КУХ-ЗАРСКОЕ ЗЕМЛЕТРЯСЕНИЕ 27 августа 2010 г. с К_Р=13.8, Мw=5.8, I₀=7–8 (Эльбурский район Копетдага) Н.В. Петрова

Геофизическая служба РАН, г. Обнинск, npetrova@gsras.ru

27 августа в 19^h23^m на севере Центрального Ирана, в 52 км к югу от иранского г. Дамган, произошло землетрясение с K_P =13.8, Mw=5.8. С максимальной интенсивностью I=7 баллов по модифицированной шкале Меркалли оно проявилось в селе Кух-Зар (рис. 1, 2), поэтому в публикациях именуется как «Кух-Зарское» [1, 2] или «Дамганское» [3]. Макросейсмические последствия землетрясения тщательно обследованы и проанализированы совместно с записями семи станций иранской сети сильных движений грунта сотрудниками Международного института сейсмостойкого строительства и сейсмологии, Тегеран, Иран [1]. Согласно [1], в течение последних нескольких десятилетий территория вокруг очаговой зоны Кух-Зарского землетрясения не раз подвергалась воздействию землетрясений аналогичной величины, но Кух-Зарское землетрясение вызвало наиболее высокий уровень ущерба из-за плохого качества не армированных и перегруженных конструкций, выполненных из необожженного кирпича или каменной кладки построек с использованием только местных материалов. Лишь благодаря тому, что эпицентр Кух-Зарского землетрясения располагался в малонаселенной местности, оно повлекло за собой только несколько жертв. Погибли 4 человека, ранено 40, разрушено или повреждено более 350 домов в 12 близлежащих селах, включая Кух-Зар, более 800 человек остались без крова.

Параметры Кух-Зарского землетрясения и его крупнейшего афтершока 28 августа в $00^{h}29^{m}$ с $K_{P}=12.8$, определенные различными сейсмологическими службами, представлены в табл. 1 и на рис. 1.

Агентство,	$t_0, \delta t_0, \Gamma$ ипоцентр			Магнитуда	Ис-									
число	ч мин с	c	φ°, N	λ°, Ε	δ.	h,	δh .		точ-					
станций				,	км	км	км		ник					
	Главный толчок													
КОП, <i>n</i> =19	19 23 48.0		35.45	54.55	35			$MPVA=6.3/14, K_{P}=13.8$	[4]					
MOS, <i>n</i> =204	19 23 50.3	1.03	35.57	54.49	4.4	34.0		MS=5.4/68, MPSP=5.7/81	[5]					
ISC, <i>n</i> =1946	19 23 48.9	0.1	35.49	54.50	3.7	12.5	1.6	$Ms = (5.5 \pm 0.2)/219, m_b = (5.6 \pm 0.2)/366$	[5]					
ISCJB, n=1944	19 23 45.6	0.31	35.51	54.53	2.4	0.7	2.0	h _{pP} =13 км						
NEIC	19 23 48.0		35.46	54.55		15.0		$M_s=5.5/144, m_b=5.6/151, ME=6.1,$	[5]					
								$E=3.8*10^{13}$ Дж, Mw=5.8, $M_0=5.18\cdot10^{17}$ H·м						
THR, <i>n</i> =18	19 23 48.0	1.16	35.46	54.49	3.9	14.1		<i>ML</i> =5.9	[5]					
TEH, <i>n</i> =19	19 23 49.5	1.16	35.49	54.47		6.7		ML=Mn=5.9	[5, 6]					
GCMT, <i>n</i> =116	19 23 49.5	0.1	35.53	54.49	1.1	14.9	0.7	<i>Mw</i> =5.8/116	[5]					
CSEM, <i>n</i> =497	19 23 48.2	0.08	35.52	54.57	2.8	10f		$Ms = 5.6, m_b = 5.8/52, Mw = 5.7$	[5]					
					А	фтер	ошо	к						
КОП, <i>n</i> =17	00 29 01.0	1.61	35.80	54.20	35			$MPVA=5.2/17, K_{P}=12.8$	[4]					
MOS, <i>n</i> =135	00 29 06.4	1.61	35.71	54.59	4.8	25		MPSP=5.0/43	[5]					
ISC, <i>n</i> =803	00 29 06.4	0.42	35.52	54.50	3.5	14.2	2.6	$Ms = (4.0 \pm 0.1)/24, m_b = (4.8 \pm 0.2)/111$	[5]					
ISCJB, <i>n</i> =803	00 29 02.8	0.54	35.57	54.59	3.8	2.8	3.6	<i>h</i> pP=24.4 <i>км</i>						
THR, <i>n</i> =17	00 29 03.9	1.23	35.47	54.47	5.7	15.0	8.3	ML=5.2	[5]					
TEH, <i>n</i> =18	00 29 05.3	1.16	35.49	54.44		6.1		ML=Mn=5.0	[5, 6]					
CSEM, <i>n</i> =189	00 29 04.0	0.14	35.51	54.52	5.4	2.0		$m_{\rm b}$ =5.1/21	[5]					

Таблица 1. Основные параметры Кух-Зарского землетрясения 27 августа 2010 г. в 19^h23^m с *K*_P=13.8 и его афтершока 28 августа в 00^h29^m с *K*_P=12.8 по данным Государственной сейсмологической службы Туркменистана (КОП) и других агентств

Как видно из рис. 1, разные решения эпицентра Кух-Зарского землетрясения по инструментальным данным сгруппированы довольно компактно и локализованы на расстояниях 2–15 км к северо-западу от макросейсмического эпицентра ($\phi_{\rm M}$ =35.450 N, $\lambda_{\rm M}$ =54.566°E), за который принят центр 7-балльной изосейсты, приведенной в [1]. Самые близкие к макросейсмическому эпицентру решения получены КОП и NEIC (~2 км), самые далекие – MOS (~15 км) и другими агентствами (например, NNC), данные которых не включены в табл. 1.

Глубину гипоцентра по сейсмограммам туркменских станций определить не удалось, т.к. блочные годографы [7], с помощью которых в Туркменистане автоматически обрабатываются записи землетрясений для локации гипоцентра, не включают территорию Северного Ирана в районе гипоцентра из-за отсутствия сведений о ее глубинном строении. Обработка сейсмограмм и локация эпицентра произведены по осредненному годографу Розовой [8].

Решения для гипоцентра по данным телеметрических сетей Международного института сейсмостойкого строительства и сейсмологии Министерства науки Ирана (THR) и Института геофизики Тегеранского университета (TEH), полученные в азимутальном створе 273° и диапазоне эпицентральных расстояний 50–477 км по записям небольшого числа станций (17 и 18 соответственно), не представляются более надежными, чем, например, решения ISC или CSEM, т.к. последние используют гораздо большее число станций, включая иранские (табл. 1).

Наиболее надежной из представленных в табл. 1 инструментальных глубин можно считать глубину по фазе волн pP, $h_{pP}=13 \ \kappa m$ по данным ISBJB (данные ISC с обработкой по годографу Джеффриса-Буллена), которая близка к значениям глубины главного толчка в бюллетенях ISC, GCMT, NEIC, THR.

Рис. 1. Положение главного толчка Кух-Зарского землетрясения 27 августа в 19^h23^m с *K*_P=13.8 и его крупнейшего афтершока, 28 августа в 00^h29^m с *K*_P=12.8, по данным разных сейсмологических служб

 1, 2, 3 – инструментальный, макросейсмический эпицентр и механизм очага главного толчка по [5, 9];
 4 – инструментальный эпицентр афтершока 28 августа;
 5 – положение 7-балльной изосейсты согласно [1];
 6 – ближайшие села, где главный толчок ощущался с интенсивностью 7 баллов [1];
 7 – разломы по Бербериану [10] и [1].

Рис. 2. Главный толчок и афтершоки Кух-Зарского землетрясения с 27 августа по 31 декабря 2010 г.

1 – расчетный по формуле $K = 1.915 ML_{(TEH)} + 2.68$ из [11] энергетический класс; 2 – афтершоки, локализованные в хорошем азимутальном створе ($AZM=265-283^{\circ}$); 3 – инструментальный эпицентр главного толчка по данным сейсмических станций Туркменистана (КОП); 4 – макросейсмический эпицентр: $\varphi_{\rm M}=35.450$ N, $\lambda_{\rm M}=54.566^{\circ}$ E; 5 – село Кух-Зар; 6 – положение 7-балльной изосейсты по [1]; 6 – 7-балльная изосейста из [1]; 7 – разломы по Бербериану [10]; 8 – механизмы очагов афтершоков 28 августа в 00^h29^m с $K_{\rm P}=13.1$ и 4 сентября в 21^h15^m с $K_{\rm P}=10.0$ по КОП+БОРОК [9]

Авторы [1], указывая на неопределенность решений для гипоцентра из-за отсутствия близкой станции, использовали в своих исследованиях Кух-Зарского землетрясения решение

EMSC с координатами 35.49°N и 54.55°E (отметим, что в [5] приводится другое решение CSEM, или EMSC, указанное в табл. 1). Кроме того, землетрясение было записано семью цифровыми акселерографами в диапазоне расстояний 2–126 км от разрыва. Их записи не участвовали в обработке землетрясения, т.к. не входят в сети ТЕН и THR. Один из акселерографов был расположен непосредственно в с. Кух-Зар (станция KUZ) и не пострадал в результате землетрясения. Используя разность первых вступлений *S*- и *P*-волн на записи KUZ, равную $t_{\rm S}$ - $t_{\rm P}$ =1.64 *c*, и скорости *S*- и *P*-волн, равные 3.36 и 5.80 км/с соответственно, авторы [1] получили гипоцентральное расстояние *r*=13 км и глубину *h*=11 км для эпицентра EMSC.

Решения механизма очага главного толчка, представленные на рис. 1 и в табл. 2, получены по данным Национального центра информации о землетрясениях Геологической службы США (NEIC) и каталога тензоров сейсмического момента центроида GCMT, опубликованных в [5], а также каталога механизмов очагов землетрясений Копетдага [9]. Механизмы очагов в каталоге [9] определены совместно Институтом сейсмологии АН Туркменистана и филиалом ИФЗ РАН Геофизической обсерваторией «Борок» (далее КОП+ГО БОРОК) по знакам первых вступлений короткопериодных Р-волн на сейсмических станциях Туркменистана, с привлечением данных станций мировых сетей из [5]. В отличие от применяемой в КОП+ГО БОРОК методики, в GCMT и NEIC определяется тензор сейсмического момента методом инверсии волновых форм, который считается более точным. Решение NEIC-1 получено для глубины 15 км по 14 станциям, решения NEIC-2 и NEIC-3 рассчитаны по данным 42 станций для фиксированных координат эпицентра и глубины 7 км иранского агентства ТЕН. При этом механизмы очагов NEIC-1 и NEIC-2 представляют собой наилучшее решение для пары перпендикулярных друг другу нодальных плоскостей (BCD в [5], или «best double couple»), а NEIC-3 – решение, наилучшим образом соответствующее широкополосным волновым формам (BB в [5], или «fit to broadband waveforms»).

Агентство	Дата		t_0		φ°,	N	λ°, E	h,	Оси главных напряжений				Нодальные плоскости				ти	Число			
	дм	ч.	м	С				км		Т		N		Р		NP	1		NP2	2	зна-
									PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	ков
Главный толчок																					
КОП+ГО	27.08.	192	23	35	35.	45	54.55	13	17	68	25	166	60	307	358	66	-62	126	35	-135	183
БОРОК _Р																					
GCMT _{BDC}	27.08.	192	23	50	35.	53	54.49	15	7	76	78	313	10	168	212	78	-2	302	88	-168	218
NEIC- 1_{BDC}	27.08.	192	23	48	35.	46	54.55	15	42	108	23	222	38	332	221	87	66	126	24	174	14
NEIC-2 _{BDC}	27.08.	192	23	50	35.	53	54.47	7	19	89	60	219	20	351	41	89	-29	131	61	-179	42
NEIC-3 _{BB}	27.08.	192	23	50	35.	53	54.47	7	3	66	0	0	11	335	20	85	-10	111	80	-175	
Афтершоки																					
КОП+ГО	28.08.	00 2	29	36	35.	80	54.20	14	15	126	42	22	44	231	258	48	-24	5	72	-134	70
БОРОК _Р																					
КОП+ГО	04.09.	21	15	36	35.	50	54.50	10	15	219	13	313	70	82	140	61	-74	291	32	-114	13
БОРОК _Р																					

Таблица 2. Параметры механизма очага главного толчка и афтершоков Кух-Зарского землетрясения 27 августа 2010 г. с *К*_P=13.8, *Mw*=5.8, *I*₀=7–8

Примечание. В таблице приведены координаты эпицентра и глубины, использованные при построении механизма очага, по данным соответствующих агентств.

Решения GCMT, NEIC-2 и NEIC-3 в основных чертах совпадают: в очаге в условиях горизонтального субмеридионального сжатия и субширотного растяжения произошел левосторонний сдвиг по плоскости северо-восточного простирания, или правосторонний сдвиг по плоскости северо-западного простирания (рис. 1, табл. 2).

Механизм очага по данным КОП+ГО БОРОК [9] отличается от решений GCMT и NEIC наличием значительных сбросовых компонент по обеим нодальным плоскостям, одна из которых, юго-восточного простирания, прослеживается и во всех решениях GCMT и NEIC, но с разным наклоном, а другая, меридиональная, составляет с северо-восточными плоскостями в решениях GCMT и NEIC углы от 22° до 41° . По меридиональной плоскости в решении

КОП+ГО БОРОК преобладает сброс с компонентой левого сдвига, а по плоскости юговосточной ориентации – правый сбросо-сдвиг. Ориентация и наклон оси растяжения по данным КОП+ГО БОРОК близки к решениям GCMT и NEIC, но ось сжатия наклонена под углом 60° к горизонту, в отличие от горизонтального сжатия в механизмах очага по данным GCMT, NEIC-2 и NEIC-3.

При выборе действующей плоскости разрыва авторы [1] опирались на результаты полевых наблюдений (вторичные трещины в эпицентральной зоне, ориентированные широтно или под углом 70° от направления на север по часовой стрелке, и северо-восточная ориентация ветвей ближайших активных разломов), а также на факт, что амплитуды скорости и смещения на записях компонент акселерографа на станции KUZ (Kyx-Зар), ориентированных строго на северо-восток (45° от направления на север по часовой стрелке), превышали в 2.5–3 раза амплитуды записей перпендикулярных этому направлению компонент, и в 5 раз – амплитуды на вертикальных компонентах записи скорости и смещения. В результате механизм очага Кух-Зарского землетрясения определен как левосторонний сдвиг по разлому северо-восточного простирания. Отметим, что записи скорости и смещения получены интегрированием исходной акселерограммы, горизонтальное ускорение на которой на параллельных (T) и перпендикулярных (L) разлому северо-восточного простирания компонентах примерно одинаково и составляет PGA-T = 550 cm/c^2 и PGA-L = 501 cm/c^2 соответственно, а вертикальное ускорение PGA-V=369 cm/c^2 .

Принимая, что основная подвижка произошла по плоскости северо-восточного простирания, нельзя исключить возможность разрывообразования в очаге сразу в двух направлениях – северо-восточном и северо-западном. В пользу северо-западной ориентации плоскости разрыва свидетельствует присутствие нодальной плоскости подобного простирания во всех рассмотренных выше решениях механизма очага, смещение инструментальных эпицентров разных агентств на северо-запад от с. Кух-Зар, а также ориентация облака афтершоков в направлении северо-запад – юго-восток (рис. 2). К этому можно добавить высокую интенсивность сотрясений в пунктах Форат (5 баллов) и Дамган (4–5 баллов), расположенных на расстояниях 58 и 85 км соответственно, к север–северо-западу от с. Кух-Зар, при относительно слабой интенсивности проявления землетрясения на расстоянии 110 км к западу, в г. Семнан (3–4 балла).

Афтершоки. Каталог афтершоков Кух-Зарского землетрясения [12] составлен по данным Иранского сейсмологического центра, сеть ТЕН [6]. В каталоге землетрясений Копетдага [4] содержатся сведения лишь о шести из них. Учитывая невысокую точность координат эпицентров афтершоков из-за одностороннего расположения зарегистрировавших их иранских станций (для 73 % афтершоков азимутальный створ окружения станциями <180°), в каталог афтершоков вошли все события в радиусе 25 км от эпицентра Кух-Зарского землетрясения за год после его реализации. Форшоков с начала 2010 г. не зарегистрировано.

Для афтершоков и главного толчка рассчитан энергетический класс $K_{\text{расч}}$, используя соотношение между локальной магнитудой Mn по сети ТЕН и средним по сети сейсмических станций Туркменистана энергетическим классом K_{P} :

$$K_{\rm P}$$
=1.915 *Mn*+2.68 [11]. (1)

Среднее отклонение расчетного класса, полученного из соотношения (1), от K_P из каталога Копетдага составило $\delta K_p = -0.1$ для семи общих событий из [4] и [6], при стандартном отклонении $\sigma K_P = 0.28$, что подтверждает применимость формулы (1). В дальнейших исследованиях афтершоковой последовательности для тех событий, для которых имелся K_P по данным КОП [4], это значение считалось окончательным, а для остальных афтершоков использовался расчетный класс.

Распределение афтершоков в пространстве и во времени показано на рис. 3.

Список афтершоков [12] включает 58 событий за 2010 г. в диапазоне энергетических классов *K*_P=7.5–12.8 и четыре события за 2011 г. с *K*_P=7.5–9.0 (рис. 2 в).

Как видно из рис. 3, большинство афтершоков, согласно данным ТЕН [6], располагалось на глубинах менее 10 км, и к декабрю 2010 г. афтершоковая активность практически прекратилась.

Крупнейший афтершок произошел через 5 часов после главного толчка, 28 августа в $00^{h}29^{m}$, с энергией, $E=6.31\cdot10^{12}$ Дж, лишь на порядок ниже энергии основного события. Его координаты по данным разных сейсмологических центров, представленные в табл. 1 и на рис. 2, отличаются гораздо большим разбросом, чем для основного толчка, с максимальными отклонениями данных MOS и KOП.

Рис. 3. Вертикальный разрез афтершоковой зоны Кух-Зарского землетрясения 27 августа 2010 г. в проекции на широту (а) и долготу (б), и распределение афтершоков во времени (в)

Механизм очага афтершока 28 августа с K_P =12.8 определен лишь КОП+БОРОК [9] по знакам первых вступлений *P*-волн на 70 станциях, включая 11 знаков сейсмических станций Туркменистана. В очаге произошел левосторонний сдвиг по широтной плоскости, или правосторонний сбросо-сдвиг – по меридиональной (рис. 2, табл. 2).

Среди других афтершоков самым крупным оказался толчок 4 сентября в $21^{h}15^{m}$ с K_{P} =10.0. Согласно [9], в его очаге произошел сброс по плоскости северо-западного или юговосточного простирания. Данное решение получено с использованием всего 13 знаков вступлений *P*-волн и потому недостаточно надежно.

Макросейсмические данные и сильные движения грунта. По результатам полевых наблюдений [1], в области Кух-Зарского землетрясения 27 августа 2010 г. не наблюдалось существенного поверхностного разрывообразования, но имелись вторичные трещины и разрывы. В результате землетрясения в селах Кух-Зар и Тучах образовались трещины, следующие в восточном направлении. Несколько аналогичных трещин, составляющих 70° с направлением на север, было найдено в селе Келу. Помимо обрушений не армированных крыш, углов и стен домов, построенных из необожженного кирпича, или каменной кладки плохого качества, наблюдалось также частичное повреждение железобетонного здания школы в селе Кух-Зар, построенного за 4 месяца до землетрясения.

Сильные движения при Кух-Зарском землетрясении были записаны на семи станциях Научно-исследовательского центра строительства и жилищного хозяйства, который управляет иранской сетью сильных движений (табл. 3, рис. 4). Все записи с пиковыми ускорениями 0.08–0.55 g получены с помощью цифровых акселерографов Kinemetrics SSA-2, в основном расположенных на севере от эпицентра землетрясения, т.к. к югу находится огромная пустыня. В табл. 3 представлены максимальные значения пиковых скоростей и ускорений на горизонтальных компонентах станций, зарегистрировавших Кух-Зарское землетрясение. Там же даны оценки инструментальной интенсивности, полученные с помощью соотношения между сейсмической интенсивностью и параметрами движения грунта, представленного в проекте российской сейсмической шкалы [13], как дающее наилучший коэффициент корреляции между содержащимися в нем параметрами:

$$I_{a\upsilon} = 1.325 \cdot \lg(a_{\Pi H \kappa} \cdot \upsilon_{\Pi H \kappa}) + 2.83,$$
 (2)

где I_{av} – инструментальная интенсивность сотрясений в баллах; $a_{пик}$ – максимальное значение пикового ускорения на одной из горизонтальных компонент; $v_{пик}$ – максимальное значение пиковой скорости на одной из горизонтальных компонент. Тип грунтов С в табл. 3 включает некоторые четвертичные и верхние третичные пески, песчаники и аргиллиты со скоростями 750 $m/c > v_s > 350 m/c$, а тип В – вулканиты, большинство мезозойских коренных пород и некоторые францисканские коренные породы со скоростями поперечных волн 1500 $m/c > v_s > 750 m/c$.

Станция	Код	Тип грунта	φ°, Ν	λ°, Ε	$a_{\text{пик}}, \\ c_{M/c}^{2}$	U _{пик} , <i>см/с</i>	Инструментальная интенсивность (2)	Макросейсмическая интенсивность из [1]
Kuh-Zar	KUZ	С	35.45	54.59	550	48.27	8.7	7
Forat	FRT	С	35.92	54.31	25	2.22	5.1	5
Naimabad	NIM	С	36.25	54.62	17	1.63	4.7	-
Qooshe	QOS	В	35.96	54.03	16	1.28	4.6	-
Jam	JAM	В	35.78	53.9	14	0.53	4.0	-
Qods	GDS	В	36.36	55.44	11	0.74	4.0	-
Mojen	MJN	В	36.48	54.65	10	0.57	3.8	-

Таблица 3. Максимальные значения пиковых скоростей о_{пик} и ускорений а_{пик} на горизонтальных компонентах акселерографов станций, зарегистрировавших Кух-Зарское землетрясение, и оценки инструментальной интенсивности

Как видно из табл. 3, интенсивность проявления Кух-Зарского землетрясения могла быть усилена на станциях Кух-Зар, Форат и Наимабад за счет более мягких грунтов, однако для пункта Форат инструментальная и макросейсмическая интенсивности совпадают. Особенно «сайт-эффект» сказался, по-видимому, на необычайно высоких амплитудах ускорения и скорости горизонтальных компонент записи акселерографа в селе Кух-Зар, в результате чего расчетная интенсивность на полтора балла превысила оцененную из полевых наблюдений. Примем для дальнейших исследований осторожную осредненную оценку интенсивности в пункте Кух-Зар 7–8 баллов. Такая же оценка интенсивности сотрясений в с. Кух-Зар следует из осредненного уравнения Шебалина [14]:

$$I=1.5 M-3.5 \lg r+3.0 \tag{3}$$

при гипоцентральном расстоянии $r=13 \ \kappa m$ (согласно показаниям акселерографа KUZ) и магнитуде Ms = 5.5 (табл. 1). В уравнении (3) подразумевается интенсивность сотрясений по шкале MSK-64 [15], которая идентична модифицированной шкале Меркалли [16,17]. Такая же интенсивность сотрясений, $I_0=7-8$ баллов, должна быть и в эпицентре при глубине гипоцентра $h_{\rm pP}=13 \ \kappa m$. Окончательно значение интенсивности в эпицентре I_0 будет уточнено после оценки глубины гипоцентра и макросейсмической магнитуды, соответствующих наилучшим образом всем имеющимся макросейсмическим данным.

Сведения о макросейсмических проявлениях Кух-Зарского землетрясения в населенных пунктах, представленные в табл. 4, собраны из статьи [1] и с сайта Геологической службы США, раздел DYFI (Did Eou Fill It?) [2]. В ближней к эпицентру Кух-Зарского землетрясения зоне, на расстояниях менее 110 км, было обследовано 53 населенных пункта [1], однако только 20 пунктов упоминаются в тексте статьи, а для пунктов с указанными интенсивностями не приводятся координаты. Для их уточнения были использованы карты Google и другие источники в Интернете. В табл. 4 включены также инструментальные интенсивности в пунктах Наимабад, Куше, Джам, Кодс и Моджен из табл. 3, для которых не удалось найти данных о макросейсмической интенсивности. Для Тегерана, основываясь на указанной в [1] интенсивности I=2 балла, а в [2] – I=3 балла, взята средняя оценка I=2-3 балла.

Из Туркменистана сведений о проявлениях Кух-Зарского землетрясения не поступало.

№	Пункт	φ°, E	λ°, Ν	Δ, <i>км</i>	Источ- ник	№	Пункт	φ°, E	λ°, Ν	Δ, км	Источ- ник
	<u>7-8 баллов</u>						<u>6 баллов</u>				
1	Кух-Зар	35.447	54.590	2	[1]	6	Мехдиабад	35.308	54.693	21	[1]
	7 баллов					7	Хусейнян	35.248	54.538	24	[1]
	<u>// 00010100</u>					8	Сатвех	35.272	54.690	24	[1]
2	Тучах	35.428	54.568	2	[1]	9	Бидестан	35.284	54.730	26	[1]
3	Салмабад	35.435	54.579	2	[1]	10	Моаллеман	35.221	54.564	27	[1]
4	Келу	35.457	54.602	3	[1]	11	Решм	35.202	54.430	31	[1]
5	Шими	35.461	54.605	4	[1]	12	Торуд	35.428	55.015	42	[1]

Таблица 4. Макросейсмические данные о Кух-Зарском землетрясении 27 августа 2010 г. (расстояния даны от инструментального эпицентра (φ=35.45 N, λ=54.566°E)

КУХ-ЗАРСКОЕ ЗЕМЛЕТРЯСЕНИЕ 27 августа 2010 г. с К_Р=13.8, Мw=5.8, I₀=7-8 (Эльбурский районКопетдага) Н.В. Петрова

N⁰	Пункт	φ°, E	λ°, Ν	Δ, <i>км</i>	Источ- ник	N⁰	Пункт	φ°, E	λ°, Ν	Δ, <i>км</i>	Источ- ник
	5 баллов						3 балла				
13	Форат <u>4–5 баллов</u>	35.920	54.310	56	[1]	22 23	Ашраф Сари Котисси	36.720 36.567	53.550 53.060	166 182	[2] [2]
14 15	Куше Дамган	35.96 36.170	54.03 54.350	74 81	[1] [1]	24 25 26	карчак Исламшехр Колс**	35.540 35.730	51.580 51.200 51.180	209 303 306	[2] [2]
16	Наимабад	36.25	54.62	89	[1]	20	Шахрна раияр	35.658	51.058	317	[2]
	<u>4 балла</u>					28	Кередж	35.816	50.970	326	[2]
17	Джам	35.78	53.9	70	[1]	29	Месджеде-	31.980	49.300	621	[2]
18 19 20	Имамшехр Моджен Колс*	36.420 36.48 36.36	54.970 54.65 55.44	113 115 128	[2] [1]	30	Солеиман Ардебиль <u>2–3 балла</u>	38.250	48.300	637	[2]
20	3-4 балла	20.20	00.11	120	[1]	31	Тегеран	35.670	51.430	283	[2]
21	Семнан	35.550	53.370	107	[1]	32	<u>2 балла</u> Эль Амара	31.850	47.170	792	[2]

Примечание. Кодс* – провинция Семнан, Кодс** – провинция Тегеран.

Карта изосейст Кух-Зарского землетрясения представлена на рис. 4. Изосейсты 4-го, 5-го, 6-го и 7-го баллов взяты из [1] и достроены для определения площади изосейст, изосейста с *I*=3 б. построена автором статьи на основе дополнительных данных из [2]. Из карты изосейст можно визуально определить более сильное затухание интенсивности сотрясений между 4- и 5-балльной изосейстами и более слабое – между 3- и 4-балльной изосейстами.

Рис. 4. Карта изосейст Кух-Зарского землетрясения 27 августа 2010 г. в 19^h23^m с *K*_P=13.8

1 – интенсивность по модифицированной шкале Меркалли в баллах; 2 – пункты, где макросейсмическое обследование проводилось, но данные в [1] не приведены; 3 – станция сильных движений; 4 – изосейста из [1]; 5 – достроенные автором изосейсты; 6 – разлом по Бербериану [10].

Для изосейст на рис. 4 независимым от предположений о магнитуде способом рассчитаны коэффициенты затухания v и макросейсмические глубины h_1 в первом приближении, используя формулы:

$$\lg \overline{\Delta_{i+1}} / \overline{\Delta_i} = 1/\nu, \tag{4}$$

$$h_{\rm I} = \overline{\Delta_{\rm i}} / \sqrt{10^{2(I_0 - I_{\rm i})/\nu} - 1} , \qquad (5)$$

$$\overline{\Delta_{i}} = \sqrt{S_{i} / \pi} , \qquad (6)$$

где S_i , $\overline{\Delta_i}$ и I_i – площадь, средний радиус и интенсивность *i*-й изосейсты соответственно, $I_0=7.5$ – интенсивность в эпицентре.

Использование формул (4) и (5) возможно только для эпицентральных расстояний, более чем в три раза превышающих средний радиус изосейсты (обычно это изосейсты с $i \ge 3$), на которых можно пренебречь разницей между гипо- и эпицентральными расстояниями.

2-е приближение v и $h_{\rm I}$, позволяющее привлечь к анализу не только дальние, но и более надежные первые изосейсты, находилось с помощью формул (4) и (5), в которые вместо $\overline{\Delta_{\rm i}}$ подставлялись гипоцентральные расстояния $\overline{r_{\rm i}} = \sqrt{\overline{\Delta_{\rm i}}^2 + \overline{h_{\rm I}}^2}$. Здесь $\overline{h_{\rm I}}$ – среднее значение глубин, рассчитанных в первом приближении для каждой изосейсты.

Параметры изосейст Кух-Зарского землетрясения и рассчитанные с их помощью коэффициенты затухания и макросейсмические глубины представлены в табл. 5.

I _i , баллы	7	6	5	4	3	3–7
$S_{\rm i}, \kappa m^2$	322	3730	17796	46699	228764	
$\overline{\Delta_{\mathrm{i}}}$, км	10	35	75	122	270	
$v_{i,i+1}$	2.	83	4	.86		$\bar{v} = 3.44$
		3.	15	2.	91	
$h_{ m Ii}$, км	11.6	13.3	14.0	11.6	12.8	$h_{\rm I} = \overline{h_{\rm Ii}} = 12.7$

Таблица 5. Площади, средние радиусы изосейст и вычисленные по ним коэффициент затухания v и макросейсмическая глубина *h*_I Кух-Зарского землетрясения

Как видно из табл. 5, коэффициенты затухания сильно варьируют для разных пар изосейст, вероятно, вследствие недостатка макросейсмических данных и некоторого произвола оконтуривания 7-балльной, северной части 6-балльной изосейсты и южной части остальных изосейст. Но среднее значение $\bar{v} = 3.44$ близко к v=3.5 в осредненном уравнении Шебалина (3).

Для уточнения коэффициента затухания и макросейсмических параметров землетрясения $(I_0, M_{\rm I}, h_{\rm IM})$ другим способом, не зависящим от произвола при проведении отдельных изосейст, построен график связи интенсивностей сотрясений в населенных пунктах с гипоцентральным расстоянием r (рис. 5). Для расчета r использованы эпицентральные расстояния из табл. 4 и глубина $h=13 \ \kappa m$.

Уравнение регрессии, установленное для всех наблюденных данных в предположении *h*=13 км, имеет вид:

$$I=10.09-2.9 \, \lg r, \quad R=-0.97. \tag{7}$$

Низкий коэффициент затухания в (7), v=2.9, объясняется пониженной по сравнению с ожидаемой при изотропном затухании интенсивностью сотрясений в большинстве населенных пунктов, расположенных на малых эпицентральных расстояниях (Δ < 200 км) поперек ориентации основных тектонических структур, и повышенной интенсивностью в дальних населенных пунктах, выстроившихся вдоль большой оси эллипсоида затухания. Кроме того, в пунктах Месджеде-Солейман (Δ =621 км) и Ардебиль (Δ =637 км), возможно, завышена интенсивность сотрясений. Исключив три самых дальних пункта из анализа, получаем:

$$I=10.58-3.2 \, \lg r, \quad R=-0.98. \tag{8}$$

В целом данные на графике (рис. 5) неплохо соответствуют уравнению Шебалина (3) при

магнитуде *MLH*=5.6, кроме трех последних точек. Поскольку магнитуда в уравнениях типа (3) в [14] является магнитудой *MLH*, значение *MLH*=5.6 получено из магнитуд *Ms* (ISC) и *MS* (MOS) из табл. 1 с помощью соотношений для Кавказ-Копетдагского региона [18]:

$$MLH=0.89 Ms+0.73,$$
 (9)

$$MLH=0.88 MS+0.83.$$
 (10)

Рис. 5. График зависимости интенсивности *I* проявления Кух-Зарского землетрясения в населенных пунктах от гипоцентрального расстояния r при $h=13 \ \kappa m$

1 — наблюденные данные I(r); 2 — установленная для всех пунктов зависимость (7); 3 — установленная для пунктов на расстояниях менее 400 км зависимость (8); 4 — кривая затухания интенсивности согласно уравнению макросейсмического поля (3) при M=MLH=5.6.

Из уравнений (7) и (8) интенсивность в эпицентре составляет $I_0=7$ баллов, а из (3) при $M=5.6-I_0=7-8$ баллов.

Макросейсмическая глубина, согласно уравнению Шебалина (3) при M=5.6 и $I_0=7-8$ баллов, равна $h_{\rm IM}=13$ км. Если же принять интенсивность в эпицентре $I_0=7$ баллов, то глубина Кух-Зарского землетрясения должна составлять $h_{\rm IM}=18$ км, что противоречит гипоцентральному расстоянию r=13 км согласно показаниям акселерографа KUZ в селе Кух-Зар ($t_{\rm S}-t_{\rm P}=1.64$ c).

Таким образом, наблюденным макросейсмическим данным по Кух-Зарскому землетрясению наилучшим образом соответствует значение интенсивности в эпицентре $I_0=7-8$ баллов и макросейсмические глубины $h_{IM}=h_I=13 \ \kappa M$.

Литература

- 1. Shahvar, M. and Zaré, M., 2013. The 27 August 2010 Mw 5.7 Kuh-Zar earthquake (Iran): field investigation and strong-motion evidence, Natural Hazards, 66, 2, 689-706, DOI: 10.1007/s11069-012-0507-8.
- 2. United States Geological Survey (USGS). Latest Earthquakes. M5.8 northern Iran. URL: http://earthquake.usgs.gov/earthquakes/eventpage/usp000hjuq#dyfi.
- 3. Wikipedia, The Free Encyclopedia. URL: https://en.wikipedia.org/.
- 4. Сарыева Г.Ч. (отв. сост.), Тачов Б., Халлаева А.Т., Клочков А.В., Дурасова И.А., Эсенова А., Петрова Н.В., Мустафаев Н.С., Артёмова Е.В. (сост.). Каталог землетрясений Копетдага за 2010 г. (См. Приложение к наст. сб. на CD).
- 5. International Seismological Centre, On-line Bulletin, Internat. Seis. Cent., Thatcham, United Kingdom, 2013. URL: *http://www.isc.ac.uk/iscbulletin/search/bulletin/*.
- 6. Iranian Seismological Centre. Online Databank URL: http://irsc.ut.ac.ir/bulletin.php
- 7. Рахимов А.Р., Славина Л.Б. Региональный годограф Копетдагской сейсмической зоны // Изв. АН ТССР. Сер. ФТХиГН. 1984. № 3. С. 31–38.
- 8. Розова Е.А. Составление годографа и определение основных сейсмических элементов для Средней Азии // Труды Сейсмологического института АН СССР. М.: АН СССР, 1936. С. 72–28.

- 9. Петров В.А., Безменова Л.В. (отв. сост.), Петрова Н.В. (сост.). Каталог механизмов очагов землетрясений Копетдага за 2010 г. (См. Приложение к наст. сб. на CD).
- Berberian M. Historical Seismicity (pre 1900) Map of Iran. Scale 1:5000000 // Geological Survey of Iran, Tectonic-Seismotectonic Research Section. – 1977.
- 11. Петрова Н.В., Безменова Л.В., Сарыева Г.Ч., Чарыев М.М. Копетдаг // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 112–127.
- 12. Петрова Н.В. (отв. сост.). Афтершоки Кух-Зарского землетрясения 27 августа 2010 г. с *К*_P=13.8, *Мw*=5.8. (См. Приложение к наст. сб. на CD).
- 13. **Проект новой российской сейсмической шкалы** // Инженерные изыскания. 2011. № 10. С. 62–71.
- Шебалин Н.В. Коэффициенты уравнения макросейсмического поля по регионам // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. – М.: Наука, 1977. – С. 30.
- 16. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 16. Гир Дж., Шах Х. Модифицированная шкала Меркалли // Зыбкая твердь. М.: Мир, 1988. С. 105–108.
- 17. Современный вид шкал MSK-64 и Меркалли. (См. Приложение к наст. сб. на CD).
- Петрова Н.В., Михайлова Р.С. Проблемы единой магнитудной классификации землетрясений Кавказ-Копетдагской сейсмоактивной зоны // Современные методы обработки и интерпретации сейсмологических данных. Материалы Десятой Международной сейсмологической школы, Азербайджан. – Обнинск: ГС РАН, 2015. – С. 257–262.