Таджикистан

Т.Р. Улубиева¹, Р.С. Михайлова², Л.И. Рислинг¹

¹Геофизическая служба АН Республики Таджикистан, г. Душанбе, tanya_55_08@mail.ru ²Геофизическая служба РАН, г. Обнинск, raisa@gsras.ru

Система наблюдений. В 2010 г. непрерывные сейсмологические наблюдения, как и в 2009 г. [1], проводились Геофизической службой академии наук Республики Таджикистан (ГС АН РТ). Регистрация землетрясений Таджикистана и сопредельных государств осуществлялась семью цифровыми широкополосными сейсмическими станциями Trident+Trillium40: «Чу-янгарон», «Гарм», «Гезан», «Игрон», «Шаартуз», «Манем» и «Чорух-Дайрон». Сеть из цифровых станций в Таджикистане начала создаваться в 2005 г. под руководством академика С.Х. Негматуллаева [2]. Работа выполнена НПО «РМР International» при поддержке Швейцарского агентства по развитию и сотрудничеству (ШАРС) и при содействии фирмы «Нанометрикс» Канады в рамках проекта по возрождению сети сейсмических наблюдений в Таджикистане.

В 2005 г. были открыты цифровые станции «Гарм» (05.10.2005 г.), «Шаартуз» (22.10.2005 г.) и «Душанбе» (24.10.2005 г.); в 2006 г. – «Гезан» (02.11.2006 г.) и «Игрон» (18.11.2006 г.). В 2007 г. цифровой комплект на станции «Душанбе» 16.08.2007 г. был снят и переустановлен с 05.11.2007 г. на станцию «Чуян-Горон». В 2008 г. эта сеть пополнилась с 22 июля на юге станцией «Манем» вблизи г. Хорог, с 18 октября на севере – станцией «Чорух-Дайрон» вблизи г. Худжанд (Ленинабад), и на этом завершилось формирование сети цифровых станций. В 2009–2010 гг. изменений не было. Карта расположения сейсмических станций дана на рис. 1.

Рис. 1. Сеть цифровых широкополосных сейсмических станций на территории Таджикистана в 2010 г.

Координаты и параметры станций даны в Приложении к наст. сб. [3], геологическая привязка в – [4].

Методика наблюдений. В целом границы исследуемой территории (в пределах координат 36–40°N, 67–75°E и 40–41°N, 69–71°E) и схема сейсмоактивных зон Таджикистана (рис. 2) не изменились, по сравнению с установленными в 1995 г. [5], хотя обработка землетрясений частично проводилась и вне указанных границ [6], но не все из них оставлены в итоговом каталоге [7].

Рис. 2. Сейсмоактивные зоны Таджикистана и глубинные разломы

I–IV – сейсмоактивные зоны: Юго-Западный Тянь-Шань, Южный Тянь-Шань, Памиро-Гиндукуш (коровые), Памиро-Гиндукуш (глубокие) соответственно; 5 – глубинный разлом и его номер.

Главнейшие глубинные разломы территории Таджикистана и Северного Афганистана по [8]: 1 – Северо-Ферганский; 2 – Заамин-Хайдараканский; 3 – Южно-Гиссарский; 4 – Илякско-Вахшский; 5 – Дарваз-Заалайский; 5 – Афгано-Северо-Памирский; 6 – Ванч-Акбайтальский; 7 – Каракульско-Сарезский; 8 – Бартанг-Пшартский; 8 – Рушано-Северо-Пшартский; 9, 10 – Афгано-Южно-Памирские; 11 – Альбурз-Мормульский; 12 – Андараб-Мирзавалангский.

Методика обработки цифровых записей землетрясений соответствует [9]. Вся цифровая сейсмическая система работает в режиме TDMA – множественный доступ с временным разделением, т.е. каждая станция вещает в строго определенный промежуток времени. Связь удаленных станций с центральной станцией в г. Душанбе происходит с помощью космического спутника «Intelsat». Передача информации происходит непрерывно в масштабе реального времени. Для обработки и анализа сейсмических данных используются следующее программное обеспечение: CoreEarhworm – программа для автоматической обработки землетрясений, включающей в себя программу Нуроіnverse, где собраны годографы и геологические характеристики региона, и Oracle – базу данных для хранения сейсмической информации и программу для обработки сейсмической информации вручную [10].

В результате сводной обработки составлен каталог землетрясений Таджикистана и прилегающих к нему районов Узбекистана, Кыргызстана, Афганистана, Индии и Китая за 2010 г. [7]. Как и ранее [11], в *ped*. в него добавлены значения разных магнитуд по поверхностным (*MS*, *Ms*), объемным (*MPSP*, *m*_b) волнам и моментная (*Mw*) магнитуда вместе с сейсмическим моментом M_0 из бюллетеня ISC [12]. Кроме того, в каталог добавлено значительное число макросейсмических данных из трех источников – каталога землетрясений Центральной Азии [13], сейсмологического бюллетеня ГС РАН [14] и NEIC [15]. В итоге сведения об ощутимости были собраны в *ped*. для 50 землетрясений. Все макросейсмические данные расписаны по конкретным населенным пунктам в специальном приложении [16]. Общее число сотрясенных населенных пунктов в 2010 г. составило 83 [17]. В каталоге механизмов очагов собраны сведения об их параметрах для 16 землетрясений Таджикистана [18], все они заимствованы из других источников [19, 20]. Каталог Таджикистана [6] содержит 2970 землетрясений в диапазоне K_P =8.6–14.8, из них 2164 – глубокофокусные Памиро-Гиндукушские землетрясения с $h \ge 70 \ \kappa m$ и 806 – мелкофокусные толчки с $h < 70 \ \kappa m$, разбросанные на всей территории. Минимальная глубина гипоцентра $h=2 \ \kappa m$ присвоена землетрясению 13 сентября в $07^{h}58^{m}$ с K_P =9.2 в Горно-Бадахшанской автономной области, а максимальная – $h=280 \ \kappa m$ – пяти землетрясениям с K_P =9–10, локализованным в мантии, в пределах Афганской подзоны глубоких очагов [6]. Суммарная энергия всех землетрясений, выделившаяся в их очагах, равна $\Sigma E=1.103 \cdot 10^{15} \ Дж$. По сравнению с каталогом землетрясений в 2009 г. [11], число коровых землетрясений уменьшилось на 796 событий, число глубоких – на 699. При этом суммарная энергия всех землетрясений уменьшилась более чем в два раза ($\Sigma E=1.103 \cdot 10^{15} \ Дж$ вместо $\Sigma E=2.24 \cdot 10^{15} \ Дж$).

Оценку представительности землетрясений коровых и глубоких выполнена по графикам повторяемости коровых, глубоких землетрясений и всех вместе (рис. 3). Из графиков видно отсутствие левого загиба в исследуемом диапазоне классов ΔK_P =9–14 для коровых с $h < 70 \ \kappa m$ и ΔK_P =9–15 – для глубоких с $h \ge 70 \ \kappa m$. Следовательно, существующая сеть цифровых станций Таджикистана позволяет практически не пропускать на его территории землетрясения, начиная с 9-го класса.

Рис. 3. Графики повторямости коровых (а), глубоких (б) и всех (в) землетрясений Таджикистана в 2010 г.

Уравнения графиков повторяемости коровых и глубоких землетрясений по данным наблюдений за 2010 г., приведенные над графиками, заметно отличаются величиной угла наклона γ : для коровых – γ =(-0.47±0.02), для глубоких – γ =(-0.58±0.04). Причину предполагается выяснить.

Наиболее сильные ($K_P \ge 12.6$) события за 2010 г. представлены в табл. 1, суммарное число которых составило $N_{\Sigma}=17$, в 2009 г. их было 10 [1].

N⁰	Дата,	t_0 ,		Гипоце	ентр		K_{P}	Магнитуда				
	д м	ч мин с	φ°, N	λ°, Ε	<i>h</i> ,	$h_{\rm pP}$,		Mw	MS	Ms	MPSP	$m_{\rm b}$
					КМ	КМ						
1	2	3	4	5	6	7	8	9	10	11	12	13
1	02.01	02 15 05	38.30	71.50	10	35*	13.5	5.4	5.0	5.1	5.5	5.3
2	27.02	23 21 13	36.00	69.80	90	119*	13.7	5.7	5.7*		5.8	5.8
3	18.04	20 28 48	35.65	68.00	20	163*	12.8	5.6	5.2	5.3	5.7	5.5
4	04.06	11 49 41	36.60	70.00	230	214*	12.7	5.1			5.2	5.1
5	10.06	06 38 02	40.00	74.30	20	28*	12.8	5.2	4.8	4.9	5.7	5.5
6	03.08	16 26 21	38.52	69.57	10	26*	13.0	5.2	4.8	4.9	5.5	5.4
7	24.08	08 34 21	36.60	71.10	220	233*	12.9	5.0			4.9	5.0
8	07.09	15 41 46	39.63*	73.90*	30	32*	13.9	5.4	5.1	5.2	5.6	5.5
9	07.09	15 49 09	39.67*	73.87*	20		13.0				4.9	4.6
10	17.09	19 21 10	36.10	70.60	40	220*	14.8	6.2	6.2*		6.1	5.9
11	10.10	21 44 14	34.40	74.60	10		13.5					
12	28.10	03 59 42	36.55	71.00	180	184*	13.5	5.3			5.4	5.2

Таблица 1. Основные параметры землетрясений Таджикистана с *К*_Р≥12.6 за 2010 г.

№	Дата,	$t_0,$		$K_{ m P}$		M	агнитуд	1a				
	дм	ч мин с	φ°, Ν	λ°, Ε	<i>h</i> ,	$h_{\rm pP}$,		Mw	MS	Ms	MPSP	$m_{\rm b}$
				-	КМ	км						
1	2	3	4	5	6	7	8	9	10	11	12	13
13	10.11	20 41 01	36.75	70.80	250	247*	13.4	5.2			4.2	4.3
14	15.11	00 51 50	34.70	70.20	30	18*	13.7	5.2	4.6	4.6	5.1	5.0
15	15.11	02 44 40	38.60	69.70	10	30*	12.8			3.9	4.9	4.7
16	08.12	08 21 27	39.47*	72.70*	10	16*	12.6	5.5	5.1	5.1	5.2	5.1
17	19.12	11 51 55	38.70	73.70	80		12.6				4.3	4.5

Примечание. В графах 4, 5 знаком * отмечены землетрясения с координатами из [13] из-за близких для них макросейсмических данных (8 км – 6–7 баллов, 5 км – 6 баллов, 16 км – 6–7 баллов [21]); в графе 7 даны значения *h* по глубинной фазе *pP* из [12]; в графе 10 знаком * отмечены значения магнитуд *MS*_{MOS} по поверхностным волнам двух глубоких землетрясений из [14], увеличенных на Δ*M*=+0.8, согласно [22].

Как видно из рис. 4, непосредственно на территорию республики попадают только семь землетрясений: № 1 (2 января в $02^{h}15^{m}$ с $K_{P}=13.5$, $h=10 \ \kappa m$ в Ванчском районе Памира), № 6 и № 15 (3 августа в $16^{h}26^{m}$ с $K_{P}=13.0$, $h=10 \ \kappa m$ и 15 ноября в $02^{h}44^{m}$ с $K_{P}=12.8$, $h=10 \ \kappa m - в$ Душанбино-Вахшском районе республики), землетрясения № 8,9 и № 16,17 (7 сентября в $15^{h}41^{m}$ с $K_{P}=13.9$, $h=30 \ \kappa m$ и в $15^{h}49^{m}$ с $K_{P}=13.0$, $h=20 \ \kappa m$, 8 декабря в $08^{h}21^{m}$ с $K_{P}=12.6$, $h=10 \ \kappa m$ и 19 декабря в $11^{h}51^{m}$ с $K_{P}=12.6$, $h=80 \ \kappa m - y$ самых восточных границ Республики Таджикистан с Китаем). Остальные 10 событий с $K_{P}\geq12.6$ локализованы вне границ Таджикистана и часть из них описана ниже.

Рис. 4. Карта эпицентров сильных (*К*_Р≥11.6) землетрясений Таджикистана за 2010 г.

1 – энергетический класс K_P ; 2 – глубина *h* гипоцентра, *км*; 3, 4 – сейсмические станции, цифровая и аналоговая соответственно; 5 – глубинный разлом І-го порядка; 6 – государственная граница; пронумерованы землетрясения с $K_P \ge 12.6$.

Максимальное в 2010 г. землетрясение № 10, записанное 17 сентября в $19^{h}21^{m}$ на 2571 сейсмических станциях Земли [12], имеет $K_{P}=14.8$ [7], Mw=6.2 [19] и сейсмическую энергию $E=6.31\cdot10^{14}$ Дж, т.е. 57 % от суммарной годовой энергии всех остальных землетрясений. Оно ощущалось в Таджикистане с интенсивностью I=4-5 баллов по шкале MSK-64 [23] в Хороге ($\Delta=172 \ \kappa m$) и Душанбе (315 κm); 4 балла – в Гарме (320 κm) [7, 16]; 3 балла – в Ташкенте

(592 км). Также оно вызвало слабые сотрясения II–III балла по шкале MM [24] в Афганистане (III MM – Файзабаде (113 км)), Баглане (166 км), Чарикаре (177 км), Джалалабаде (187 км), в Баграми (215 км), Кабуле (219 км)), Узбекистане (II MM – в Самарканде (503 км)) и Пакистане (II MM – в Пешаваре (Δ =248 км) и Исламабаде (Δ =360 км)) [12].

Спорной для этого землетрясения оказалась глубина очага (табл. 2). В оригинале каталога Таджикистана [6] $h=40 \ \kappa m$, но по данным ISC, NEIC, GCMT, ВЛ и др. – $h>200 \ \kappa m$ [12], по данным MOS [14] – $h=118 \ \kappa m$.

Агент-	$t_0,$	δt_0 ,		Гі	ипоцентр			Магнитуда	Источ-
ство	ч мин с	С	φ°, N	δφ°	λ°, Ε	δλ°	h, км		ник
ГС АН РТ	19 21 10		36.10		70.60		40	$K_{\rm P} = 14.8$	[6]
MOS	19 21 10.7	0.88	36.509	0.05	70.862	0.03	118	MS=5.4/15, MPSP=6.1/99	[14]
ISC	19 21 15.2	0.12	36.535	0.03	70.969	0.02	215	<i>m</i> _b =5.9/480, <i>h</i> _{pP} =215 км	[12]
							215*	-	
ISCJB	19 21 10.8	0.19	36.547	0.02	70.911	0.01	189	<i>m</i> _b =5.9/480, <i>h</i> _{pP} =215 км	_ " _
							221*	-	
NEIC	19 21 15.0	0.11	36.443	0.04	70.774	0.03	220	$m_{\rm b}$ =5.9/228, Mw =6.2	_ " _
GCMT	19 21 15.0	0.10	36.44	0.01	70.79	0.01	208	<i>Mw</i> =6.2/132	_ " _
BJI	19 21 12.8	1.38	36.40		71.00		200	$m_{\rm b}$ =5.6/81	
NNC	19 21 11.5	2.64	36.558	0.31	70.781	0.13	224	$K_{\rm P}$ =14.6, $m_{\rm b}$ =5.8, $m_{\rm pv}$ =7.1	
IDC	19 21 13.6	0.42	36.405	0.07	70.816	0.05	209	$m_{\rm b}$ =5.4/43	_ " _
PDG	19 20 48.5	0.41	36.84		71.00		200	$m_{\rm b}$ =6.2/12	_ " _

Таблица 2. Основные параметры землетрясения 17 сентября 2010 г. в 19^h21^m по данным различных сейсмологических центров

Примечание. Расшифровка кодов агентств дана в обозначениях к наст. сб.

Графически картина разброса решений его эпицентра и гипоцентра дана на рис. 5.

Рис. 5. Решения эпицентра землетрясения 17 сентября 2010 г. в 19^h21^m с K_P=14.8, *MS*=6.2 в проекции на дневную поверхность (№№ 1–10, табл. 3) и решения гипоцентра по данным разных агентств

В регионе глубину очага этого землетрясения оценили равной *h*=40 км на основании анализа записи землетрясения по данным цифровой сети (рис. 6). Обычно записи глубоких землетрясений имеют форму в виде двух максимальных выбросов Р- и S-волн, чего нет на рис. 6. Действительно, после первого вступления Р-волн, наблюдается четкое и ясное второе вступление через 4-5^s, сильнее первого. Затем следует еще ряд импульсов различной интенсивности, среди которых выделяются несколько вступлений поперечной волны. Если при глубоком землетрясении в фазе Р самое сильное вступление соответствует первому вступлению, то при землетрясении, очаг которого расположен в гранитном и базальтовом слоях, первое вступление относительно слабое, так как оно соответствует диффрагированной волне Р, после чего следует более сильное вступление волн Р. В целом характер волновой картины продольных и поперечных волн с нормальной глубиной очага является типичным для землетрясений данного района.

Рис. 6. Запись землетрясения 17 сентября 2010 г. в 19^h21^m с *K*_P=14.8, *Mw*=6.2 широкополосными цифровыми сейсмическими станциями «Манем» и «Шаартуз»

Редколлегия Сборника в этой связи обратилась к канд. ф.-м. н. И.П. Габсатаровой, как известному в России специалисту по волновым формам. По ее мнению основным критерием в данной ситуации может служить наличие глубинных фаз на удаленных расстояниях с одной стороны и отсутствие ярко выраженных поверхностных волн на тех же расстояниях – с другой. Выбранные в Интернете записи по семи станциям на рис. 7 – «Боровое» (BRVK), «Гарни» (GNI), «Свердловск» (SVE), «Арти» (ARU), «Нальчик» (NCK), «Кисловодск» (KIV), «Тиргузор» (TIRR) – демонстрируют наличие хороших глубинных фаз *pP*-волн и отсутствие поверхностных волн. Дополнительным аргументом в пользу большой глубины очага землетрясения 17 сентября являются макросейсмические данные. Так, для ближайшего пункта в Афганистане – г. Файзабад – с Δ =117 км интенсивность сотрясений по формуле Н.В. Шебалина [25] для Средней Азии:

$$I = 1.5 M - 3.5 \lg r + 3.0$$

при глубине очага *h*=40 км и магнитуде *Mw*=6.2 должна быть равной 5 баллов, тогда как по данным NEIC она составила лишь III балла MM, что говорит в пользу версии о глубоком землетрясении.

Рис. 7. Однокомпонентные записи цифровых станций землетрясения 17 сентября 2010 г. в 19^h21^m с *K*_P=14.8, *Mw*=6.2, *h*=215* км (предоставила И.П. Габсатарова)

Поэтому в этом случае следует признать более верными решения всех агентств о большой глубине очага этого землетрясения. В итоге в *ped*. было принято решение изменить региональное значение глубины гипоцентра этого землетрясения с h=40 км на $h_{\rm pP \ ISC}=215 \text{ км}$ и отнести его не к зоне III, а к зоне IV.

Распределение всех землетрясений 2010 г. по крупным сейсмоактивным зонам I–IV представлено в табл. 3.

N⁰	Район			N_{Σ}	ΣΕ,					
		9	10	11	12	13	14	15		Дж
Ι	Юго-Западный Тянь-Шань	12(9)	14(11)	6(2)	3(1)				35(23)	$2.59 \cdot 10^{12}$
II	Южный Тянь-Шань	206(6)	57(4)	15(4)	6(2)	3	1		288(19)	$1.12 \cdot 10^{14}$
III	Памиро-Гиндукуш (коровые)	301(26)	111(16)	43(8)	21(6)	5(2)	1		482(58)	$1.63 \cdot 10^{14}$
IV	Памиро-Гиндукуш (глубокие)	1549(47)	478(12)	90(4)	41(1)	5	1	1	2165(64)	8.25·10 ¹⁴
	Всего	2068(88)	660(43)	154(18)	71(10)	13(2)	3	1	2970(161)	$1.10 \cdot 10^{15}$

Таблица 3. Распределение числа землетрясений по энергетическим классам K_P и суммарной сейсмической энергии ΣE по крупным районам I–IV за 2010 г.

Примечание. В скобках указано количество землетрясений вне указанных границ.

По всем районам произошло уменьшение числа землетрясений, по сравнению с таковыми в 2009 г.: в Юго-Западном Тянь-Шане I (35 вместо 60), в Южном Тянь-Шане II (288 вместо 348), в районах III (482 вместо 486) и IV (2165 вместо 3329).

Карта эпицентров всех землетрясений дана на рис. 8.

Рис. 8. Карта эпицентров всех 2970 землетрясений Таджикистана и прилегающих территорий за 2010 г. по [6]

1 – энергетический класс *K*_P; 2 – глубина *h* гипоцентра, *км*; 3, 4 – сейсмические станции, цифровая и аналоговая соответственно; 5 – глубинный разлом І-го порядка; 6 – государственная граница.

Рассмотрим детально сейсмичность в каждом из районов I-IV.

Территория Юго-Западного Тянь-Шаня (I), согласно табл. 3, характеризуется в 2010 г. уменьшением числа землетрясений (35 вместо 60) и суммарной сейсмической энергии (2.59·10¹² Дж вместо $3.61\cdot10^{12}$ Дж), по сравнению с таковыми в 2009 г. [1]. В 2010 г. в зоне влияния Северо-Ферганского разлома (1) на рис. 2 максимальными являются землетрясения 11-го класса с $h=10 \ \kappa m$, зарегистрированные 20 сентября в $09^{h}17^{m}$ с $K_{p}=11.0$ и 27 октября в $04^{h}47^{m}$ с $K_{p}=10.6$ (рис. 8, [7]). По Южно-Ферганскому разлому (2), называемому на рис. 2 Заамин-Хайдараканским, хорошо выделяется цепочка из четырех землетрясений 12-го класса, простирающаяся в запад-юго-западном направлении. Они произошли 14 февраля в $20^{h}32^{m}$ с $K_{p}=12.5$, $h=10 \ \kappa m$; 20 августа в $23^{h}19^{m}$ с $K_{p}=11.9$, $h=20 \ \kappa m$; 16 сентября в $01^{h}32^{m}$ с $K_{p}=11.6$, $h=10 \ \kappa m$ и 24 ноября в $04^{h}13^{m}$ с $K_{p}=11.9$, $h=10 \ \kappa m$. Еще одно землетрясение такого же уровня энергии возникло 26 сентября в $06^{h}37^{m}$ с $K_{p}=11.7$, $h=10 \ \kappa m$ на востоке зоны. Остальные толчки в зоне I слабее, на уровне 9–10 энергетического класса.

В пределах Южного Тянь-Шаня (район II) развитие сейсмического процесса в 2010 г. рассмотрим по большим эпицентральным зонам: Гиссаро-Кокшаальской и в Таджикской депрессии.

В Гиссаро-Кокшаальской зоне произошло наибольшее число землетрясений с очагом в земной коре, особенно высока их плотность в зоне влияния трех крупнейших глубинных разломов – Южно-Гиссарского (3), Илякско-Вахшского (4) и Дарваз-Заалайского (5) (см. рис. 2, рис. 8). На уровне сильных ($K_P \ge 12.6$) землетрясений эта зона имеет вид «гантели», с толчками № 6, 15 на западе и № 8, 9, 16 – на востоке. На западе землетрясения № 6, 15 зарегистрированы с одинаковыми глубинами $h=10 \ \kappa M$ 3 августа в 16^h26^m с $K_P=13.0$ и 15 ноября в 02^h44^m с $K_P=12.8$. На востоке землетрясеия № 8, 9, 16 локализованы 7 сентября в 15^h41^m с $K_P=13.9$, $h=30 \ \kappa M$ и через 8 минут, в 15^h49^m с $K_P=13.0$, $h=22 \ \kappa M$, а также 8 декабря в 08^h21^m с $K_P=12.6$, $h=10 \ \kappa M$. Эти группы рассмотрим отдельно.

Начиная с 3 августа сейсмическая обстановка активизировалась на территории Рогунского района вблизи строящейся высокогорной Рогунской ГЭС («Рогун»: 38.70°N, 69.72°E, h_z =1730 м). В восточной части Илякско-Вахшского глубинного разлома, в северных отрогах хребта Сурхку, на отрезке 15 км, выше названные землетрясения № 6 и № 15 (рис. 8) возникли в августе и ноябре с K_P =13.0 и 12.8 [7]. Наиболее сильное из них – № 6 – зарегистрировано 3 августа на одинаковом расстоянии – примерно 22 км – к юго-востоку от Файзабада и к юговостоку от Рогуна. Оно ощущалось с интенсивностью *I*=4 балла в Рогуне (22 км) и Больджуане (27 км), 3–4 балла – в Нуреке (23 км) и Игроне (40 км) [16]. Два события за 15 ноября в 02^h06^m и 02^h44^m, с K_P =12.3 и с K_P =12.8 произошли в непосредственной близости от Рогуна, примерно в 9 км к югу. Они предварялись за 22 минуты одиночным форшоком одиннадцатого энергетического класса. Первое из них ощущалось в Рогуне (9 км) с интенсивностью *I*=4 балла, в Больджуане (35 км) – 3–4 балла; второе – в Рогуне 5 баллов, Больджуане – 4 балла [16]. Через 28 минут после главного толчка последовал афтершок с K_P =11.5 [7] и далее афтершоковая деятельность регистрировалась до конца года.

Решение механизма очага имеется только для землетрясения № 6 [18], согласно которому определяющими в его очаге явились близгоризонтальные ($PL_P=15^\circ$) напряжения сжатия юговосточной ($AZM=150^\circ$) ориентации (рис. 9), спровоцировавшие почти чистые взбросы по обеим нодальным плоскостям близкого простирания.

Рис. 9. Стереограмма землетрясения № 6, произошедшего 3 августа с *K*_P=13.0, *Mw*=5.2

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

В средней части Гиссаро-Кокшаальской зоны, на территории Гармского (Раштского) района, зарегистрировано три ощутимых землетрясения с K_P ÷12: 4 июля в 01^h56^m с K_P =11.9, 7 октября в 01^h40^m с K_P =11.7 и 9 октября в 10^h15^m с K_P =11.6. Они ощущались в Гарме с интенсивностью *I*=4 балла на расстояниях от него 12 км, 25 км и 17 км соответственно [16]. Землетрясения № 8, 9 и 16 возникли в традиционно активном узле сочленения трех глубинных разломов – Южно-Гиссарского (3), Дарваз-Заалайского (5) и Каракульско-Сарезского (7) (рис. 2). Из них первое (№ 8) ощутимо в Кыргызстане (Нура (8 км) – 6–7 баллов, Иркештам (10 км) – 6–7 баллов, Сары-Таш (60 км) – 5 баллов, Ош (120 км) – 3 балла [21]) и в Таджикистане (Душанбе (410 км) – 3 балла [16]). Толчок (№ 9) вызвал сотрясения лишь в Кыргызстане (Нура (5 км) – 6 баллов, Кёктюбе (56 км) – 4–5 баллов [21]). Особо отметим, что оба они являются поздними афтершоками [26] разрушительного землетрясения Нура 5 октября 2008 г. с K_P =15.4, Mw=6.7, I_0 =8 [27]. Третье событие (№ 16) вызвало интенсивные сотрясения также лишь в Кыргызстане (Агык-Суу (16 км) – 6–7 баллов, Сарымогол (30 км) – 5–6 баллов, Дараут-Курган (44 км) – 5 баллов, Лянгар-2 (65 км) – 4 балла [21]). Очаги этих толчков пространственно приурочены к восточному и западному участкам северной оконечности Каракульско-Сарезского ралома (7).

Как следует из [18], в очаге землетрясения № 8 напряжения сжатия и растяжения практически равновелики ($PL_P=3^\circ$, $PL_T=7^\circ$, рис. 10). В результате в его очаге возникла подвижка типа чистый сдвиг, левосторонний по плоскости *NP1* северо-восточного простирания и правосторонний – по *NP2*, северо-западного простирания.

Рис. 10. Стереограммы землетрясений № 8 и № 16, произошедших 7 сентября в 15^h41^m с *K*_P=13.9 и 8 декабря в 08^h21^m с *K*_P=12.6

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

В очаге землетрясения № 16 ситуация подобная таковой в очаге № 8: углы наклона к горизонту осей сжатия и растяжения почти одинаковы (рис. 10) и движение в очаге практически чистый сдвиг, правосторонний по плоскости *NP1* и левосторонний – по *NP2*. Различие лишь в ориентации осей и простирании нодальных плоскостей.

В Таджикской депрессии, лежащей к югу и юго-западу от Илякско-Вахшского разлома (4, рис. 2), в 2010 г., как и ранее [1], наблюдается лишь слабая сейсмичность, территориально привязанная к долине пограничной с Афганистаном р. Пядж, где можно отметить три землетрясения с K_P =11, произошедшие 26 января в $17^{h}44^{m}$ с K_P =11.3, h=10 км, 31 мая в $00^{h}22^{m}$ с K_P =10.8, h=10 км и 27 июля в $07^{h}17^{m}$ с K_P =10.7, h=10 км к югу от сейсмической станции «Игрон». Еще отметим землетрясение 8 ноября в $03^{h}16^{m}$ с K_P =11.0, h=10 км вблизи сейсмической станции «Шаартуз». Все остальные немногочисленные землетрясения более мелкие с $h \le 10 \kappa m$ [7] и более слабые.

В Памиро-Гиндукушской зоне (III) коровых землетрясений наиболее активен участок, зажатый между меридиональным Каракульско-Сарезским разломом (7) и близширотными фрагментами Ванч-Акбайтальского (6) и Бартанг-Пшартского (8) разломов (рис. 2). Здесь, в Ванчском районе, 2 января в $02^{h}15^{m}$ произошло интересное по своим особенностям землетрясение № 1 (табл. 2) с $K_{\rm P}$ =13.5 [7], Mw=5.4 [12], названное Ванчским. Оно описано в отдельной статье наст. сб. [28].

Необычно большая в 2010 г. группа мелких землетрясений объемом N_{Σ} =77 зарегистрирована над очаговой зоной глубоких землетрясений в пределах координат $\Delta \varphi$ =36.7–38.0°, $\Delta \lambda$ =71.0–73.5°), в зоне резкого (на 90°) изменения течения р. Пяндж. Они хорошо видны на суммарной карте эпицентров землетрясений (рис. 8). В этой группе лишь одно имеет *h*=2 *км*, по два толчка с *h*=20 и 30 *км*, а 72 события реализовались на одинаковой глубине *h*=10 *км*. Максимальные по энергии толчки имеют K_P ÷12 (1 мая в 08^h35^m с K_P =11.6; 19 июня в 12^h58^m и в 14^h42^m с K_P =11.9 и 11.7). Оба события 19 июня ощущались в Хороге (Δ =42 *км*) с интенсивностью *I*=3 балла. Еще 9 толчков характеризуются K_P ÷11. Один из них с K_P =11.3, зарегистрированный 30 мая в 10^h19^m, вызвал в Хороге (65 *км*) сотрясения с интенсивностью *I*=3–4 балла [7, 16].

Вне Таджикистана, в южной части Афгано-Таджикской впадины, на крайнем юге Банди-Туркестанского поднятия зафиксировано 18 апреля в $20^{h}28^{m}$ землетрясение № 3 в табл. 1 с $K_{P}=12.8$, Mw=5.6 на глубине $h=20 \ \kappa m$. Оно приурочено к центральной части Андараб-Мирзаволангского разлома (12 на рис. 2). Для него имеются решения механизма его очага GCMT и NEIC. В соответствии с решением GCMT [19] подвижка в его очаге – типа сдвиг по обеим близвертикальным (DP_1 =86°, DP_2 =88°) нодальным плоскостям, левосторонний по близмеридиональной плоскости NP1 и правосторонний – по близширотной NP2. По GCMT (рис. 11) напряжения сжатия P и растяжения T близгоризонтальны и практически равновелики из-за близости их наклонов (PL_P =2°, PL_T =4°) к горизонту. В решении NEIC наклон к горизонту оси напряжений растяжений такой же (PL_T =4°), как у GCMT, но для оси растяжений он возрос до PL_P =14° и переориентировался с юго-восточного (AZM=129°) на северо-западный (AZM=306°) (рис. 11), что осложнило прежние сдвиги компонентами сброса и изменило направление сдвигов на правосторонние по плоскости NP1 и левосторонние – по NP2.

 нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

В южном направлении, вне границ Таджикистана, зарегистрированы два толчка: № 11 с K_P =13.5 (10 октября в 21^h44^m) и № 14 с K_P =13.7 (15 ноября в 00^h51^m). Механизм очага определен лишь для второго из них [18]. В его очаге превалировали напряжения сжатия, поэтому по более крутой (DP_1 =59°) плоскости NP1 восток–северо-восточного (STK_1 =60°) простирания реализовалось движение типа взброс с очень незначительными компонентами левостороннего сдвига, а по пологой (DP_2 =33°) плоскости NP2 близширотного (STK_2 =265°) простирания – надвиг с компонентами правостороннего сдвига.

В Памиро-Гиндукушской зоне (IV) глубокофокусных землетрясений локализовано 2164 землетрясений с $K_P \ge 8.6$ на глубинах $h=70-280 \ \kappa m$. Их пространственное распределение представлено на рис. 8. Традиционно вся область глубокофокусных землетрясений подразделяется по плотности гипоцентров на три подзоны: Афганскую ($\phi=35.0-36.9^{\circ}$ N), Хорогскую ($\phi=37.0-37.9^{\circ}$ N) и Мургабскую ($\phi=38.0-38.8^{\circ}$ N) (табл. 4). Как видим, основная часть глубокофокусных землетрясений возникла в Афганской подзоне – 1498 событий или почти 70 %, в числе которых шесть сильных ($K_P \ge 12.6$) толчков.

Подзона			,				$K_{\rm P} \ge 12$	N_{Σ}	ΣE ,	
	9	10	11	12	13	14	15		_	Дж
Афганская	1078	330	54	30	4	1	1	36	1498	$8.003 \cdot 10^{14}$
Хорогская	430	125	27	5				5	587	$1.175 \cdot 10^{13}$
Мургабская	41	23	9	6	1			7	80	$1.293 \cdot 10^{13}$
Всего	1549	478	90	41	5	1	1	47	2165	$8.250 \cdot 10^{14}$

Таблица 4. Распределение глубоких землетрясений по энергетическим классам в пределах Афганской, Хорогской и Мургабской подзон в 2010 г.

Относительное распределение событий по глубинам, изображенное на гистограммах рис. 12, позволяет выделить как общие их черты, так и существенные различия.

Общей чертой распределений землетрясений по глубине в трех зонах является относительно большое число землетрясений в верхнем слое с $h=80-100 \ \kappa m$: $N_{a\phi r}=382$, или 25 %, $N_{xpr}=140$, или 24 %, $N_{mpr}=68$, или 85 %. В более глубоких горизонтах Мургабской зоны землетрясений практически нет вовсе, но в Афганской и Хорогской они есть. Распределение землетрясений по глубине в Афганской и Хорогской подзонах относительно похожи: в них выделяется еще один промежуточный тонкий слой на уровне $h=130 \ \kappa m \ (N_{a\phi r}=136 \ u \ N_{xpr}=61)$ и глубокий – на уровне $h=200-210 \ \kappa m \ (N_{a\phi r}=246 \ u \ N_{xpr}=82)$.

Рис. 12. Гистограммы распределения глубин гипоцентров в Афганской (а), Хорогской (б) и Мургабской подзонах зоны IV глубоких землетрясений Памиро-Гиндукуша в 2010 г.

Рассмотрим сейсмический процесс в каждой из подзон глубоких землетрясений.

В Афганской подзоне определяющим, безусловно, является максимальное землетрясение № 10 17 сентября с K_P =14.8. Оно описано выше вместе с разными решениями его эпицентра (табл. 2) и макросейсмическим эффектом [16]. Здесь же рассмотрим механизм его очага по [18], где содержится два решения методом момента центроида (GCMT, NEIC₁, рис. 13) и одно – по первым вступления *P*-волн (NEIC₂).

Как видим, все три решения практически идентичны. Движение в очаге возникло в условиях преобладания близгоризонтальных напряжений сжатия, что привело к взбросу по более крутым (DP_1 : 61°, 59°, 59°) плоскостям NP1 северо-восточного простирания и к надвигам по более пологим (DP_2 : 32°, 37°, 35°) плоскостям NP2 близширотного простирания.

В этой же подзоне 27 февраля в $23^{h}21^{m}$ с $K_{p}=13.7$ произошло землетрясение № 2 14-го класса с $h=90 \ \kappa m$ и четыре события (№№ 4,7,12,13) 13-го класса: 4 июня в $11^{h}49^{m}$ с $K_{p}=12.7$, Mw=5.1, $h=230 \ \kappa m$; 24 августа в $08^{h}34^{m}$ с $K_{p}=12.9$, Mw=5.0, $h=220 \ \kappa m$; 28 октября в $03^{h}59^{m}$ с $K_{p}=13.5$, Mw=5.3, $h=180 \ \kappa m$; 10 ноября в $20^{h}41^{m}$ с $K_{p}=13.4$, Mw=5.2, $h=250 \ \kappa m$ соответственно (табл. 1). Относительно самое мелкое ($h=90 \ \kappa m$) из них землетрясение 27 февраля ощущалось в Душанбе с интенсивностью I=3 балла MSK-64 и III MM – в Баграме, Чарикаре, Джалалабаде

и Кабуле. С меньшей интенсивностью отмечены сотрясения в Баглане, Файзабаде, Махмуд-Раке и Пуле-Хумри [16]. Землетрясение 4 июня ощущалось в Душанбе (240 км) с *I*=2–3 балла, а также в Лахоре (Пакистан). Землетрясение 24 августа вызвало колебания с *I*=2–3 балла в Душанбе (292 км), а также в Северном Пакистане и в г. Шринагар в Индии. Событие 28 октября отмечено в Душанбе с *I*=3 балла, а также в городах Кабуле, Баглане, Файзабаде Афганистана и в городах Исламабаде, Мардане и Равлпинди Пакистана. Толчок 10 ноября ощущался в городах Кулябе (158 км), Курган-Тюбе (217 км) с *I*=3 балла и в Душанбе (267 км) – 2 балла.

Из перечисленных выше пяти землетрясений решения механизмов очагов известны для четырех, их стереограммы изображены на рис. 14.

Изображенные механизмы довольно разные, но имеют все же некоторое сходство в плане подвижек типа взброс по более крутым ($DP=67^\circ, 81^\circ, 67^\circ, 68^\circ$) нодальным плоскостям и надвиг – по более пологим ($DP=24^\circ, 14^\circ, 43^\circ, 22^\circ$). Более крутые плоскости или близширотны ($STK=98^\circ, 97^\circ$) или простираются на восток–северо-восток ($STK=72^\circ, 68^\circ$) [18].

Кроме того, в Афганской подзоне зарегистрировано еще 30 толчков с $K_{\rm P}$ ÷12 (табл. 4). Ощутимыми из них были три: 30 января в 21^h37^m с $K_{\rm P}$ =12.5 – в Хороге (99 км) 2–3 балла; 11 мая в 06^h31^m с $K_{\rm P}$ =12.5 – в Душанбе (290 км) 2 балла; 20 декабря в 10^h50^m с $K_{\rm P}$ =12.1 – также в Душанбе (294 км) 2–3 балла.

В Хорогской подзоне землетрясения с $K_P \ge 13$ не отмечены, есть лишь пять толчков с $K_P \div 12$. Они зарегистрированы 28 февраля в $13^h 31^m$ с $K_P = 12.2$, $h = 80 \kappa m$; 11 мая 0717 с $K_P = 12.1$, $h = 120 \kappa m$; 8 июня в $07^h 30^m$ с $K_P = 11.6$, $h = 230 \kappa m$; 21 июля в $06^h 23^m$ с $K_P = 12.0$, $h = 240 \kappa m$; 6 ноября в $06^h 09^m$ с $K_P = 12.2$, $h = 100 \kappa m$. Среди них нет ощутимых толчков и для них нет решений механизмов их очагов.

В Мургабской подзоне отмечен один толчок с $K_P=13$ и шесть толчков с $K_P=12$. Землетрясение 13-го энергетического класса произошло 19 декабря в $11^{h}51^{m}$ с $K_P=12.6$, $h=80 \ \kappa m$ в Восточном Памире, хотя не исключено завышение значения энергетического класса, поскольку для него невелики магнитуды по продольным волнам в бюллетенях MOS (*MPSP*=4.3/17 [14]) ISC ($m_b=4.5/57$ [11/12]).

В заключение приведем информацию о числе и интенсивности сотрясений (табл. 5), отмеченных в 2010 г. персоналом станции «Душанбе».

№	Дата,	$t_0,$		Гипон	центр		$K_{\rm P}$	Mw	Δ,	I _i ,
	дм	ч мин с	φ°, N	λ°, Ε	һ, км	h*, км			КМ	балл
1	02.01	02 15 05	38.30	71.50	10	35*	13.5	5.4	234	2
2	27.02	23 21 13	36.00	69.80	90	119*	13.7	5.7	295	3
3	19.04	14 54 42	38.83	68.82	10		9.5		31	2
4	20.04	10 58 28	38.25	71.50	10		11.9		234	2
5	11.05	06 31 37	36.60	71.00	160	163*	12.5		290	2
6	04.06	11 49 41	36.60	70.00	230	214*	12.7		240	2–3
7	03.08	16 26 21	38.52	69.57	10	26*	13.0	5.2	68	2-3
8	24.08	08 34 21	36.60	71.10	220	233*	12.9	5.0	292	2-3
9	07.09	15 41 46	39.10	73.50	30	32*	13.9	5.4	410	2-3
10	17.09	19 21 10	36.10	70.60		215*	14.8	6.2	315	4–5
11	07.10	01 40 04	39.22	70.30	10	15*	11.7		150	3
12	09.10	10 15 14	39.15	70.27	10	16*	11.6		145	3
13	28.10	03 59 42	36.55	71.00	180	184*	13.5	5.3	295	3

Таблица 5. Список землетрясений Таджикистана из [16], ощущавшихся в Душанбе в 2010 г.

N⁰	Дата,	<i>t</i> ₀ ,		Гипоц	центр	$K_{ m P}$	Mw	Δ,	I _i ,	
	дм	ч мин с	φ°, N	λ°, Ε	h, км	h*, км			КМ	балл
14	05.11	11 39 02	38.53	68.86	10		8.6		8	2-3
15	10.11	20 41 01	36.75	70.80	250	247*	13.4	5.2	267	2
16	15.11	02 44 40	38.60	69.70	10	30*	12.8		83	2
17	25.11	09 27 32	38.40	73.00	90	116*	12.3	5.0	362	2-3
18	20.12	10 50 32	36.50	70.90	160	142*	12.1		294	2-3

Максимальная наблюденная интенсивность I_{max} сотрясений составила 4–5 баллов по шкале MSK-64 и была вызвана сильнейшим в 2010 г. глубоким землетрясением Гиндукуша 17 сентября с K_P =14.8, Mw=6.2 при эпицентральном расстоянии 315 км. Наименьшее эпицентральное расстояние до ощутимого землетрясения, равное (8 км), относится к слабому (K_P =8.6) толчку 5 ноября в зоне влияния Илякского разлома, вызвавшее в городе колебания с I=2–3 балла. Трехбалльные сотрясения спровоцировали в Душанбе два равновеликих (K_P =11.7 и 11.6) Гармских землетрясения 7-го и 9-го октября на расстояниях 150 и 145 км соответственно и глубокое землетрясение 28 октября из Афганской подзоны на гипоцентральном расстоянии 347 км.

В целом уровень сейсмичности исследуемой территории в 2010 г., скорее всего, фоновый, без ярких событий. Отметим, однако, интересное событие – Ванчское землетрясение 2 января на Северном Памире с K_P =13.5, вблизи Ванч-Акбайтальского разлома, вызвавшее разрушения в Афганском Бадахшане. Во-первых, оно сопровождалось неожиданно большой (N_{Σ} =445) серией афтершоков, во-вторых, движение в его очаге возникло в условиях преобладания напряжений растяжения, что совершенно не свойственно этой структуре.

Литература

- 1. Улубиева Т.Р., Михайлова Р.С., Рислинг Л.И. Таджикистан // Землетрясения Северной Евразии, 2009 год. Обнинск: ГС РАН, 2015 С. 114–124.
- Негматуллаев С.Х. Современная сеть сейсмического мониторинга Таджикистана // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. С. 125–131.
- 3. Улубиева Т.Р. (сост.), Сейсмические станции Геофизической службы АН Республики Таджикистан в 2010 г. (См. Приложение к наст. сб. на CD).
- 4. Бабаев А.М., Джураев Р.У. Геологическая привязка сети цифровых широкополосных сейсмических станций на территории Таджикистана // Землетрясения Северной Евразии, 2009 год. Обнинск: ГС РАН, 2015 (На СD).
- 5. Саломов Н.Г., Улубиева Т.Р., Рислинг Л.И., Шакиржанова Г.Н., Джураев Р.У. Таджикистан за 1993–1995 годы // Землетрясения Северной Евразии в 1995 году. М.: ГС РАН, 2001. С. 49–58.
- 6. Улубиева Т.Р. (ГС) (отв. сост.), Рислинг Л.И., Нилобекова З.Г., Маматкулова З.С., Дмитриева Т.Н., Кутузова А.П., Валявская Т.Н. Каталог (оригинал) землетрясений Таджикистана за 2010 г. Обнинск: ГС РАН, 2015. 64 с.
- 7. Улубиева Т.Р. (отв. сост.), Рислинг Л.И., Михайлова Р.С., Нилобекова З.М., Маматкулова З.С., Дмитриева Т.Н., Кутузова А.П., Валявская Т.Н., Артёмова Е.В. (сост.). Каталог землетрясений Таджикистана за 2010 г. (См. Приложение к наст. сб. на CD).
- 8. Ачилов Г.Ш., Бабаев А.М., Мирзоев К.М., Михайлова Р.С. Сейсмогенные зоны Памира // Геология и геофизика Таджикистана. № 1. – Душанбе: Дониш, 1985. – С. 117–138.
- 9. Улубиева Т.Р., Михайлова Р.С., Рислинг Л.И., Хусейнова Г.А. Таджикистан // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2013. С. 133–144.
- Негматуллаев С.Х., Девонашоев А.Ю., Мирбаева З.Д. Возрождение сети сейсмического мониторинга в Таджикистане // Уменьшение стихийных бедствий и управление этими рисками. – Душанбе: Дониш, 2006. – С. 3–15.
- Улубиева Т.Р. (отв. сост.), Рислинг Л.И., Михайлова Р.С., Нилобекова З.М., Маматкулова З.С., Дмитриева Т.Н., Кутузова А.П., Валявская Т.Н., Артёмова Е.В. Каталог землетрясений Таджикистана за 2009 г. (*N*=4260) // Землетрясения Северной Евразии, 2009 год. Обнинск: ГС РАН, 2015 (На CD).

- 12. International Seismological Centre, On-line Bulletin, Internatl. Seis. Cent., Thatcham, United Kingdom, 2013. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/.
- 13. Джанузаков К.Д. (отв. сост. по региону), Шукурова Р. (сост. по региону), Соколова Н.П. (Кыргызстан), Гессель М.О. (Казахстан), Тулаганова М.Т. (Узбекистан); Молдобекова С., Афонина Л.Р., Неверова Н.П., Бектурганова Б.Б., Содикова К.И., Кучкаров К.И., Артёмова Е.В. (сост.). Каталог землетрясений Центральной Азии за 2010 г. (См. Приложение к наст. сб. на CD).
- 14. Сейсмологический бюллетень (ежедекадный) за 2010 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2010–2011. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2010*.
- 15. Machine-readable EDR. NEIC, 2010–2011. Ha CD.
- 16. Улубиева Т.Р. (отв. сост.), Михайлова Р.С., Артёмова Е.В., Левина В.И. (сост.). Макросейсмический эффект ощутимых землетрясений Таджикистана в 2010 г. (См. Приложение к наст. сб. на CD).
- 17. Улубиева Т.Р., Артёмова Е.В., Пойгина С.Г., Бахтиарова Г.М. (сост.). Сведения о пунктах, для которых имеется информация о макросейсмических проявлениях ощутимых землетрясений Таджикистана за 2010 г. (См. Приложение к наст. сб. на CD).
- 18. Артёмова Е.В., Михайлова Р.С. (сост.). Каталог механизмов очагов землетрясений Таджикистана за 2010 г. (См. Приложение к наст. сб. на CD).
- 19. Global CMT Catalog Search. URL: http://www.globalcmt.org/.
- 20. Муралиев А.М. (отв. сост.), Малдыбаева М.Б., Абдыраева Б.С., Досайбекова С., Холикова М.А. (сост.). Каталог механизмов очагов землетрясений Центральной Азии за 2010 г. (См. Приложение к наст. сб. на CD).
- 21. Берёзина А.В., Артёмова Е.В. (сост.). Макросейсмический эффект ощутимых землетрясений в населенных пунктах Центральной Азии в 2010 г. (См. Приложение к наст. сб. на CD).
- 22. Кондорская Н.В. Инструментальные данные // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука, 1977. С. 13.
- 23. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 24. The Modified Mercalli Intensity Scale. USGS National Earthquake Information Centre. URL: http://earthquake.usgs.gov/learn/topics/mercalli.php.
- 25 Шебалин Н.В. Коэффициенты уравнения макросейсмического поля по регионам // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука, **1977**. С. 30.
- 26. **Фролова А.Г., Берёзина А.В., Молдобекова С., Першина Е.В. (отв. сост.).** Афтершоки землетрясения Нура 5 октября 2008 г. с *К*_P=15.4, *Мw*=6.7, *I*₀=8 (Кыргызстан) за 2008–2010 гг. с *К*_P=5.7–14.5. (См. Приложение к наст. сб. на CD).
- 27. Абдрахматов К.Е., Омуралиев М., Ормуков Ч. Землетрясение Нура 5 октября 2008 г. с *К*_P=15.4, *Мw*=6.7, *I*₀=8 (Кыргызстан) // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 408–416.
- 28. Михайлова Р.С., Улубиева Т.Р. Ванчское землетрясение 2 января 2010 г. с *K*_P=13.5, *Mw*=5.4, *I*₀^P=7 (Северный Памир). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).