<u>II. СПЕКТРЫ И ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ</u>

УДК 550.348. (100)

ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ Л.С. Чепкунас, Л.С. Малянова

Геофизическая служба РАН, г. Обнинск, **luba@gsras.ru**

Очаговые параметры рассчитаны по спектрам продольных волн, зарегистрированных на станциях «Обнинск»-OBN, «Арти»-ARU и «Талая»-TLY (табл. 1). Спектры построены для 21 землетрясения Земли из [1], их параметры приведены в табл. 2. Все землетрясения расположены в основном в восточной части земного шара на расстоянии $\Delta < 100^{\circ}$ с очагами в земной коре (рис. 1). Для пятнадцати из них магнитуда $MS \ge 7$, а для шести (№ 4, 7, 8, 13, 16, 20) – MS < 7. Но это достаточно сильные землетрясения на территории России и в пограничных районах Северной Евразии, представляющие заметный интерес.

Таблица 1	Ι.	Станции	и их	координаты
-----------	----	---------	------	------------

N⁰	Название станции	Код		Источник		
			φ°, N	λ°, Ε	h, м	
1	Арти	ARU	56.429	58.562	260	[2]
2	Обнинск	OBN	55.114	36.569	130	[2]
3	Талая	TLY	51.681	103.644	579	[3]

N⁰	Дата,	t ₀ ,	Гипоцентр			Магнитуда	Район
	дм	ч мин с	φ°	λ°	һ, км	MS	
1	2	3	4	5	6	7	8
1	03.01	22 36 28.7	-8.76	157.36	33f	7.1	Соломоновы острова
2	12.01	21 53 07.9	18.43	-72.55	10f	7.1	Район Гаити
3	26.02	20 31 25.8	26.00	128.49	31	7.2	Острова Рюкю, Япония

Таблица 2. Сведения о рассмотренных землетрясениях в 2010 г.

N⁰	Дата,	t ₀ ,	Γ	ипоцентр		Магнитуда	Район
	дм	ч мин с	φ°	λ°	һ, км	MS	
1	2	3	4	5	6	7	8
4	16.03	09 44 13.4	52.12	142.28	10	5.5	Сахалин, Россия
5	04.04	22 40 44.5	32.48	-115.18	10f	7.3	Калифорния-Нижняя Калифорния, по-
							граничная область
6	06.04	22 15 00.6	2.42	97.17	33f	7.7	Северная Суматра, Индонезия
7	13.04	23 49 38.2	33.11	96.66	33f	6.8	Цинхай, Китай
8	30.04	23 11 41.9	60.55	-177.88	19	6.6	Берингово море
9	09.05	05 59 41.1	3.83	96.09	45	7.2	Северная Суматра, Индонезия
10	27.05	17 14 46.1	-13.51	166.54	33f	7.0	Острова Вануату
11	12.06	19 26 48.5	7.88	91.92	33f	7.4	Район Никобарских островов, Индия
12	16.06	03 16 28.2	-2.22	136.48	33f	7.0	Район Западного Ириана, Индонезия
13	18.06	02 23 05.7	44.39	148.74	46	6.1	Курильские острова
14	26.06	05 30 19.5	-10.38	161.43	40	7.0	Соломоновы острова
15	18.07	13 04 10.0	-5.92	150.48	38	7.1	Район Новой Британии, Папуа и Новая
							Гвинея
16	30.07	03 56 15.6	52.43	159.92	53	6.5	У восточного побережья Камчатки
17	10.08	05 23 45.0	-17.41	167.95	33f	7.3	Острова Вануату
18	13.08	21 19 34.7	12.52	141.50	31	7.0	Южнее Марианских островов
19	25.10	14 42 21.6	-3.40	100.11	26	7.2	Южная Суматра, Индонезия
20	20.12	18 41 57.8	28.35	59.22	15	6.6	Южный Иран
21	21.12	17 19 38.7	26.86	143.73	11	7.5	Район островов Бонин, Япония

Примечание. В графе 6 знаком «f» отмечены фиксированная глубина; названия районов даны по [4].

На всех станциях использовались записи вертикального канала цифрового широкополосного сейсмометра STS-1. Анализируемый интервал выбирался от вступления продольной волны *P* до вступления отраженной волны *PP*. В качестве примера на рис. 2 приведены записи *P*волн для пяти землетрясений, зарегистрированных на станциях «Обнинск» и «Талая».

Рис. 2. Сейсмограммы продольных волн на станции «Обнинск» для землетрясений 26 февраля в 20^h31^m с *MS*=7.2, Δ=70.15° (а); 6 апреля в 22^h15^m с *MS*=7.7, Δ=71.57° (б); 21 декабря в 17^h19^m с *MS*=7.5. Δ=77.50°(в); на станции «Талая» для землетрясений 18 июля в 13^h04^m с *MS*=7.1, Δ=69.91° (г); 10 августа в 05^h23^m с *MS*=7.3, Δ=88.57° (д).

Амплитудные спектры, приведенные на рис. 3, рассчитаны по программе Access Service Controller (SAC) [5]. Это интерактивная программа общего назначения, снабженная модулями спектрального анализа, позволяющая выделять, рассчитывать и анализировать спектральные данные сигналов. Аппроксимация спектров и расчет очаговых параметров проводился по [6–8]. Станционные спектры исправлялись за влияние амплитудно-частотной характеристики аппаратуры и приводились к очагу с учетом неупругого затухания m(f), частотной характеристики земной коры под станцией c(f), геометрического расхождения $G(\Delta)$ фронта *P*-волн, направленности излучения из очага $R_{\theta\phi}$. Первые два фактора m(f) и c(f) зависят от частоты, они приводят к изменению всей спектральной картины. В данной работе величина поправки за направленность излучения из очага $R_{\theta\phi}$ принималась средней и равной 0.4 для всех землетрясений.

Спектральные и очаговые параметры для всех 21 землетрясений даны в табл. 3. Определены следующие спектральные характеристики: уровень Ω_0 длиннопериодной ветви спектра, частота $f_{\rm n}$ точки перелома спектра, частота угловой точки f_0 , точка пересечения двух прямых, описывающих спектр длиннопериодной и короткопериодной частей спектра. На их основе вычислялись динамические параметры: сейсмический момент M_0 , сброшенное $\Delta \sigma$ и кажущееся $\eta \sigma$ напряжения, а также длина L разрыва и подвижка \bar{u} в очагах по методике [6–8]. Для получения значений $L, \bar{u}, \Delta \sigma$ использовалась дислокационная модель Брюна [9], которая нашла широкое применение в сейсмологической практике.

№	Дата, д м	t ₀ , ч мин	С/ст	MS	Δ°	$\begin{array}{c}\Omega_{0},\\10^{-4}\mathcal{M}\mathcal{C}\end{array}$	$f_{n,}$ $10^{-2} \Gamma u$	$f_{0,}$ $10^{-2} \Gamma u$	<i>М</i> ₀ , 10 ¹⁹ <i>Н</i> ∙м	Mw	L, $10^3 M$	Δσ, 10 ⁵ Πa	ησ, 10 ⁵ Πα	ū, M
1	03.01	22 36	TLY	7.1	75.77	0.56	11.5	11.5	2.6	6.9	42	123	4	5.36
2	12.01	21 53	OBN	7.1	85.49	0.69	13.2	18.2	5.0	7.1	27	89	20	2.50
3	26.02	20 31	OBN	7.2	70.15	0.93	2.2	19.1	5.1	7.1	26	102	27	2.74
4	16.03	09 44	OBN	5.5	56.74	0.02	21.3	31.6	0.11	6.0	16	9	4	0.16
5	04.04	22 40	OBN	7.3	89.45	0.17	15.8	20.0	1.5	6.8	24	38	130	0.95
6	06.04	22 15	OBN	7.7	71.57	2.29	8.5	15.8	10.0	7.3	31	117	78	3.79
7	13.04	23 49	OBN	6.8	46.73	0.30	2.0	25.1	1.0	6.6	20	44	35	0.90
8	30.04	23 11	OBN	6.6	61.48	0.08	15.1	31.6	0.37	6.3	16	32	47	0.53
9	09.05	05 59	OBN	7.2	69.81	1.66	4.0	20.9	7.3	7.2	24	185	19	4.61
10	27.05	17 14	TLY	7.0	84.59	1.44	5.0	13.5	7.8	7.2	36	58	9	2.19

Таблица 3. Характеристики спектров *P*-волн и динамические параметры очагов землетрясений 2010 г. по записям STS-1 на станциях «Обнинск», «Талая», «Арти»

N⁰	Дата, д м	t ₀ , ч мин	С/ст	MS	Δ°	$\Omega_0,$ $10^{-4} \text{M} c$	$f_{\rm n},$ $10^{-2} \Gamma u$	f ₀ , 10 ⁻² Гц	М ₀ , 10 ¹⁹ Н:м	Mw	<i>L</i> , 10 ³ м	Δσ, 10 ⁵ Πa	ησ, 10 ⁵ Πα	ц, м
11	12.06	19 26	OBN	7.4	64.20	2.51	4.4	20.0	10.0	7.3	24	253	28	6.32
12	16.06	03 16	TLY	7.0	60.48	0.47	12.3	15.1	1.7	6.8	32	18	41	0.60
			ARU			0.78			2.1	6.8				
13	18.06	02 23	OBN	6.1	65.47	0.09	5.0	10.0	0.38	6.3	24	10	8	0.24
14	26.06	05 30	TLY	7.0	79.25	0.29	4.7	22.4	1.4	6.7	22	46	50	1.05
15	18.07	13 04	TLY	7.1	69.91	0.89	5.2	10.0	4.0	7.0	49	12	25	0.61
16	30.07	03 56	OBN	6.5	63.02	0.28	2.5	20.0	1.1	6.7	24	28	11	0.70
			TLY		33.87	0.40			0.52	6.4				
			ARU		53.81	0.39			0.67	6.5				
17	10.08	05 23	TLY	7.3	88.57	1.51	6.3	10.5	11.0	7.3	46	35	20	1.69
18	13.08	21 19	OBN	7.0	88.18	0.58	9.1	14.4	3.6	7.0	34	32	19	1.13
19	25.10	14 42	OBN	7.2	78.04	0.91	5.8	22.4	5.1	7.1	22	168	27	3.84
20	20.12	18 41	OBN	6.6	31.35	0.24	4.9	28.2	0.76	6.5	18	46	23	0.85
21	21.12	17 19	OBN	7.5	77.50	2.69	12.3	12.3	16.0	7.4	40	88	24	3.64

Рис. 3. Спектры Р-волн землетрясений 2010 г. из табл. 1

На основе значений *M*₀ вычислена моментная магнитуда *Mw*. Расчет *Mw* выполнен по формуле X. Канамори [10]:

$$Mw, \ \partial H \cdot cM = \frac{2}{3} \lg M_0 - 10.7,$$

 $M_W, H \cdot_M = \frac{2}{3}(\lg M_0 + 7) - 10.7.$

Литература

- 1. Болдырева Н.В. (отв. сост.), Аторина М.А., Бабкина В.Ф., Дуленцова Л.Г., Малянова Л.С., Рыжикова М.И., Щербакова А.И. (сост.). Каталог землетрясений Земли за 2010 г. (См. Приложение к наст. сб. на CD).
- 2. Габсатарова И.П. и др. Сведения о станциях на Восточно-европейской платформе на Урале // Землетрясения в России в 2010 году. – Обнинск: ГС РАН, 2012. – С. 22–24.
- 3. **Масальский О.К. и др.** Сведения о станциях БФ ГС СО РАН // Землетрясения в России в 2010 году. Обнинск: ГС РАН, 2012. С. 33–34.
- 4. Young J.B., Presgrave B.W., Aichele H., Wiens D.A., Flinn E.A. The Flinn-Engdahl Regionalisation Scheme: the 1995 revision // Physics of the Earth and Planetary Interiors. 1996. 96. P. 223–297.
- 5. Golstein P., Dodge D., Firpoand M., Lee M. The IASPEI International Handbook of Earthquake and Engineering Seismology / Ed. by W.H.K. Lee, H. Kanamori, P.C. Jennings and C. Kisslinger. London: Academic Press, 2003.
- 6. Захарова А.И., Чепкунас Л.С. Динамические параметры очагов сильных землетрясений по спектрам продольных волн на станции «Обнинск» // Физика Земли. 1977. № 2. С. 9–17.
- 7. Аптекман Ж.Я., Дараган С.К., Долгополов Д.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – № 2. – С. 60–70.
- 8. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология – 1989. – № 2. – С. 66–79.
- Brune I.N. Tectonic stress and the spectrum of seismic shear waves from earthquake // J. Geophys. Res. 1970. – 75. – N 26. – P. 4997–5009.
- Hanks T.C., Kanamori H. A Moment Magnitude Scale // J. Geophys. Res. 1979. 84. N 135. P. 2348–2350.