV) – лишь  $\Sigma E=1.3 \cdot 10^{15}$  и  $1.6 \cdot 10^{15} \, Дж$ , а в сейсмическом поясе Африканские грабены (V) с  $\Sigma E=2 \cdot 10^{12}$  – вообще близок к данным малосейсмичных территорий.

Далее дано описание распределения в 2011 г. сильнейших землетрясений планеты с  $M(MS, MPLP, MPSP, Mw) \ge 7.0$  в пределах границ двух сейсмических поясов I и II на основе списка в табл. 3 [26] и параметров их механизмов в табл. 4 [24].

| N⁰  | Дата, | $t_0$ ,    | Эпи                  | центр                 | h,  | $M_0$ ,             |                       | Маг     | нитуды |         | Сейс-  | Географический      |  |  |  |  |
|-----|-------|------------|----------------------|-----------------------|-----|---------------------|-----------------------|---------|--------|---------|--------|---------------------|--|--|--|--|
|     | д.м   | ч мин с    | φ°                   | λ°                    | км  | Н∙м                 | Mw MS/n MPLP/n MPSP/n |         |        | MPSP/n  | мичес- | регион [37]         |  |  |  |  |
|     |       |            | •                    |                       |     |                     |                       |         |        | кий     |        |                     |  |  |  |  |
|     |       |            |                      |                       |     |                     | ПО                    |         | пояс   |         |        |                     |  |  |  |  |
|     |       |            |                      |                       |     |                     |                       |         | [35]   |         |        |                     |  |  |  |  |
| 1   | 2     | 3          | 4                    | 5                     | 6   | 7                   | 8                     | 9       | 10     | 11      | 12     | 13                  |  |  |  |  |
| 1*  | 02.01 | 20 20 13.4 | -38.400              | -73.300               | 33f | $1.6 \cdot 10^{20}$ | 7.4                   | 7.0/41  | 7.0/5  | 6.2/27  | Ι      | Побережье           |  |  |  |  |
|     |       |            |                      |                       |     |                     | OBN                   |         |        |         |        | Центрального Чили   |  |  |  |  |
| 2*  | 13.01 | 16 16 43.7 | -20.631              | 168.461               | 30  |                     | -                     | 7.1/114 | 7.4/8  | 6.8/90  | Ι      | Острова Лоялти      |  |  |  |  |
| 3*  | 18.01 | 20 23 23.7 | 28.841               | 63.893                | 78  | _                   | -                     | 6.8/79  | 7.3/10 | 7.0/76  | II     | Юго-Западный        |  |  |  |  |
|     |       |            |                      |                       |     |                     |                       |         |        |         |        | Пакистан            |  |  |  |  |
| 4*  | 11.02 | 20 05 32.2 | -36.171              | -73.101               | 33f |                     | -                     | 7.1/38  | -      | 6.1/65  | Ι      | Побережье           |  |  |  |  |
|     |       |            |                      |                       |     |                     |                       |         |        |         |        | Центрального Чили   |  |  |  |  |
| 5*  | 09.03 | 02 45 18.7 | 38.563               | 142.888               | 31  | $1.6 \cdot 10^{20}$ | 7.4                   | 7.6/75  | 7.1/8  | 6.6/144 | Ι      | Восточное побережье |  |  |  |  |
|     |       |            |                      |                       |     |                     | OBN                   |         |        |         |        | Хонсю, Япония       |  |  |  |  |
| 6*  | 11.03 | 05 46 22.4 | 38.334               | 142.514               | 27  | $3.9 \cdot 10^{21}$ | 8.4                   | 8.4/93  | 8.1/6  | 7.3/86  | Ι      | Восточное побережье |  |  |  |  |
|     |       |            |                      |                       |     |                     | OBN                   |         |        |         |        | Хонсю, Япония       |  |  |  |  |
| 7   | 11.03 | 06 15 38.8 | 36.266               | 141.007               | 47  |                     | -                     | 7.0/57  | -      | _       | Ι      | Восточное побережье |  |  |  |  |
|     |       |            |                      |                       |     |                     |                       |         |        |         |        | Хонсю, Япония       |  |  |  |  |
| 8   | 11.03 | 06 25 51.0 | 38.099               | 144.626               | 32  |                     | -                     | 7.2/112 | _      | _       | Ι      | У вост. побережья   |  |  |  |  |
|     |       |            |                      |                       |     |                     |                       |         |        |         |        | Хонсю, Япония       |  |  |  |  |
| 9   | 11.03 | 08 19 26.0 | 36.148               | 141.655               | 26  |                     | -                     | 7.1/13  | _      | 6.7/80  | Ι      | Восточное побережье |  |  |  |  |
|     |       |            |                      |                       |     |                     |                       |         |        |         |        | Хонсю, Япония       |  |  |  |  |
| 10  | 11.03 | 11 36 41.0 | 39.382               | 142.460               | 33f |                     | -                     | 6.8/73  | 7.3/4  | 6.8/120 | Ι      | Восточное побережье |  |  |  |  |
|     |       |            |                      |                       |     |                     |                       |         |        |         |        | Хонсю, Япония       |  |  |  |  |
| 11* | 24.03 | 13 55 14.5 | 20.650               | 99.937                | 12  | $1.7 \cdot 10^{19}$ | 6.8                   | 7.1/136 | 6.8/11 | 6.3/118 | II     | Мьянма              |  |  |  |  |
|     |       |            |                      |                       |     |                     | TLY                   |         |        |         |        |                     |  |  |  |  |
| 12* | 07.04 | 14 32 42.5 | 38.293               | 141.708               | 49  | $5.4 \cdot 10^{19}$ | 7.1                   | 7.3/58  | 7.3/5  | 7.0/102 | Ι      | Восточное побережье |  |  |  |  |
|     |       |            |                      |                       |     |                     | OBN                   |         |        |         |        | Хонсю, Япония       |  |  |  |  |
| 13* | 10.05 | 08 55 10.7 | -20.324              | 168.207               | 33f | -                   | -                     | 6.8/84  | 7.4/8  | 6.6/91  | Ι      | Острова             |  |  |  |  |
|     |       |            |                      |                       |     |                     |                       |         |        |         |        | Лоялти              |  |  |  |  |
| 14* | 22.06 | 21 50 49.9 | 40.036               | 142.351               | 24  | $4.0 \cdot 10^{19}$ | 7.0                   | 6.9/122 | 7.0/4  | 6.3/136 | Ι      | Восточное побережье |  |  |  |  |
|     |       |            |                      |                       |     |                     | OBN                   |         |        |         |        | Хонсю, Япония       |  |  |  |  |
| 15* | 24.06 | 03 09 37.8 | 52.098               | -171.784              | 52  | $1.6 \cdot 10^{20}$ | 7.4                   | 7.0/96  | 7.1/7  | 7.1/121 | Ι      | Лисьи острова,      |  |  |  |  |
|     |       |            |                      |                       |     |                     | OBN                   |         |        |         |        | Алеуты              |  |  |  |  |
| 16* | 06.07 | 19 03 20.8 | -29.235              | -176.321              | 36  | —                   | -                     | 7.7/80  | 7.6/6  | 7.0/79  | Ι      | Район островов      |  |  |  |  |
|     |       |            |                      |                       |     |                     |                       |         |        |         |        | Кермадек            |  |  |  |  |
| 17* | 10.07 | 00 57 09.7 | 38.005               | 143.325               | 27  | $2.4 \cdot 10^{19}$ | 6.9                   | 7.2/94  | 6.7/4  | 6.8/136 | Ι      | У вост. побережья   |  |  |  |  |
|     |       |            |                      |                       |     |                     | OBN                   |         |        |         |        | Хонсю, Япония       |  |  |  |  |
| 18* | 20.08 | 16 55 02.1 | -18.264              | 168.121               | 33f | _                   | -                     | 7.0/72  | 7.0/5  | 6.2/54  | Ι      | Острова Вануату     |  |  |  |  |
| 19  | 20.08 | 18 19 23.5 | -18.246              | 168.195               | 32  | -                   | -                     | 7.0/106 | -      | 6.2/33  | Ι      | Острова Вануату     |  |  |  |  |
| 20* | 02.09 | 10 55 52.9 | 52.239               | -171.704              | 43  | $3.9 \cdot 10^{19}$ | 7.0                   | 6.8/87  | 7.0/14 | 6.7/164 | Ι      | Лисьи острова,      |  |  |  |  |
|     |       |            |                      |                       |     |                     | OBN                   |         |        |         |        | Алеуты              |  |  |  |  |
| 21* | 21.10 | 17 57 16.1 | $-28.85\overline{0}$ | $-176.20\overline{2}$ | 35  | -                   | -                     | 7.5/118 | 7.2/5  | 6.9/80  | Ι      | Район островов      |  |  |  |  |
|     |       |            |                      |                       |     |                     |                       |         |        |         |        | Кермадек            |  |  |  |  |
| 22* | 23.10 | 10 41 20.3 | 38.655               | 43.435                | 10f | $9.6 \cdot 10^{19}$ | 7.3                   | 7.3/126 | 7.4/10 | 6.7/140 | II     | Турция              |  |  |  |  |
|     |       |            |                      |                       |     |                     | TLY                   |         |        |         |        |                     |  |  |  |  |

Таблица 3. Список сильнейших (М≥7.0) землетрясений Земли в 2011 г.

Примечание. В графе 1 знак «\*» указывает на наличие в [1, 24] параметров механизма очага по первым вступлениям *P*-волн; в графе 6 буквой «f» индексирована фиксированная глубина; в графе 8 второй строкой дан код станции, по которой рассчитана *Mw* в агентстве MOS [1]: OBN – «Обнинск», TLY – «Талая».

Из 22 сильнейших (*M*≥7.0) землетрясений Земли 19 землетрясений (№ 1, 2, 4–10, 12–22 в табл. 3) локализованы в Тихоокеанском сейсмическом поясе, три (№ 3, 11, 22) – в Трансазиатском поясе.

Механизмы очагов землетрясений с *М*≥7.0 в стереографической проекции на нижней полусфере показаны на рис. 3, их каталог представлен в табл. 4. Для 16 землетрясений (№ 1–6, 11–12, 14–18, 20–22) они получены в ГС РАН (код агентства MOS) [1, 24] по знакам первых вступлений продольных *P*-волн по программе А.В. Ландера [38], для четырех землетрясений

(№ 7, 8, 13, 19) – по методу тензора момента центроида в Колумбийском университете США (код агентства GCMT) [29] и для (10) – в Национальном исследовательском институте наук о Земле в Японии (код агентства NIED) [30].



*Рис. 3.* Стереограммы механизмов очагов сильнейших (*M*≥7.0) землетрясений Земли за 2011 г. в проекции нижней полусферы

Таблица 4. Параметры механизмов очагов сильнейших (*M*≥7.0) землетрясений Земли в 2011 г.

| №  | Дата, | $t_0$ ,    | h,  | Магнитуды |     |     |      |      | Oc | и глан | вны | х нап | ряж   | ений  | Нодальные плоскости |      |        |      |      | Агент- |       |
|----|-------|------------|-----|-----------|-----|-----|------|------|----|--------|-----|-------|-------|-------|---------------------|------|--------|------|------|--------|-------|
|    | д.м   | ч мин с    | км  | Mw        | Мw  | MS  | MPLP | MPSP |    | Т      |     | Ν     |       | Р     |                     | NP.  | 1      |      | NP2  | 2      | ство  |
|    |       |            |     | [29]      | [3] | [3] | [3]  | [3]  | PL | AZM    | PL  | AZM   | PL    | AZM   | STK                 | DP   | SLIP   | STK  | DP   | SLIP   |       |
| 1  | 2     | 3          | 4   | 5         | 6   | 7   | 8    | 9    | 10 | 11     | 12  | 13    | 14    | 15    | 16                  | 17   | 18     | 19   | 20   | 21     | 22    |
| 1  | 02.01 | 20 20 13.4 | 33f | 7.1       | 7.4 | 7.0 | 7.0  | 6.2  | 50 | 85     | 11  | 342   | 38    | 243   | 283                 | 12   | 31     | 163  | 84   | 101    | MOS   |
| 2  | 13.01 | 16 16 43.7 | 30  | 6.9       |     | 7.1 | 7.4  | 6.8  | 0  | 76     | 41  | 166   | 49    | 346   | 133                 | 58   | -141   | 19   | 58   | -39    | MOS   |
| 3  | 18.01 | 20 23 23.7 | 78  | 7.2       |     | 6.8 | 7.3  | 7.0  | 25 | 313    | 9   | 219   | 63    | 110   | 64                  | 21   | -63    | 215  | 71   | -100   | MOS   |
| 4  | 11.02 | 20 05 32.2 | 33f | 6.8       |     | 7.1 |      | 6.1  | 43 | 58     | 29  | 180   | 33    | 291   | 77                  | 30   | 169    | 177  | 84   | 61     | MOS   |
| 5  | 09.03 | 02 45 18.7 | 31  | 7.3       | 7.4 | 7.6 | 7.1  | 6.6  | 51 | 291    | 5   | 27    | 38    | 120   | 242                 | 8    | 126    | 26   | 84   | 85     | MOS   |
| 6  | 11.03 | 05 46 22.4 | 27  | 9.1       | 8.4 | 8.4 | 8.1  | 7.3  | 61 | 306    | 14  | 189   | 25    | 93    | 154                 | 24   | 53     | 14   | 71   | 105    | MOS   |
| 7  | 11.03 | 06 15 38.8 | 47  | 7.9       |     | 7.0 |      |      | 62 | 299    | 2   | 206   | 28    | 115   | 199                 | 17   | 84     | 26   | 73   | 92     | GCMT  |
| 8  | 11.03 | 06 25 51.0 | 32  | 7.6       |     | 7.2 |      |      | 4  | 99     | 7   | 190   | 82    | 340   | 182                 | 42   | -100   | 15   | 49   | -81    | GCMT  |
| 9  | 11.03 | 08 19 26.0 | 26  |           |     | 7.1 |      | 6.7  | Ν  | иехан  | изм | очага | a sei | млетр | ясен                | ия і | з [24, | 29–3 | 1] c | отсутс | твует |
| 10 | 11.03 | 11 36 41.0 | 33f | 6.6       |     | 6.8 | 7.3  | 6.8  | 39 | 354    | 33  | 232   | 34    | 116   | 54                  | 87   | 123    | 148  | 33   | 5      | NIED  |
|    |       |            |     | [30]      |     |     |      |      |    |        |     |       |       |       |                     |      |        |      |      |        |       |
| 11 | 24.03 | 13 55 14.5 | 12  | 6.8       | 6.8 | 7.1 | 6.8  | 6.3  | 4  | 303    | 74  | 45    | 16    | 212   | 348                 | 76   | -171   | 256  | 81   | -14    | MOS   |
| 12 | 07.04 | 14 32 42.5 | 49  | 7.1       | 7.1 | 7.3 | 7.3  | 7.0  | 63 | 173    | 24  | 22    | 12    | 286   | 349                 | 39   | 50     | 216  | 61   | 118    | MOS   |
| 13 | 10.05 | 08 55 10.7 | 33f | 6.8       |     | 6.8 | 7.4  | 6.6  | 4  | 253    | 11  | 162   | 78    | 6     | 354                 | 42   | -74    | 153  | 50   | -104   | GCMT  |
| 14 | 22.06 | 21 50 49.9 | 24  | 6.7       | 7.0 | 6.9 | 7.0  | 6.3  | 51 | 270    | 0   | 180   | 39    | 90    | 180                 | 6    | 90     | 0    | 84   | 90     | MOS   |
| 15 | 24.06 | 03 09 37.8 | 52  | 7.3       | 7.4 | 7.0 | 7.1  | 7.1  | 51 | 0      | 0   | 270   | 39    | 180   | 270                 | 6    | 90     | 90   | 84   | 90     | MOS   |
| 16 | 06.07 | 19 03 20.8 | 36  | 7.6       |     | 7.7 | 7.6  | 7.0  | 0  | 90     | 15  | 180   | 75    | 0     | 165                 | 47   | -111   | 15   | 47   | -69    | MOS   |
| 17 | 10.07 | 00 57 09.7 | 27  | 7.0       | 6.9 | 7.2 | 6.7  | 6.8  | 11 | 283    | 78  | 90    | 3     | 193   | 327                 | 80   | 174    | 58   | 84   | 10     | MOS   |
| 18 | 20.08 | 16 55 02.1 | 33f | 7.1       |     | 7.0 | 7.0  | 6.2  | 64 | 49     | 4   | 146   | 26    | 238   | 336                 | 20   | 101    | 145  | 71   | 86     | MOS   |
| 19 | 20.08 | 18 19 23.5 | 32  | 7.0       |     | 7.0 |      | 6.2  | 78 | 61     | 2   | 159   | 12    | 249   | 158                 | 57   | 88     | 343  | 33   | 94     | GCMT  |
| 20 | 02.09 | 10 55 52.9 | 43  | 6.9       | 7.0 | 6.8 | 7.0  | 6.7  | 36 | 326    | 53  | 162   | 8     | 61    | 110                 | 59   | 22     | 8    | 71   | 147    | MOS   |
| 21 | 21.10 | 17 57 16.1 | 35  | 7.4       |     | 7.5 | 7.2  | 6.9  | 76 | 316    | 5   | 207   | 13    | 115   | 199                 | 32   | 81     | 30   | 58   | 96     | MOS   |
| 22 | 23.10 | 10 41 20.3 | 10f | 7.1       | 7.3 | 7.3 | 7.4  | 6.7  | 71 | 38     | 14  | 261   | 12    | 167   | 239                 | 35   | 65     | 89   | 59   | 107    | MOS   |

Примечание. Параметры землетрясений соответствуют таковым в каталогах [3, 24]; в графе 5 приведена магнитуда *Мw* по данным агентства GCMT [29], а для землетрясения № 10 – по данным агентства NIED [30]. Ниже приводится описание 21 землетрясения из табл. 3, 4 по сейсмическим поясам I и II. Механизм очага землетрясения 11 марта в 08<sup>h</sup>19<sup>m</sup> (№ 9 в табл. 3 и 4) в [24, 29–31] отсутствует. Все очаги, кроме (№ 3 в табл. 3 и 4), расположены в пределах земной коры.

Сильнейшее (*MS*=8.4 [1], *Mw*=9.1 [29]) катастрофическое землетрясение века (№ 6) произошло 11 марта 2011 г. в 05<sup>h</sup>46<sup>m</sup> у Тихоокеанского побережья региона Тохоку о. Хонсю, Япония (центр региона – префектура Мияги) и входит в мощную группу событий Тихоокеанского пояса из форшоков, главного толчка и афтершоков. Они описаны ниже в совокупности.

Главный очаг землетрясения Тохоку ( $\mathbb{N}$  6) возник в океане на глубине 27 км. Небольшая глубина и характер движения в очаге – взброс по близвертикальной плоскости (71° с горизонтом [24]) – при магнитуде Mw=9.1 стали причиной возникшего затем сильного цунами. По данным [31], в результате землетрясения Тохоку и цунами вдоль всего восточного побережья Хонсю от Чибы до Аомори по меньшей мере 15703 человек погибло, 4647 – пропало без вести и 5314 – ранено, 130927 человек эвакуировано. Были разрушены или повреждены как минимум 332395 зданий, 2126 автодорог, 56 мостов и 26 железных дорог. Большинство несчастных случаев и повреждений произошли в префектурах Иватэ, Мияги и Фукусима в результате цунами с максимальной высотой наката до 37.88 м на Мияко.

Общий экономический ущерб в Японии оценивается в 309 млрд. долларов США. Электричество, газ и водоснабжение, телекоммуникации и железнодорожное сообщение нарушены, несколько реакторов были серьезно повреждены на атомной электростанции вблизи Окумы. Несколько пожаров произошло в Тибе и Мияги. Не менее 1800 домов были разрушены, когда вышла из строя плотина в Фукусиме. Максимальное ускорение 2.93 g записано на Цукидате. Наблюдалось горизонтальное смещение и проседание грунта. Оползни произошли в Мияги. Сжижение грунта наблюдалось в Чибе, Одайбе, Токио и Ураясу. Волной цунами были разрушены или серьезно повреждены многие прибрежные города в районе Куджи-Минамисанрику-Нами.

На территории Японии главное землетрясение ощущалось с интенсивностью сотрясений *I*=VIII ММ в Фукусиме (ММ – модифицированная шкала Меркалли [8]), VII ММ – в Агуи, Хирацуке, Кирю, Комаэ, Ояме, Сендае и Цукубе; VI ММ – на большой территории восточной части о. Хонсю, включая зону Токио-Йокогама. Ощущалось от о. Хоккайдо до о. Кюсю. Цунами имели максимальную высоту 29.6 *м* в Офунато, 18.4 *м* – в Онагаве и 9.4 *м* – в Иваки.

Заметное воздействие землетрясения Тохоку отмечено далеко за пределами Японии. Один человек погиб и несколько домов разрушены волной цунами высотой 2 *м* в Джаяпуре, Индонезия. Один человек погиб, несколько лодок и доков были разрушены или повреждены в Кресент-Сити цунами с высотой волны 247 *см*. Несколько домов и лодок, а также доки были разрушены или повреждены в Санта-Крузе, штат Калифорния; Брукингсе, штат Орегон; Халейве, Каилуа-Коне и Кеалакекуе, штат Гавайи, США. Некоторые здания слегка повреждены на о. Санта-Круз (Галапагосские острова, Эквадор) волной цунами высотой 208 *см*. Несколько домов разрушено в Писко, Перу. Несколько зданий разрушены в Дичато и несколько лодок повреждены в Пуэрто-Вьехо и на о. Чилоэ, Чили. Землетрясение ощущалось на Северных Марианских островах, в Северной Корее, Южной Корее, на Тайване, северовостоке Китая и в юго-восточной части России, вплоть до Гаосюна, Пекина и Петропавловска-Камчатского. В Лейкангере, Норвегия, наблюдались сейши [31].

В России землетрясение Тохоку ощущалось с интенсивностью *I*=4 балла (здесь и далее в статье арабскими цифрами дана интенсивность в баллах по шкале MSK-64 [39]) в Южно-Курильске и Курильске, 3 балла – в Малокурильском [1]. Как сообщило МЧС РФ, после объявленной тревоги цунами из зоны возможного подтопления на Курильских островах было эвакуировано около 11 тыс. человек. Волны цунами высотой до 2 *м* были зарегистрированы в районе о. Кунашир (вблизи Южно-Курильска), у островов Шикотан и Итуруп [40].

Землетрясение Тохоку (№ 6) возникло под действием превалирования близгоризонтальных сжимающих напряжений ( $PL_P=25^\circ$ ), ориентированных в восточном направлении ( $AZM=93^\circ$ ). Напряжения растяжения имели большой наклон к горизонту ( $PL_T=61^\circ$ ) и направлены на северозапад ( $AZM=306^\circ$ ). Нодальная плоскость NP2 близмеридиональна ( $STK_2=14^\circ$ ) и имеет крутое ( $DP_2=71^\circ$ ) залегание, плоскость NP1 – пологая ( $DP_1=24^\circ$ ), ее простирание – юг–юго-восточное ( $STK_1=154^\circ$ ). Тип движения по крутопадающей плоскости NP2 – взброс с незначительными компонентами правостороннего сдвига, по пологой плоскости NP1 – надвиг, несколько осложненный компонентами левостороннего сдвига.

Район о. Хонсю характеризуется высоким уровнем сейсмичности с исторических времен [40, 41]. Землетрясение Тохоку произошло близ одного из наиболее сейсмоактивных участков тихоокеанского побережья Японии – побережья Санрику. В этом месте сильнейшие землетрясения, сопровождающиеся цунами, происходят постоянно. Так, 15.06.1896 г. восточнее о. Хонсю произошло землетрясение с M=8.5, вызвавшее цунами с высотой волн до 25 *м*, погибло 27 тыс. человек (по данным [31]). Кроме того, 02.03.1933 г. в 178 *км* к восток–северо-востоку от района очага землетрясения Тохоку произошло Санрикское землетрясение с магнитудой M=8.2. Оно вызвало цунами с высотой волн до 28 *м*, погибло около трех тысяч человек [35].

За два дня до катастрофы (9 марта в  $02^{h}45^{m}$ ) в 44 км к северо-востоку от очага землетрясения Тохоку произошел сильный (MS=7.6 [3], Mw=7.3 [29]) форшок (N 5). Сильные сотрясения ощущались в половине префектур Японии, в том числе и в Токио. Жертв и серьезных разрушений тогда не было. Известно, что в одном из городов частично обвалилось здание школы. На несколько часов, из соображений безопасности, останавливалось движение скоростных поездов. Землетрясение не повлияло на работу двух атомных электростанций в префектуре Мияги, находящихся поблизости от эпицентра. Эксперты предупредили об угрозе возникновения цунами, но высота вызванных форшоком волн составила всего 60 см. Землетрясение ощущалось с интенсивностью IV MM в Мисаве, Сендае и Уцуномие; III MM – в Токио, Цукубе, Йокогаме и Йокосуке; II MM – в Нарите и Сагамихаре. Оно ощущалось также по всей центральной и северной части о. Хонсю и на юге о. Хоккайдо [29]. В России оно ощущалось в Южно-Курильске с интенсивностью 2 балла MSK [3]. Этот форшок сопровождался многочисленными своими афтершоками.

Землетрясение ( $\mathbb{N}$  5) произошло под действием системы напряжений, похожей на таковую при главном толчке, когда оба напряжения заметно наклонены к горизонту, в принципе, существенно не различаясь:  $PL_P=38^{\circ}$  и  $PL_T=51^{\circ}$  – у форшока;  $PL_P=25^{\circ}$  и  $PL_T=61^{\circ}$  – у главного толчка. При этом крутые плоскости имеют в общем сходные наклоны  $DP_{\phi-\kappa a}=84^{\circ}$ ,  $DP_{r\pi T}=71^{\circ}$ , но в положении пологих плоскостей различие заметнее: у форшока – всего 8°, близка к донной поверхности океана, у главного толчка – 24°. В результате в очаге форшока по крутой плоскости север–северо-восточного (26°) простирания – чистый взброс с минимальными компонентами левостороннего сдвига, в очаге главного толчка – более заметные компоненты сдвига уже по меридиональной плоскости (177°).

В то же время в очагах сильных афтершоков, которых было много ( $\mathbb{N}$  7–10, 12, 14, 17), тип движения и простирание нодальных плоскостей наследуются лишь в ближайшем афтершоке через 29 минут ( $\mathbb{N}$  7, 11 марта в  $06^{h}15^{m}$  с Mw=7.9) и одном из поздних ( $\mathbb{N}$  14, 22 июня в  $21^{h}50^{m}$  с Mw=6.7), что следует из рис. 3.

В пределах Тихоокеанского пояса (I), кроме описанной выше серии событий, связанной с катастрофой Тохоку, произошло еще десять сильных землетрясений. Они возникли попарно в разных районах: на побережье Чили – 2 января в  $20^{h}20^{m}$  (№ 1) и 11 февраля в  $20^{h}05^{m}$  (№ 4); на островах Лоялти – 13 января в  $16^{h}16^{m}$  (№ 2) и 10 мая в  $08^{h}55^{m}$  (№ 13); на Лисьих островах и Алеутах – 24 июня в  $03^{h}09^{m}$  (№ 15) и 2 сентября в  $10^{h}55^{m}$  (№ 20); в районе островов Кермадек – 6 июля в  $19^{h}03^{m}$  (№ 16) и 21 октября в  $17^{h}57^{m}$  (№ 21); на островах Вануату – 20 августа в  $16^{h}55^{m}$  (№ 18) и в  $18^{h}19^{m}$  (№ 19). Рассмотрим их в указанной последовательности.

В Чили первое землетрясение (№ 1) с MS=7.0, зарегистрированное 2 января в 20<sup>h</sup>20<sup>m</sup>, вызвало сотрясения в центральных и южных областях страны. Гипоцентр находился в океане, примерно в 70 км к северо-западу от г. Темуко. Жертв и разрушений нет, хотя в некоторых населенных пунктах возникла паника, а также наблюдались перебои в подаче электричества и работе фиксированной телефонной связи. Предупреждение о цунами вскоре было отменено [42].

По данным [31], землетрясение 2 января ощущалось в Чили с интенсивностью VII MM в городке Нуэва Имперьяль; VI MM – в Куранилауэ, Лебу и Тируа; V MM – в Анголе, Канете, Чигуаянте, Коэлему, Консепсьоне, Уальки, Ла-Лае, Лос-Аламосе, Лос-Анджелесе, Сан-Педроде-ла-Пасе, Сан-Росендо, Талькауано и Темуко. Сотрясения отмечены во всей центральной части Чили от Сантьяго до Исла Чилоэ. Ощущалось также в Аргентине: III MM – в Сан-Карлосде-Барилоче и Неукене; II MM – в Кутрал-Ко.

Второе землетрясение ( $\mathbb{N}_{2}$  4) с MS=7.1, произошедшее 11 февраля в 20<sup>h</sup>05<sup>m</sup>, – один из сильнейших поздних афтершоков катастрофического землетрясения 27.02.2010 г. с MS=8.5 близ побережья Центрального Чили [6]. Эпицентр ( $\mathbb{N}_{2}$  4) находился в 45 км к северу от г. Консепсьон.

Отмечались нарушения телефонной связи в связи с повреждением опор высоковольтных линий, а жители пос. Дичато были эвакуированы из-за угрозы цунами. С 11 до 13 февраля произошло еще более 50 землетрясений умеренной интенсивности в регионе Био-Био [43].

Землетрясение 11 февраля ощущалось в Чили с интенсивностью VI ММ – в Арауко, Каукенесе, Чанко, Кольбуне, Консепсьоне, Конститусьоне, Курико, Эмпедрадо, Ла-Лае, Линаресе, Лонгави, Молине, Пельюуэ, Ретиро, Ромерале, Сан-Клементе, Сан-Хавьере, Тальке, Талькауано и Йербас-Буэнасе; V ММ – в Анголе, Чепике, Чильяне, Илоке, Лос-Саусесе, Мелипеуко, Паредонесе, Паррале, Ранкагуе, Ренайко, Рио Кларо, Санта-Крусе и Юмбеле; IV ММ – в Лос-Анджелесе, Сан-Висенте и Винья-дель-Маре; III ММ – в Сантьяго и Темуко. Толчки ощущались в большей части Центрального Чили от Ла-Лигуа до Вальдивии. Также ощущалось в Аргентине с интенсивностью II ММ в Буэнос-Айресе, а также в Кутрал-Ко, Мендосе, Неукене, Сан-Карлос-де-Барилоче и Сан-Хуане [31].

В очагах обоих землетрясений ( $\mathbb{N} \mathbb{1}$  и 4) в прибрежной зоне Чили векторы напряжений сжатия и растяжения наклонены к горизонту под значительными углами (38 и 33°) и (50 и 43°), но с некоторым превалированием напряжений сжатия из-за меньших углов (табл. 4). Поэтому движение по всем нодальным плоскостям в общем восходящее, осложненное сдвигами, меньшими для ( $\mathbb{N} \mathbb{1}$ ) и большими – для ( $\mathbb{N} \mathbb{4}$ ) (рис. 3). По близвертикальным (84 и 84°) нодальным плоскостям – взбросы, по близгоризонтальным (12 и 30°) – надвиг с очень незначительным левосторонним сдвигом для ( $\mathbb{N} \mathbb{1}$ ) и правосторонний сдвиг с заметными компонентами взброса – для ( $\mathbb{N} \mathbb{4}$ ). Ориентацию плоскостей *NP1* (283 и 77°) можно счесть близширотной, а *NP2* (163 и 177°) – близмеридиональной (табл. 4).

*На островах Лоялти* землетрясение (№ 2) с MS=7.1 возникло 13 января в 16<sup>h</sup>16<sup>m</sup> под действием горизонтальных ( $PL_{T}$ =0°) напряжений растяжения, ориентированных в восточном направлении (AZM=76°). По данным [31], оно ощущалось с *I*=II ММ в Нумеа, Новая Каледония. Также ощущалось в городке Боулоупари.

Землетрясение ( $\mathbb{N}$  13) с *MPLP*=7.4 зарегистрировано 10 мая в 08<sup>h</sup>55<sup>m</sup> под действием близгоризонтальных (*PL*<sub>T</sub>=4°) напряжений растяжения, ориентированных в юго-западном направлении (*AZM*=253°). Оно ощущалось в Новой Каледонии в деревнях Тадине и Ви с интенсивностью II ММ – в Думбеа и Нумеа, а также в Бурае, Мон-Доре и Яте. Кроме того, вызвало колебания с *I*=II ММ в Порт-Виле, а также ощущалось в Исангеле, Вануату [31].

Для обоих землетрясений на островах Лоялти характерны нисходящие движения по всем плоскостям, осложненные в разной степени компонентами сдвига – сдвиго-сбросы для (№ 2) и почти чистые сбросы – для (№ 13) (рис. 3). Сбросы обусловлены близгоризонтальными (0 и 4°) напряжениями растяжений (табл. 4).

В районе Лисьих островов и на Алеутах произошли два сильных землетрясения (№ 15, 20).

Землетрясение ( $\mathbb{N}$  15) ощущалось в штате Аляска, США с интенсивностью VI MM в Никольском и II MM – в Датч-Харборе. Также ощущалось в Адаке, Анкоридже, Колд-Бее, Базе BBC Элмендорф, Гомере и Уналашке. На следующих приливных станциях были отмечены волны цунами с высотой (от пика до подошвы): 10 *см* – в Никольском; 9 *см* – в Сент-Поле; 6 *см* – на о. Адак; 4 *см* – на о. Акутан и на о. Мидуэй; 6 *см* – в Хило и 4 *см* в Навиливили, Гавайи [31]. По данным [31], землетрясение ( $\mathbb{N}$  20) с *MPLP*=7.0, зарегистрированное 2 сентября в 10<sup>h</sup>55<sup>m</sup>, ощущалось на всех Алеутских островах. Цунами с высотой волны 6 *см* было зарегистрировано в Атке. Типы подвижек в очагах землетрясений ( $\mathbb{N}$  15 и 20) абсолютно разные: чистый взброс по близвертикальной (84°) плоскости или чистый надвиг по близгоризонтальной (6°) плоскости для ( $\mathbb{N}$  15) и преимущественно сдвиги, хотя и с заметными компонентами взброса, для ( $\mathbb{N}$  20) (табл. 4, рис. 3).

В районе островов Кермадек землетрясение (№ 16) с MS=7.7 возникло 6 июля в 19<sup>h</sup>03<sup>m</sup>. По данным [31], оно ощущалось с интенсивностью II ММ в Веллингтоне, Новая Зеландия. Также ощущалось в Окленде, Крайстчерче, Гисборне, Гастингсе и Манукау (Новая Зеландия), в Брисбене и Голд-Косте (Австралия), в Суве, Фиджи и Нукуалофе (Тонга). Землетрясение (№ 21) с MS=7.5 зарегистрировано 21 октября в 17<sup>h</sup>57<sup>m</sup>. Оно ощущалось с I=III ММ в Гисборне, Новая Зеландия. Также ощущалось в Нейпире и Веллингтоне (Новая Зеландия) и в Нукуалофе (Тонга) [31]. В очагах землетрясений (№ 16, 21) имеет место абсолютное несходство подвижек: сброс с небольшими компонентами сдвига для (№ 16) и почти чистый взброс – для (№ 21) (рис. 3). При этом простирания плоскостей *NP1* (165 и 199°) и *NP2* (15 и 30°) довольно сходны между собой (табл. 4).

На островах Вануату два одинаково сильных (MS=7.0) землетрясения (№ 18 и 19) произошли в один день (20 августа) с разницей во времени около 1.5 часов (табл. 3). При этом между ними через 18 минут был еще один мощный толчок № 18 с Mw=6.5 [3], т.е. реализовалась высокомагнитудная сейсмическая группа. По данным [31], землетрясение (№ 18) ощущалось с интенсивностью V ММ в Порт-Виле, а также в Лакаторо, Вануату. Ощущалось в Нумеа, Новая Каледония. Землетрясение (№ 19) ощущалось с такой же интенсивностью V ММ в Порт-Виле, также ощущалось в Луганвилле, Вануату [31]. Генезис обоих очагов (№ 18 и 19) явно идентичный, поскольку их стереограммы похожи (рис. 3).

**В Трансазиатском сейсмическом поясе (II)** по данным ГС РАН [1, 3], произошло три землетрясения с  $M \ge 7$  – в Пакистане ( $\mathbb{N}$  3), Мьянме ( $\mathbb{N}$  11) и Турции ( $\mathbb{N}$  22).

В Пакистане разрушительное землетрясение (№ 3) с MPLP=7.3 (Mw=7.2 [29]) произошло 18 января в 20<sup>h</sup>23<sup>m</sup> к югу от вулканической дуги Белуджистан вблизи г. Далбандин. Глубина очага  $h=78 \ \kappa m$ . Землетрясение сопровождалось двумя достаточно сильными афтершоками, зарегистрированными сейсмическими станциями глобальной сети. Землетрясение связано со сбросом на разломе, расположенном на плите Аравия–Ормара. Землетрясение ощущалось от Тегерана до Дели и от северной части Персидского залива до Центральной Азии, радиально – на расстояниях до 1400  $\kappa m$ . В [44] проанализировано затухание интенсивности, приводится описание исторических землетрясений, произошедших на западе Белуджистана. Потенциал сейсмической реакции участков на территории г. Карачи исследуется по данным о землетрясениях, произошедших с 1950-х годов.

В результате землетрясения (№ 3) один человек погиб в Гархихайро и два человека умерли от сердечных приступов в Джакобабаде и Кветте, Пакистан. Несколько человек получили ранения, по меньшей мере 200 зданий повреждено. Повреждения произошли также в Синде и на юге Пенджаба. Интенсивность сотрясений в Белуджистане, особенно в районе Далбандина, составила V MM; в Бахавалпуре, Карачи и Кветте – IV MM; в Хайдарабаде, Исламабаде, Хайрпуре и Лахоре (Пакистан) – III MM. Незначительные повреждения произошли в районах Западной Индии. В Индии землетрясение ощущалось в Газиабаде, Гургаоне, Нью-Дели и Пилани с интенсивностью IV MM; в Амритсаре, Чандигархе, Дели, Джайпуре и Нойде – III MM. В Иране интенсивность сотрясений составила в Ченаране IV MM; в Бандаре Аббасе и Захедане – III MM. Также ощущалось: IV MM в Рас-эль-Хайме; III MM – в Абу-Даби, Аджмане, Дубае и Шардже (Объединенные Арабские Эмираты), в Кабуле и Кандагаре (Афганистан), в Манаме, Бахрейне и Маскате (Оман); II MM – в Дохе, Катаре и в Эр-Рияде (Саудовская Аравия). Еще землетрясение ощущалось в 11 странах Южной Азии – от Ашхабада (Туркменистан) и Самарканда (Узбекистан) до Бангалоре (Индия) и от Харидвары (Индия) до Бурайды (Саудовская Аравия) [31].

Согласно [24], землетрясение (№ 3) возникло под действием превалирования напряжений растяжения ( $PL_T=25^\circ$ ), ориентированных в северо-западном направлении ( $AZM=313^\circ$ ). Напряжения сжатия имеют значительно больший наклон ( $PL_P=63^\circ$ ) к горизонту и направлены на восток-юго-восток ( $AZM=110^\circ$ ). Нодальная плоскость NP1 – пологая ( $DP_1=21^\circ$ ) и простирается на восток-северо-восток ( $STK_1=64^\circ$ ). Плоскость NP2 – весьма крутая ( $DP_2=71^\circ$ ), ее простирание – юго-западное ( $STK_2=215^\circ$ ). Тип движения по крутой плоскости NP2 – сброс, с небольшим правосторонним сдвигом, по пологой – поддвиг, несколько осложненный левосторонним сдвигом.

*В Мьянме* очаг разрушительного землетрясения (№ 11) с *MS*=7.1, *h*=12 км, произошедшего 24 марта в 13<sup>h</sup>55<sup>m</sup>, находился вблизи г. Тарлай недалеко от границ с Лаосом и Таиландом: в 417 км к северо-западу от Вьентьяна, столицы Лаоса, и в 422 км к восток-юго-востоку от г. Мандалайя, Мьянма.

По данным [31], в результате этого землетрясения погибли по крайней мере 74 человека, 111 человек получили ранения, повреждено 413 зданий, рухнул один мост и произошли оползни в Шане, Мьянма. Землетрясение вызвало сотрясения с интенсивностью VI MM в Кенгтунге, II MM – в Рангуне и ощущалось в Мандалае и Таунджи. В Северном Таиланде один человек погиб, с интенсивностью VI MM толчки ощущались в Мэй Сае; IV MM – в Амнат Чароене, Чианграе, Лампхуне, Мэчане, Мае-Риме, Нане, Нонтхабури, Пхаяо и Понге; III MM – в Бангкоке, Чиангмае, Ханг-Донге, Лампанге, Мае Хонг Соне, Сан Кампаенге, Сан-Па-Тонге и Сан-Сае. В китайской провинции Юньнань 12 человек получили ранения, 9496 – эвакуированы, повреждены 9691 домов, 136 водохранилищ и 35 дорог. В Китае землетрясение ощущалось с интенсивностью IV MM в Джингонге, III MM – в Наньнине, II MM – в Куньмине. В Лаосе интенсивность сотрясений составила IV MM – в Луангнамтхе, II MM – в Луангпхабанге и Вьентьяне. Во Вьетнаме сотрясения были на уровне III MM в Ханое, так же ощущалось в Хошимине. Землетрясение ощущалось на большой территории – в Лаосе, Мьянме, Таиланде, Вьетнаме, на юге Китая, а также в Пномпене, Камбодже и Сингапуре, в Дакке, Бангладеше и в Эйзоле, Индия.

Землетрясение (№ 11) возникло под действием горизонтальных ( $PL_T=4^\circ$ ) растягивающих напряжений, ориентированных в северо-западном направлении ( $AZM=303^\circ$ ), и близгоризонтальных ( $PL_P=16^\circ$ ) сжимающих напряжений, ориентированных в юго-западном направлении ( $AZM=212^\circ$ ). Обе нодальные плоскости – близвертикальны ( $DP_1=76$ ,  $DP_2=81^\circ$ ), простирание плоскости NP2 – запад-юго-западное ( $STK_2=256^\circ$ ), NP1 – север–северо-западное ( $STK_1=348^\circ$ ). Тип движения по обеим плоскостям – сдвиги с очень небольшими компонентами сброса, по NP2 – левосторонний сдвиг, по NP1 – правосторонний.

Землетрясений с M>6 в Мьянме не происходило более 100 лет. Землетрясение 24 марта было связано с левосторонними сдвигами на разломе Нам-Ма, который ранее считался неактивным. Максимальные ускорения 0.20 g зарегистрированы в г. Мае-Сай, Таиланд (эпицентральное расстояние 28 км) [45]. Сейсмическая активность этой зоны обусловлена вращением блоков по часовой стрелке.

В [46] есть данные о том, что за шесть месяцев перед землетрясениями 11 марта в Японии с *MS*=9.0 и 24 марта в Мьянме с *MS*=7.2 было обнаружено появление аномалий инфракрасной яркостной температуры. Аномальные амплитуды отличались от фоновых не менее чем в десять раз. Отмечается различный характер их проявления. Рассматривается влияние климатических и геологических условий.

В Турции 23 октября в 10<sup>h</sup>41<sup>m</sup> произошло катастрофическое землетрясение (№ 22) с MS=7.3 (Mw=7.1 [29]). Очаг находился в восточной части страны, в провинции Кютахья, на глубине около 10 км, в 14 км к север-северо-западу от г. Ван, в 114 км к восток-северо-востоку от г. Битлис и в 203 км к юго-западу от г. Еревана, столицы Армении. Турция находится в сейсмически активном регионе, испытывающем частые разрушительные землетрясения. Эпицентр землетрясения 23 октября был расположен в зоне столкновения Аравийской и Евразийской плит. Оно напоминает о катастрофических событиях, которые Турция пережила в недалеком прошлом: землетрясение в Эрзинджане в 1939 г. с магнитудой M=7.8, в результате которого погибли около 33 000 человек; землетрясение с M=7.3 в районе оз. Ван в Восточной Анатолии в 1976 г., когда было разрушено несколько деревень около границы Турции с Ираном и погибло несколько тысяч человек; Измитское землетрясение 1999 г. с M=7.6, в результате которого погибли 17 000 человек, ранены 50 000 и остались без крова 500 000 человек [47, 48]. Авторами [49] были обследованы большие разрушения в г. Эрджиш специалисты связывают с локальными усилениями колебаний, а также с некачественными строительными материалами.

По данным [31], в результате землетрясения (№ 22) по крайней мере 604 человека погибли, 2608 – получили ранения, 40 000 – эвакуированы. В районе Эрсис-Табанлы-Ван 5739 зданий разрушены и 4882 – повреждены. Нарушены телекоммуникации, электро- и водоснабжение, наблюдались поверхностные разломы и сжижение грунта. Землетрясение вызвало колебания с интенсивностью: VIII MM – в Ване; VII MM – в Битлисе; VI MM – в Татване; V MM – в Байазете и Карсе; IV MM – в Диярбакыре, Эрзинджане и Эрзуруме. Оно также ощущалось во всей Восточной Турции и на запад вплоть до Антиохии, Кайсери и Самсуна. Вне Турции землетрясение ощущалось в Иране: VI MM – в Хвои, III MM – в Урмии и Тебризе; в Ираке: с *I=*V MM – в Мосуле, IV MM – в Багдаде и Дахуке; в Армении: с *I=*IV MM – в Гюмри и Спитаке, III MM – в Батуми, III MM – в Багдаде и Дахуке; в Армении: с *I=*IV MM – в Баку; в Грузии: IV MM – в Батуми, III MM – в Тбилиси; в Сирии: IV MM – в Алеппо, III MM – в Дамаске; а также II MM – в Тель-Авив-Яффо, Израиль и в Ростове, Россия. Ощущалось в большей части Армении, Азербайджана, Грузии, Сирии, северо-запада Ирана и на севере Ирака, а также в некоторых районах Израиля, Иордании, Ливана и Юго-Западной России. Землетрясение ( $\mathbb{N}$  22) возникло под действием превалирования близгоризонтальных напряжений сжатия ( $PL_P=12^\circ$ ), ориентированных в южном направлении ( $STK=167^\circ$ ). Напряжения растяжения ориентированы на северо-восток ( $AZM=38^\circ$ ) под углом  $PL_T=71^\circ$ . Плоскость NP1 простирается на юго-запад ( $STK_1=239^\circ$ ), NP2 – на восток ( $STK_2=89^\circ$ ), плоскости залегают под углами  $DP_1=35^\circ$ ,  $DP_2=59^\circ$ . Тип движения по обеим плоскостям – взброс с компонентами сдвига, по NP1 – левостороннего, по NP2 – правостороннего.

В заключение отметим, что в 2011 г. наблюдалась аномально высокая сейсмическая активность в районе восточного побережья острова Хонсю, Япония. Всего в пределах Тихоокеанского сейсмического пояса произошло 19 землетрясений с  $M \ge 7$ , среди них – катастрофическое цунамигенное землетрясение Тохоку с Mw=9.1 – одно из сильнейших на планете за всю историю инструментальных наблюдений.

## Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 2011 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2011–2012. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic\_bulletin/2011*.
- 2. Оперативный сейсмологический каталог (ежедекадный) за 2011 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2011–2012. URL: *ftp://ftp.gsras.ru/pub/Teleseismic\_Catalog/2011*.
- Болдырева Н.В. (отв. сост.), Аторина М.А., Бабкина В.Ф., Дуленцова Л.Г., Лёвкина А.В., Малянова Л.С., Рыжикова М.И., Щербакова А.И. (сост.). Каталог землетрясений Земли за 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD\_ROM.
- 4. Болдырева Н.В., Пойгина С.Г. (сост.). Список сейсмических станций России и мира, использованных в ГС РАН при создании Сейсмологического бюллетеня за 2011 г. // Землетрясения Северной Евразии, 2011 год. – Обнинск: ФИЦ ЕГС РАН, 2017. – Приложение на CD\_ROM.
- 5. Болдырева Н.В., Пойгина С.Г. (сост.). Список сейсмических станций России и мира, использованных при создании Сейсмологического бюллетеня за 2010 г. // Землетрясения Северной Евразии, 2010 год. Обнинск: ФИЦ ЕГС РАН, 2016. (На СD).
- Чепкунас Л.С., Болдырева Н.В., Пойгина С.Г. Сильнейшие землетрясения мира по телесейсмическим наблюдениям ГС РАН // Землетрясения Северной Евразии, 2010 год. – Обнинск: ФИЦ ЕГС РАН, 2016. – С. 279–290.
- Епифанский А.Г. Определение параметров гипоцентров и магнитуд землетрясений в телесейсмической зоне (ЭПИ-74) // Алгоритмы и практика определения параметров гипоцентров землетрясений на ЭВМ. – М.: Наука, 1983. – С. 92–97.
- 8. Рихтер Ч. Элементарная сейсмология. Пер. с англ. М.: ИЛ, 1963. 670 с.
- Jeffreys H., Bullen K.E. Seismological tables // Brit. Assoc. for the advancement of Sci. London: Gray-Milne Trust, 1958. – 65 p.
- 10. Bolt B.A. Estimation of *PKP* travel times // Bull. Seism. Soc. Am. 1968. 58. N 4. P. 1305-1324.
- Голенецкий С.И., Круглякова М.И., Перевалова Т.И. Годографы сейсмических волн землетрясений Прибайкалья // Сейсмичность и глубинное строение Прибайкалья. – Новосибирск: Наука (СО РАН), 1978. – С. 30–38.
- 12. Wadati K. Travel time P- and S-waves // Geophys. Mag. 1933. 11.
- 13. Архангельская В.М. Использование записей поверхностных волн при интерпретации сейсмограмм // Бюллетень Совета по сейсмологии. – М.: АН СССР, 1957. – № 6. – С. 81–88.
- Горбунова И.В., Захарова А.И., Чепкунас Л.С. Максимальная фаза поверхностной волны Релея по наблюдениям различной аппаратурой в ЦСО «Обнинск» // Магнитуда и энергетическая классификация землетрясений. Т. П. – М.: ИФЗ АН СССР, 1974. – С. 19–25.
- 15. Gutenberg B., Richter C. Earthquake magnitude, intensity, energy and acceleration // Bull. Seism. Soc. Am. 1942. 32. N 3. P. 163–191.
- 16. Gutenberg B., Richter C. Earthquake magnitude, intensity, energy and acceleration // Bull. Seism. Soc. Am. 1956. 46. N 2. P. 105–145.

- 17. Ванек И., Затопек А., Карник В., Кондорская Н.В., Ризниченко Ю.В., Саваренский Е.Ф., Соловьёв С.Л., Шебалин Н.В. Стандартизация шкал магнитуд // Известия АН СССР. Серия геофизическая. 1962. № 2. С. 153–158.
- 18. Горбунова И.В., Шаторная Н.В. О калибровочной кривой для определения магнитуды землетрясений по волнам *PKIKP* // Физика Земли. 1976. № 7. С. 77–81.
- 19. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 273 с.
- 20. Аптекман Ж.Я., Дараган С.К., Долгополов Д.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – № 2. – С. 60–70.
- 21. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология 1989. № 2. С. 66–79.
- 22. Hanks T.C., Kanamori H. A Moment Magnitude Scale // J. Geophys. Res. 1979. 84. N 135. P. 2348–2350.
- 23. Чепкунас Л.С., Малянова Л.С. Очаговые параметры сильных землетрясений Земли // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. С. 277–281.
- 24. Малянова Л.С. (отв. сост.), Габсатарова И.П. (сост.). Параметры механизмов очагов сильных землетрясений Земли в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD\_ROM.
- 25. Болдырева Н.В. (отв. сост.), Аторина М.А., Бабкина В.Ф., Дуленцова Л.Г., Малянова Л.С., Рыжикова М.И., Щербакова А.И. (сост.). Каталог землетрясений Земли за 2010 г. (*N*=4840) // Землетрясения Северной Евразии, 2010 год. – Обнинск: ФИЦ ЕГС РАН, 2016. На СD.
- 26. Болдырева Н.В. (отв. сост.), Аторина М.А., Бабкина В.Ф., Дуленцова Л.Г., Лёвкина А.В., Малянова Л.С., Пойгина С.Г., Рыжикова М.И., Щербакова А.И. (сост.). Каталог сильных с М (MPSP, MPLP, MS, Mw)≥6.0 землетрясений Земли за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на СD ROM.
- Кондорская Н.В., Горбунова И.В., Киреев И.А., Вандышева Н.В. О составлении унифицированного каталога сильных землетрясений Северной Евразии по инструментальным данным (1901–1990 гг.) // Сейсмичность и сейсмическое районирование Северной Евразии. – Вып. 1. – М.: АН СССР, 1993. – С. 70–79.
- 28. Касахара К. Механика землетрясений. М.: Мир, 1985. С. 25.
- 29. Global CMT Catalog (GCMT). URL: http://www.globalcmt.org/.
- 30. National Research Institute for Earth Science and Disaster Prevention (NIED). NIED Earthquake Mechanism Search. URL: http://www.fnet.bosai.go.jp/event/search.php?LANG=en.
- 31. International Seismological Centre (ISC), On-line Bulletin, Internatl. Seis. Cent., Thatcham, United Kingdom, 2014. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/.
- Пойгина С.Г., Коломиец М.В. (сост.). Макросейсмический эффект сильных ощутимых землетрясений Земли с *M*≥6 в населенных пунктах мира в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD\_ROM.
- 33. Милёхина А.М., Пойгина С.Г. (сост.). Координаты сотрясенных в 2011 г. населенных пунктов Северной Евразии (при сильных землетрясениях Земли с *M*≥6) // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD\_ROM.
- 34. База данных "Macroseismic punkts GS RAS". Обнинск: Фонды ЦО ФИЦ ЕГС РАН, 2017.
- 35. Гутенберг Б., Рихтер Ч. Сейсмичность Земли. М.: ИЛ, 1948. 160 с.
- 36. Оперативный сейсмологический каталог (ежедекадный) за 1992–2010 гг. / Отв. ред. О.Е. Старовойт. – Обнинск: ЦОМЭ ИФЗ РАН, 1992–2004; ГС РАН, 2005–2011.
- 37. Young J.B., Presgrave B.W., Aichele H., Wiens D.A., Flinn E.A. The Flinn-Engdahl Regionalisation Scheme: the 1995 revision // Physics of the Earthand Planetary Interiors. 1996. N 96. P. 223–297.
- 38. Ландер А.В. Комплексные сейсмологические и геофизические исследования Камчатки и Командор-

ских островов (01.01.–31.12.2003 г.) // Отчет КОМСП ГС РАН. – Петропавловск-Камчатский: Фонды КОМСП ГС РАН, 2004. – С. 359–380.

- 39. Медведев С.В., Шпонхойер В., Карник В. Шкала сейсмической интенсивности MSK-64. М.: МГК АН СССР, 1965. 11 с.
- 40. Старовойт О.Е., Чепкунас Л.С., Коломиец М.В. Хроника сейсмичности Земли. Землетрясения второй половины 2010 г. и природная катастрофа в Японии // Земля и Вселенная. 2011. № 4. С. 100–105.
- 41. Маловичко А.А., Старовойт О.Е., Габсатарова И.П., Коломиец М.В., Чепкунас Л.С. Катастрофическое землетрясение Тохоку 11 марта 2011 г. в Японии // Сейсмические приборы. – 2011. – 47. – № 1. – С. 5–16.
- 42. Lenta.Ru [сайт]. URL: http://lenta.ru/news/2011/01/03/chile/.
- 43. Изба-читальня [сайт]. URL: http://www.chitalnya.ru/work/1661305/.
- 44. Martin Stacey S., Kakar Din M. Землетрясение 19 января 2011 г. с *Мw*=7.2 в Далбандине, Белуджистан, Пакистан. The 19 January 2011 *Mw*=7.2 Dalbandin earthquake, Balochistan // Bull. Seismol. Soc. Amer. 2012. 102. N 4. P. 1810–1819. Англ. // →РЖ «Физика Земли». 2014. № 2 (реф. 66).
- 45. Zhang Yuan-Sheng, Guo Xiao, Wei Cong-Xin, Shen Wen-Rong, Hui Shao-Xing. Сообщение о сильных поверхностных колебаниях, зарегистрированных при землетрясении 24 марта 2011 г. в Мьянме с *Mw*=6.8. A note on the strong ground motion recorded during the *Mw*=6.8 earthquake in Myanmar on 24 March 2011 / Ornthammarath Teraphan // Bull. Earthquake Eng. 2013. **11**. N 1. P. 241–254. Англ. // →РЖ «Физика Земли». 2013. № 7 (реф. 98).
- 46. **Zhang Yuan-Sheng, Guo Xiao, Wei Cong-Xin, Shen Wen-Rong, Hui Shao-Xing.** Характеристики теплового излучения, связанного с сильными землетрясениями в Японии с *MS*=9.0 и Мьянме с *MS*=7.2. Diqiu wuli xuebao = Chin. J. Geophys. 2011. **54**. N 10. P. 2575–2580. Кит.; рез. англ. // →РЖ «Физика Земли». 2012. № 5 (реф. 47).
- 47. Старовойт О.Е., Чепкунас Л.С., Коломиец М.В. Хроника сейсмичности Земли. Сейсмичность в январе-июне 2011 г. // Земля и Вселенная. 2011. № 6. С. 102–106.
- 48. Старовойт О.Е., Чепкунас Л.С., Коломиец М.В. Хроника сейсмичности Земли. Сейсмичность Земли в июле-ноябре 2011 г. Разрушительное землетрясение в Турции // Земля и Вселенная. 2012. № 2. С. 103–105.
- 49. Gallovic F., Ameri G., Zahradnik J., Jansky J., Plicka V., Sokos E., Askan A., Pakzad M. Моделирование процесса в зоне разлома и широкополосных поверхностных колебаний при землетрясении 23 октября 2011 г. в окрестности города Ван (восток Турции). Fault process and broadband ground-motion simulations of the 23 October 2011 Van (Eastern Turkey) earthquake = Bull. Seismol. Soc. Amer. – 2013. – 103. – N 6. – Р. 3164–3178. – Англ. // →РЖ «Физика Земли». – 2014. – № 7 (реф. 76).