
КРЫМСКО-ЧЕРНОМОРСКИЙ РЕГИОН

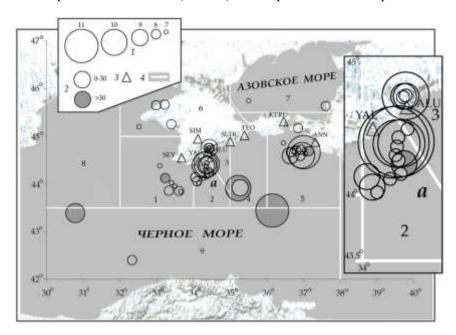
В.А. Свидлова, Н.М. Козиненко, Л.Г. Барзут

Институт сейсмологии и геодинамики ФГАОУВО «Крымский федеральный университет имени В.И. Вернадского», г. Симферополь, seismosilver@mail.ru

В 2011 г. мониторинг сейсмической обстановки в Крымско-Черноморском регионе осуществлялся сетью из семи стационарных сейсмических станций, расположенных на Крымском полуострове: «Симферополь», «Севастополь», «Ялта», «Алушта», «Феодосия», «Судак», «Керчь». С 2007 г. все станции оснащены аппаратурой с цифровым способом регистрации сейсмических колебаний в непрерывном режиме. Продолжают работать станции типа SDAS в Симферополе и Ялте, установленные летом 2000 г., и типа MSP-III — на всех станциях с 2006—2007 гг., кроме Симферополя. Новый тип станции АЦСС-В2 (М117) дополнил имеющиеся в Симферополе с 29 октября 2010 г., в Судаке — с 8 февраля 2011 г., в Ялте — с 27 июля, в Севастополе — с 6 декабря. Все сведения о станциях и параметрах регистрирующей аппаратуры приведены в [1]. Представительность регистрации землетрясений разных классов, обеспечиваемая этой сетью сейсмических станций, по сравнению с [2] не изменилась и дана на рис. 1.

Рис. 1. Карта энергетической представительности землетрясений K_{\min} Крымско-Черноморского региона по данным цифровых сейсмических станций из [2]

1 — изолиния K_{\min} (на врезке а — детальная картина изолиний K_{\min} =6 и K_{\min} =7); 2 — граница региона; 3 — сейсмическая станция; 4 — граница и номер района.


Из рисунка следует, что слабые землетрясения с K_{Π} =6, 7 регистрируются без пропусков на небольших площадях в центре региона между станциями «Симферополь», «Ялта», «Судак». Представительность землетрясений, начиная с K_{\min} =9, обеспечивается практически на всей территории, в пределах условных границ Крымско-Черноморского региона (рис. 1).

Станционная обработка полученных цифровых сейсмических записей и их сохранение выполняется по программному комплексу WSG [3]. Для обработки землетрясений из восточной части региона используются дополнительно данные станции ГС РАН «Анапа», входящей в сеть Северного Кавказа [4].

В региональный каталог Крымско-Черноморского региона за 2011 г. [5] включены основные параметры 92 землетрясений. Классификация землетрясений в каталоге выполнена по энергетическим классам K_{Π} [6] для всех землетрясений, а также магнитудам по коде Mc [7] — для восьми землетрясений, моментным магнитудам Mw Канамори [8] — для 17 землетрясений. Диапазон энергетических классов равен K_{Π} =4.6—10.8, диапазон магнитуд — Mc=2.2—3.3,

Mw=2.35–4.1 соответственно. Максимальное (K_{Π} =10.8, Mc=3,3, Mw=4.1) землетрясение произошло 17 марта в 02^h13^m в Черноморской впадине на глубине h=31 κM . Для него определен механизм очага [9]. Ощутимых землетрясений в 2011 г. – два: 25 октября в 03^h00^m с K_{Π} =10.1 и 29 ноября в 02^h17^m с K_{Π} =10.6 [10]. Оба землетрясения вызвали сотрясения на Черноморском побережье Кавказа, в Анапе [11], с интенсивностью I=2–3 и 3.5–4 балла, соответственно, по шкале MSK-64 [12]. Для 17 событий региона получены спектральные и динамические параметры их очагов [13].

Карта эпицентров более сильных ($K_{\Pi} \ge 6.6$) землетрясений дана на рис. 2.

Рис. 2. Карта эпицентров землетрясений Крымско-Черноморского региона с K_{Π} ≥6.6 в 2011 г.

1 – энергетический класс K_{Π} ; 2 – глубина гипоцентра h, κM ; 3 – сейсмическая станция; 4 – граница и номер района; на врезке **a** – районы № 2, 3.

Пространственное расположение эпицентров на рис. 2 достаточно традиционное: максимальная их плотность наблюдается в Ялтинском и Алуштинском районах, значительная часть относится к Керченско-Анапскому району. Подавляющее большинство — \sim 71 % эпицентров всех землетрясений — зарегистрировано в акватории Чёрного моря. Из сравнения карты эпицентров 2011 г. с предшествующей, за 2010 г. [14], следует отметить их подобие в положении эпицентров землетрясений 10–11 классов вдоль диагоналей с близкими азимутами 305° и 297° и практически асейсмичные прибрежные зоны в направлении от Судака до Керчи.

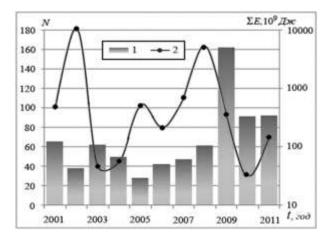

Сейсмичность региона. В табл. 1 приведено распределение основных характеристик сейсмической активности $N(K_{\Pi}), N_{\Sigma}$ и ΣE Крымско-Черноморского региона за 11 лет, с 2001 г. по 2011 г.

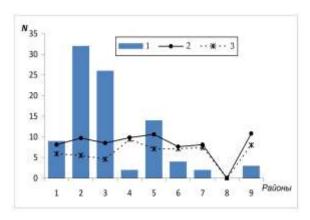
Таблица 1. Распределение числа землетрясений по энергетическим классам K_{Π} и суммарная
сейсмическая энергия ΣE Крыма за 2001—2011 гг.

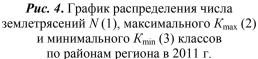
Год			N_{Σ}	ΣE ,								
	4	5	6	7	8	9	10	11	12	13	_	10 ⁹ Дж
2001 [15]	2	6	22	14	8	8	3	4			65	482.53
2002 [16]	1	7	9	10	4	6				1	38	10006.063
2003 [17]	1	11	16	11	15	5	2	1			62	46.293
2004 [18]		3	16	12	9	7	2	1			50	57.202
2005 [19]		1	7	7	7	3	2		1		28	519.131
2006 [20]	1	2	8	15	6	8	1	1			42	215.342
2007 [21]		2	7	16	11	7	4		1		48	682.751
2008 [22]		2	11	16	15	11	5			1	61	5067.368

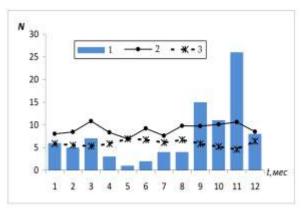
Год			N_{Σ}	ΣE ,								
	4	5	6	7	8	9	10	11	12	13		10 ⁹ Дж
2009 [23]		17	60	43	26	8	5	2			161	348.845
2010 [24]		6	18	32	22	10	3				91	32.684
Сумма	5	57	174	176	123	73	27	9	2	1	646	17458.209
Среднее	0.5	5.7	17.4	17.6	12.3	7.3	2.7	0.9	0.2	0.1	64.6	1745.821
2011		11	24	23	20	7	5	2			92	144.452

Как видим, по сравнению с ситуацией в 2010 г., число землетрясений, равное N_{Σ} =92, почти не изменилось (в 2010 г. $N_{\Sigma}=91$), но суммарная сейсмическая энергия, высвободившаяся в очагах землетрясений региона в 2011 г., равная $\Sigma E = 1.44 \cdot 10^{11} Дж$, возросла в 4.4 раза, по сравнению с таковой в 2010 г. $(\Sigma E = \sqrt{3.27 \cdot 10^{10}} \, \text{Дж} [14])$. В то же время, в длительном ряду наблюдений, начиная с 2001 г., годовая сейсмическая энергия ΣE в 2011 г. на порядок меньше ее среднего уровня за 10 предшествующих лет, хотя суммарное число землетрясений Крыма N_{Σ} =92 превышает его среднее значение \bar{N}_{Σ} =64.6 (табл. 1). Развертка во времени величин $N_{\Sigma}(t)$ и $\Sigma E(t)$ в регионе,

Рис. 3. График распределения числа землетрясений N(1) и выделившейся энергии $\Sigma E(2)$ в регионе за 11 лет, с 2001 по 2011 гг.


приведенная на рис. 3, показывает, что в 2011 г. завершился спад уровня сейсмической энергии, наблюдаемый с 2008 г., и начался ее рост. По числу землетрясений в последние три года наблюдается повышенная в среднем ступень относительно предыдущих семи лет.


Распределение числа землетрясений по районам и энергетическим классам, а также сейсмической энергии по районам в 2011 г., представлено в табл. 2. В нижней строке таблицы приведены для сравнения суммарные данные за 2010 г. [14]. Вид распределения числа землетрясений и суммарной выделенной энергии по районам обычный, без особых исключений.


Таблица 2. Распределение числа	землетрясений по энергетическим	классам K_{Π} и суммарная
сейсмическая энерги	я ΣE по районам за 2011 г.	

No	Район				K_{Π}	N_{Σ}	ΣЕ, Дж			
		5	6	7	8	9	10	11	_	77.1
1	Севастопольский		2	4	3				9	2.567·10 ⁸
2	Ялтинский		14	9	3	3	3		32	$1.536 \cdot 10^{10}$
3	Алуштинский	11	8	3	3	1			26	$7.621 \cdot 10^8$
4	Судакско-Феодосийский					1	1		2	$8.821 \cdot 10^9$
5	Керченско-Анапский			5	6	1	1	1	14	$5.479 \cdot 10^{10}$
6	Степной Крым			1	3				4	$1.156 \cdot 10^8$
7	Азово-Кубанский			1	1				2	$1.510 \cdot 10^8$
8	Северо-Западный								0	0
9	Черноморская впадина				1	1		1	3	$6.420 \cdot 10^{10}$
	Всего в 2011 г.	11	24	23	20	7	5	2	92	1.445·10 ¹¹
	Всего в 2010 г	6	18	32	22	10	3		91	$3.268 \cdot 10^{10}$

На рис. 4 и 5 отражено распределение по районам региона и по месяцам числа землетрясений N, максимального K_{\max} и минимального K_{\min} значений классов K_{Π} . Из рис. 4 следует, что по числу землетрясений выделяются районы № 2 и № 3, а по суммарной энергии — район № 9. Максимальное число землетрясений на рис. 5 — в ноябре, а максимум выделенной сейсмической энергии приходится на март.

Рис. 5. График распределения числа землетрясений N (1), максимального K_{\max} (2) и минимального K_{\min} (3) классов по месяцам в 2011 г.

Ниже описана сейсмичность региона в отдельных районах

В Севастопольском районе (№ 1) зарегистрировано девять землетрясений с K_{Π} =5.9–8.1, глубина которых различна: от h=8 κM до h=35 κM . Суммарная энергия (ΣE =2.567·10⁸ $\mathcal{D}_{\mathcal{H}}$, табл. 2), выделившаяся в их очагах, почти на два порядка ниже таковой (ΣE =1.807·10¹⁰ $\mathcal{D}_{\mathcal{H}}$) в 2010 г. [14]. Максимальное (K_{Π} =8.1) в районе землетрясение произошло 24 марта в 08^h47^m на глубине h=17 κM .

Наибольшее число землетрясений отмечено в **Ялтинском районе** (№ 2) — в очагах 32 землетрясений с K_{Π} =5.5—9.7 высвободилось ~11 % сейсмической энергии региона.

9 сентября юго-восточнее Ялты (Δ =18–22 κm) в течение 7 часов наблюдался рой из 10 землетрясений (табл. 3) с очень близкими координатами, включающий три самых сильных толчка в этом районе с K_{Π} =9.5, 9.6, 9.7. Все землетрясения этого роя имеют небольшую глубину h=12–22 κm . Интересно то, что координаты их гипоцентров относятся к очаговой зоне разрушительного Крымского землетрясения 11.09.1927 г. с MLH=6.8, I_0 =(9) баллов с h=17 κm по Новому каталогу [25], или I_0 =8 баллов и h=15 κm по более поздней публикации [26]. В нижней строке табл. 3 приведены для сравнения параметры главного толчка, максимального форшока и афтершока упомянутого Крымского землетрясения.

Таблица 3. Список роя землетрясений 9 сентября 2011 г. в Ялтинском районе

No	Дата,	t_0 ,		Гипоцентр)	K_{Π}	Mw	MLH	I_0				
	д м год	ч мин с	φ°, N	λ°, E	h, км								
1	09.09.2011	07 46 20.5	44.39	34.34	20	9.7	3.5						
2	09.09.2011	09 11 17.2	44.35	34.35	13	6.1							
3	09.09.2011	09 12 05.0	44.37	34.35	16	5.8							
4	09.09.2011	14 38 21.0	44.36	34.35	14	5.9							
5	09.09.2011	14 39 03.0	44.36	34.35	15	6.6							
6	09.09.2011	14 43 40.7	44.38	34.33	18	9.5	3.3						
7	09.09.2011	14 49 28.3	44.42	34.34	22	9.3	3.3						
8	09.09.2011	15 19 39.2	44.36	34.35	15	5.8							
9	09.09.2011	15 26 09.6	44.39	34.33	20	9.6	3.4						
10	09.09.2011	15 37 02.7	44.36	34.35	12	7.3							
			d.	Роршок									
	26.06.1927	11 20 45	44.4	34.4	27/ 25			6.0	7				
Гл. толчок													
	11.09.1927	22 15 48	44.3	34.3	17/ 15			6.8	(9)/8				
			Ad	ртершок									
	12.09.1227	03 20 03	44.5	34.5	35/35			6.0	6–7/6				

Примечание. Двойные значения h и I_0 для Крымского землетрясения 11.09.1927 г. и его максимальных форшока и афтершока соответствуют источникам [25] и [26] соответственно.

Суммарная сейсмическая энергия в Ялтинском районе, равная $\Sigma E=1.536\cdot 10^{10}\, \text{Дж}$, почти в три раза больше ее величины ($\Sigma E=5.9\cdot 10^9\, \text{Дж}$) в 2010 г. [14].

В **Алуштинском районе** (№ 3) зарегистрировано 26 землетрясений с K_{Π} =4.6–8.5. Эпицентры практически всех землетрясений (помимо двух) расположены на побережье в 5–8 κM северо-восточнее Алушты (рис. 2, врезка «а», район № 3). Суммарная энергия землетрясений района, равная ΣE =7.621·10⁸ \mathcal{J} ж, сопоставима с ее величиной в 2010 г. (ΣE =6.160·10⁸ \mathcal{J} ж) [14].

Особенностью сейсмичности этого района в 2011 г. явился заметный рой из 18 землетрясений с практически неизменными координатами, зарегистрированный с 10 по 13 ноября (табл. 4).

№	Дата,	t_0 ,	Гипоцентр		K_{Π}	Mw	No	Дата,	t ₀ , Γι		поцен	гр	K_{Π}	Mw	
	д м	ч мин с	φ°, N	λ°, E	h, км				д м	ч мин с	φ°, N	λ°, E	h, км		
1	10.11	18 55 17.9	44.74	34.43	17	8.5	3.2	10	11.11	16 08 25.2	44.74	34.43	14	6.4	
2	10.11	21 40 25.2	44.74	34.43	18	6.2	2.35	11	12.11	00 28 18.5	44.74	34.43	17	7.4	2.4
3	10.11	23 20 00.5	44.74	34.43	18	4.7		12	12.11	00 39 24.1	44.74	34.43	17	4.6	İ
4	11.11	02 01 58.8	44.73	34.42	17	5.2		13	12.11	00 39 41.0	44.74	34.43	17	4.6	Ì
5	11.11	02 13 10.2	44.73	34.42	17	5.0		14	12.11	05 43 03.3	44.73	34.43	17	8.3	2.8
6	11.11	02 55 21.9	44.73	34.42	17	4.9		15	12.11	06 04 45.5	44.73	34.46	16	5.8	İ
7	11.11	09 54 43.9	44.73	34.42	17	8.2	2.9	16	12.11	06 20 16.6	44.73	34.38	16	6.0	Ì
8	11.11	10 37 42.8	44.73	34.44	17	7.6	2.7	17	13.11	00 41 03.5	44.72	34.43	17	5.2	Ì
9	11.11	14 00 27.9	44.75	34.41	14	6.3		18	13.11	02 46 54.4	44.73	34.41	17	6.8	İ

Таблица 4. Список роя землетрясений с 10 по 13 ноября 2011 г. в Алуштинском районе

Начался рой 10 ноября в $18^{\rm h}55^{\rm m}$ с максимального (K_{Π} =8.5) в районе толчка. Область роя оконтурена следующими координатами гипоцентров: $\Delta \phi$ =44.72–44.75°N, $\Delta \lambda$ =34.38–34.44°E, Δh =14–18 κM . Все они, как и рой в Ялтинском районе, отмечены в каталоге [5] специальными метками.

Значительно возросла выделившаяся энергия землетрясений **Судакско-Феодосийского района** (N2 **4**) (ΣE =8.82·10⁹ \mathcal{J} ж, вместо ΣE =5.0·10⁶ \mathcal{J} ж в 2010 г. [14]), несмотря на обычное небольшое их число. Два толчка с интервалом в один час зафиксированы 26 августа с координатами, близкими к границе района Черноморской впадины (рис. 2). Оба зарегистрированных землетрясения с K_{Π} =9.4 и K_{Π} =9.8 имеют завышенную глубину: h=25 κM и h=34 κM соответственно

Традиционно высокой сейсмической активностью в сравнении с другими районами региона отличается **Керченско-Анапский район** (\mathbb{N} **5**), пограничный с Северным Кавказом. Здесь крымская сеть зарегистрировала 14 землетрясений с K_{Π} =7.1–10.6, в очагах которых высвободилось 38% всей сейсмической энергии региона. Суммарная энергия в районе, равная ΣE =5.479·10¹⁰ \mathcal{J} ж, на порядок выше ее величины (ΣE =3.69·10⁹ \mathcal{J} ж) в 2010 г. [14]. Глубина землетрясений района варьируется от h=7 до h=35 κM . Здесь же, как отмечено выше, 29 ноября реализовалось ощутимое в Анапе землетрясение с интенсивностью I=3.5–4 балла, а более слабый макросейсмический эффект с I=2 балла наблюдался также в Анапе (Δ =43 κM) при землетрясении 25 октября в 13 $^{\rm h}$ 00 $^{\rm m}$ [10].

В слабоактивном районе **Степной Крым** (\mathbb{N} 6) отмечено четыре землетрясения с K_{Π} =7.1–7.6. Только одно из них, максимального класса K_{Π} =7.6, представительно (K_{\min} =8). Это землетрясение, ближайшее к станции Симферополь, зафиксировано 24 июля в $03^{\rm h}22^{\rm m}$ на глубине h=20 км. Суммарная энергия четырех землетрясений привычно минимальная относительно других районов и равна ΣE =1.156·10⁸ \mathcal{J} ж (в 2010 г. ΣE =2.16·10⁸ \mathcal{J} ж [14]).

В другом малосейсмичном районе региона — **Азово-Кубанском** (\mathfrak{N}_{2} 7) — зафиксированы только два землетрясения с K_{Π} =7.4 и K_{Π} =8.1, глубиной h=9 и h=24 κM , оба ниже представительного уровня регистрации — K_{\min} =9. Суммарная энергия этих землетрясений также мала: ΣE =1.51·10 8 $\mathcal{I}_{\mathcal{H}}$ (в 2010 г. ΣE =6.27·10 8 $\mathcal{I}_{\mathcal{H}}$ [14]).

В Северо-Западном районе (№ 8) второй год продолжается полное сейсмическое затишье после сильного землетрясения 07.05.2008 г. с K_{Π} =12.7, Mw=4.8 вблизи о. Змеиный [27], энергия которого составила 98.9 % от всей энергии региона за 2008 г. [28]. Не исключено про-

должение затишья в ближайшие 10 лет, если исходить из наблюдаемой здесь предыдущей активизации только в 1986 г. на энергетическом уровне K_{Π} =11.7 [27]. Остается добавить, что на территории этого района представительный класс K_{\min} =9 (рис. 1), поэтому возможны пропуски более слабых толчков.

Значительная часть (44 %) сейсмической энергии региона высвободилась в 2011 г. в очагах трех землетрясений района **Черноморской впадины** (\mathbb{N}_{2} 9), зарегистрированных 5 января в $05^{\rm h}45^{\rm m}$ с K_{Π} =8.0, 17 марта в $02^{\rm h}13^{\rm m}$ с K_{Π} =10.8 и 25 августа в $08^{\rm h}22^{\rm m}$ с K_{Π} =9.0 [5]. Среди них и самое сильное (K_{Π} =10.8) событие года, эпицентр которого расположен в непосредственной близости к пограничным районам \mathbb{N}_{2} 4 и 5. Первое из перечисленных событий не представительно (K_{\min} =9), а глубины представительных землетрясений соответственно равны h=31 и h=35 κm . Привлекает внимание тот факт, что с 2008 г. нарушена свойственная региону многолетняя закономерность противофазного характера выделения энергии в районе \mathbb{N}_{2} 9 по отношению к району \mathbb{N}_{2} 5 [29].

В заключение можно отметить, что в регионе сохраняется сейсмический режим, характеризующийся слабой сейсмичностью.

Литература

- 1. **Панков Ф.Н. (отв. сост.).** Сейсмические станции Крымско-Черноморского региона в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD ROM.
- 2. **Свидлова В.А., Сыкчина З.Н., Пасынков Г.Д.** Оценка представительности землетрясений Крыма по материалам цифровых станций // Сейсмологический бюллетень Украины за 2009 год. Симферополь: ОС ИГ НАНУ, 2011– С. 65–67.
- 3. **Красилов С.А., Коломиец М.В., Акимов А.П.** Организация процесса обработки цифровых сейсмических данных с использованием программного комплекса WSG // Современные методы обработки и интерпретации сейсмологических данных. Материалы Международной сейсмологической школы, посвященной 100-летию открытия сейсмических станций «Пулково» и «Екатеринбург». Обнинск: ГС РАН, 2006. С. 77–83.
- 4. **Мехрюшев Д.Ю., Янков А.Ю., Погода Э.В., Даниялов М.Г., Габсатарова И.П., Пойгина С.Г. (сост.).** Сейсмические станции ГС РАН, работавшие на территории Северного Кавказа в 2010 г. // Землетрясения Северной Евразии, 2010 год. Обнинск: ГС РАН, 2016. (На СD).
- 5. **Козиненко Н.М., Свидлова В.А., Сыкчина З.Н. (отв. сост.).** Каталог землетрясений Крымско-Черноморского региона за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD ROM.
- 6. **Пустовитенко Б.Г., Кульчицкий В.Е.** Об энергетической оценке землетрясений Крымско-Черноморского региона // Магнитуда и энергетическая классификация землетрясений. М.: ИФЗ АН СССР, 1974. Т. 2. С. 113–125.
- 7. **Пустовитенко Б.Г., Раутиан Т.Г., Свидлова В.А**. Определение магнитуд и энергетических классов землетрясений по наблюдениям в Крымском регионе // Сейсмологический бюллетень Западной территориальной зоны ЕССН СССР (Крым Карпаты за 1978–1979) Киев: Наукова думка, 1983.— С. 126–138.
- 8. **Hanks T.S., Kanamori H.** A moment magnitude scale // J. Geophys. Res. 1979. **84**. N 135. P. 2348–2350.
- 9. **Пустовитенко А.А. (отв. сост.).** Каталог механизмов очагов землетрясений Крымско-Черноморского региона за 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 10. **Козиненко Н.М. (сост.).** Макросейсмический эффект землетрясений в населенном пункте Крымско-Черноморского региона в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD_ROM.
- 11. **Козиненко Н.М., Пойгина С.Г. (сост.).** Сведения о пункте, для которого имеется информация о макросейсмических проявлениях ощутимых землетрясений Крымско-Черноморского региона в 2011 г. // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. Приложение на CD ROM.
- 12. **Медведев С.В.** (**Москва**), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. М.: МГК АН СССР, 1965. 11 с

- 13. **Пустовитенко Б.Г., Калинюк И.В., Пустовитенко А.А.** Очаговые параметры землетрясений Крымско-Черноморского региона // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. С. 282—293.
- 14. **Свидлова В.А., Пасынков Г.Д., Михайлова Р.С.** Крымско-Черноморский регион. // Землетрясения Северной Евразии, 2010 год. Обнинск: ГС РАН, 2016. С. 76–82.
- 15. Свидлова В.А., Сыкчина З.Н. (отв. сост.). Каталог землетрясений Крыма за 2001 год (N=65) // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. (Ha CD).
- 16. **Свидлова В.А., Сыкчина З.Н., Козиненко Н.М. (отв. сост.).** Каталог землетрясений Крыма за 2002 год (*N*=38) // Землетрясения Северной Евразии, 2002 год. Обнинск: ГС РАН, 2008. (На СD).
- 17. **Свидлова В.А., Сыкчина З.Н., Козиненко Н.М. (отв. сост.).** Каталог землетрясений Крыма за 2003 год (*N*=62) // Землетрясения Северной Евразии, 2003 год. Обнинск: ГС РАН, 2009. (На CD).
- 18. **Свидлова В.А., Сыкчина З.Н., Козиненко Н.М. (отв. сост.)**. Каталог землетрясений Крыма за 2004 год (*N*=50) // Землетрясения Северной Евразии, 2004 год. Обнинск: ГС РАН, 2010. (На CD).
- 19. **Свидлова В.А., Сыкчина З.Н., Козиненко Н.М. (отв. сост.)**. Каталог землетрясений Крыма за 2005 год (*N*=28) // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. (На CD).
- 20. **Свидлова В.А., Сыкчина З.Н., Козиненко Н.М. (отв. сост.).** Каталог землетрясений Крыма за 2006 г. (*N*=42) // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. (На CD).
- 21. **Свидлова В.А., Сыкчина З.Н., Козиненко Н.М., (отв. сост.)**. Каталог землетрясений Крыма за 2007 г. (*N*=48) // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2013. (На CD).
- 22. **Козиненко Н.М., Свидлова В.А., Сыкчина З.Н. (отв. сост.)**. Каталог землетрясений Крыма за 2008 г. (*N*=61) // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. (На СD).
- 23. **Козиненко Н.М., Свидлова В.А., Сыкчина З.Н. (отв. сост.)**. Каталог землетрясений Крыма за 2009 г. (*N*=161) // Землетрясения Северной Евразии, 2009 год. Обнинск: ГС РАН, 2015. (На СD).
- 24. **Козиненко Н.М., Свидлова В.А., Сыкчина З.Н. (отв. сост.)**. Каталог землетрясений Крымско-Черноморского региона в 2010 г. (N=91) // Землетрясения Северной Евразии, 2010 год. Обнинск: ГС РАН, 2016. (Ha CD).
- 25. **Кульчицкий В.Е., Зарайский М.П. (отв. сост.), Каменобродский А.Г., Кульчицкий В.Е., По- пов И.И., Зарайский М.П., Шебалин Н.В., Якушева В.Н.** II а. Крым и Нижняя Кубань [150 до н.э.−1974 гг., *М*≥3.5, *I*₀≥5] // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука. С. 55–68.
- 26. **Пустовитенко Б.Г., Кульчицкий В.Е., Горячун А.В.** Землетрясения Крымско-Черноморского региона. Киев: Наукова думка, 1989. 192 с.
- 27. **Пустовитенко Б.Г., Пустовитенко А.А., Скляр А.М., Князева В.С.** Змеиное землетрясение 7 мая 2008 г. с K_{Π} =12.7, Mc=5,1, Mw=4.8, I_0^p =5–6 (западная часть шельфа Черного моря) // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 313–325.
- 28. **Свидлова В.А., Пустовитенко А.А., Пасынков Г.Д.** Крым // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 67–73.
- 29. Пустовитенко А.Н., Свидлова В.А., Пустовитенко А.А., Михайлова Р.С. Крым // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 64–73.