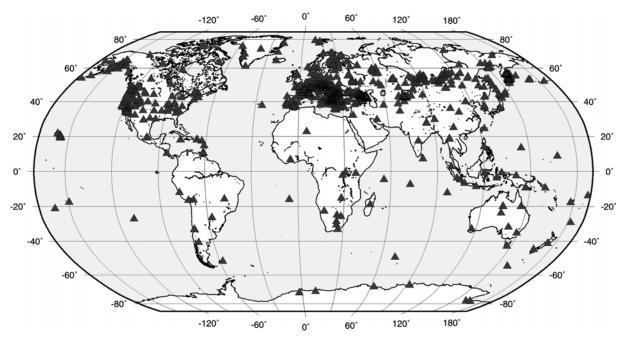
СИЛЬНЕЙШИЕ ЗЕМЛЕТРЯСЕНИЯ МИРА ПО ТЕЛЕСЕЙСМИЧЕСКИМ НАБЛЮДЕНИЯМ ГС РАН


Л.С. Чепкунас, Н.В. Болдырева, С.Г. Пойгина

Геофизическая служба РАН, г. Обнинск, luba@gsras.ru

Оперативный сейсмологический бюллетень в 2010 г., так же, как и ранее [1], составлялся на основе следующих потоков входной информации:

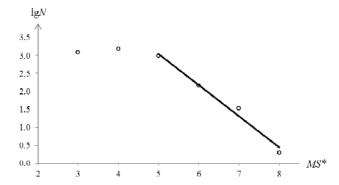
- ежедневных оперативных сводок со станций России и СНГ, поступавших по электронной почте (в коде МСК-85);
- сводок по конкретным землетрясениям (в коде МСК-85), формируемых в Службе срочных донесений (ССД) ГС РАН [2] по данным цифровых станций, участвовавших при сводной обработке по программе WSG [3] на основе волновых форм, поступивших в Обнинск в режиме, близком к реальному времени:
- оперативных сводок, создаваемых в Информационно-обрабатывающем центре (ИОЦ) ГС РАН для станций «Обнинск», «Билибино», «Кисловодск» и «Цей» по результатам обработки записей всех землетрясений;
- оперативных сводок, создаваемых в ИОЦ ГС РАН для станции «Владивосток» (VLA) по результатам обработки волновых форм записей землетрясений из регионов Монголия и граница Россия Монголия, Дальний Восток, получаемых с дисков;
- оперативных сводок из региональных сейсмологических центров России и СНГ по 29 станциям Камчатского филиала ГС РАН, семи Сахалинского филиала ГС РАН и 19 Казахстанского национального центра данных;
- оперативных сводок, создаваемых в ИОЦ ГС РАН из ежедекадных станционных бюллетеней на бумажных носителях по данным 12 телесейсмических и региональных станций, из которых девять («Бодайбо», «Гофицкое», «Закаменск», «Кульдур», «Монды», «Николаевскна-Амуре», «Северо-Курильск», «Тымовское» и «Чита») расположены в России и три («Львов», «Ужгород», «Делиси») в ближнем зарубежье;
- ежемесячных бюллетеней Алтае-Саянского (11 станций) и Байкальского (24 станции) филиалов ГС СО РАН со сводной обработкой землетрясений Алтая, Саян, пограничных областей России с Монголией и Китаем, Байкальской зоны;
- ежемесячных бюллетеней Магаданского филиала ГС РАН (32 станции МФ ГС РАН и ЯФ ГС СО РАН) со сводной обработкой землетрясений Северо-Востока России;
- ежемесячных бюллетеней Дагестанского (16 станций), Северо-Осетинского (12 станций) филиалов ГС РАН и лаборатории сейсмического мониторинга КМВ ГС РАН со сводной обработкой землетрясений Восточного и Северного Кавказа;
- бюллетеней сводной обработки землетрясений со станционными данными сети сейсмических станций Крыма для землетрясений западной зоны Северного Кавказа, Турции и Румынии;
- ежедневных оперативных сводок из десяти стран мира (Германия, Голландия, Дания, Польша, Португалия, Румыния, Словакия, США, Финляндия, Чехия), поступавших по электронной почте;
- сейсмологических каталогов и бюллетеней международных сейсмологических центров США (NEIC), Австрии (IDC) и Франции (CSEM), содержащих результаты сводной обработки землетрясений и станционные данные.

Всего в Оперативной службе ГС РАН в 2010 г. использовались данные 728 сейсмических станций ГС РАН, ГС СО РАН, других российских ведомств и мировой сети, изображенных на рис. 1. Как видно, подавляющее число используемых станций размещено в Северном полушарии, особенно в районах самой высокой плотности населения – в Европе. Список всех станций дан в Приложении к наст. сб. [4].

Рис. 1. Сейсмические станции мира, данные которых использовались при составлении Сейсмологического бюллетеня за 2010 г.

Проведено сравнение списка станций, участвовавших в Оперативной службе в 2009 [5] и 2010 гг. [4]. При составлении Сейсмологического бюллетеня (СБ) [6] в 2010 г. использовались данные 728 станций, в 2009 г. – 710 станций. Сравнение показало, что 100 станций (в т.ч. 44 российских, из них 36 впервые участвуют в СБ, из них одна – новая и шесть – перенесенных на другое место) из списка 2010 г. не использовались в сводной обработке в 2009 г. В то же время 80 станций из списка 2009 г. (в т.ч. пять российских) не участвовали в СБ за 2010 г.

Сеть станций ГС РАН и ГС СО РАН на территории России, участвовавших в оперативной обработке, увеличилась со 138 в 2009 г. [5] до 169 в 2010 г. [4]. В 2010 г. в Краснодарском крае открыта станция «Красная Поляна» (RPOR), в Северной Осетии аппаратура со станции «Сунжа» перенесена в пос. Комгарон [7].


В Оперативную службу в 2010 г. начали поступать данные станций «Арик» (KRX), «Еремизино-Борисовская» (ERBR), «Кизимен» (KZV) и «Корякский ретранслятор» (KRER), открытых в 2009 г., станций «Возрождение» (VOZR), «Лабинск» (LABN), «Мутновский» (MTVR) и «Мыс Шульца» (MSHR), открытых в 2008 г., а также станций, перенесенных на другое место в 2008–2009 гг. – «Ардон» (ARNR), «Воронеж» (VORR), «Грозный» (GROC), «Калининград»

(KLNR) и «Пятигорск» (РҮА1). Следует отметить большое число (17) станций Камчатского филиала ГС РАН, подключившихся в 2010 г. к работе в Оперативной службе.

Описанная сеть станций обеспечила в 2010 г. уровень представительной магнитуды для всей Земли с M_{\min} =5.0, как это следует из графика повторяемости для 3855 землетрясений с $h \le 70 \ \kappa M$ (рис. 2). Уравнение графика имеет вид:

$$\lg N = (7.3819 - 0.8674) \cdot MS^*$$
. (1)

Для его построения использованы наблюденные магнитуды землетрясений MS ($N_{\rm MS}$ =987) из [6] и пересчитанные магнитуды MS^* ($N_{\rm MS*}$ =2868) из [8] по формуле из [9]:

Рис. 2. График повторяемости землетрясений Земли с $h \le 70 \ км$ за 2010 г.

$$MS^*=1.59 \cdot MPSP-3.67, h \le 70 \text{ км}.$$
 (2)

Выходные потоки информации Оперативной службы ГС РАН включали ежедекадные оперативные бюллетени ГС РАН [6] и сейсмологические каталоги [10]. Их рассылка осуществлялась в основном по электронной почте в заинтересованные государственные учреждения и региональные сейсмологические центры России, сейсмологические центры СНГ, а также в международные сейсмологические центры: МЦД (Международный центр данных, г. Москва, Россия), ISC (Международный сейсмологический центр, г. Татчам, Великобритания) и NEIC (Национальный сейсмический информационный центр, г. Денвер, США). Сейсмологические каталоги и бюллетени регулярно помещались на Web-страницу ГС РАН [11].

Методика определения основных параметров землетрясений, по сравнению с таковой в [1], не изменилась. Координаты гипоцентра (ϕ, λ, h) и время t_0 возникновения землетрясения определялись по программе ЭПИ-74 [12] с использованием телесейсмических [13, 14] и региональных [16, 17] годографов на основании данных о временах прихода продольных P(PKIKP)-волн на сейсмические станции. Максимум поверхностных волн LRM выделялся в соответствии с годографами [18, 19], определение магнитуд MS и MPSP производилось по максимальной скорости смещения $(A/T)_{\text{max}}$ в поверхностных и объемных волнах и соответствующим калибровочным кривым [20-24].

Итоговый сейсмологический каталог за 2010 г. [8] включает параметры 4840 землетрясений c *MPSP*=3.6–7.2.

Распределение землетрясений Земли с M (MS, MPLP, MPSP)≥6.0 в зависимости от магнитуды, но без дифференциации их по глубинам очагов, приведено в табл. 1 в сопоставлении с аналогичными данными за предыдущие 18 лет [1]. Как видим, в 2010 г. число землетрясений в интервале M=6.0-6.9 составило N=174, что выше среднего $N=156.2\pm27$ за 18 лет, в диапазоне M=7.0–7.9 оно равно N=22 и значительно выше среднего значения N=14.8 \pm 4.

Год		$N\left(\Delta M\right)$		N_{Σ}	Год		$N(\Delta M)$		N_{Σ}
	6.0 - 6.9	7.0 - 7.9	8.0-8.9			6.0 - 6.9	7.0 - 7.9	8.0-8.9	
1992	117	13		130	2004	153	14	3	170
1993	97	7		104	2005	190	13	1	204
1994	136	14	1	151	2006	154	15	2	171
1995	242	28		270	2007	185	20	3	208
1996	217	15		232	2008	174	14	1	189
1997	151	5		156	2009	152	18	1	171
1998	113	12		125	Сумма	2812	267	15	3094
1999	159	21		180	за 18 лет				
2000	169	17		186	-	156.2	14.8	1.7	171.9
2001	126	16	1	143	Среднее	130.2	14.0	1./	1/1.9
2002	139	11		150	за 18 лет				
2003	138	14	2	154	2010	174	22	1	197

Таблица 1. Распределение числа землетрясений Земли в различных интервалах магнитуд с *M*≥6.0 за 1992–2010 гг.

Распределение числа землетрясений Земли по интервалам глубин, магнитуд и суммарная сейсмическая энергия в 2010 г. даны в табл. 2. При ее составлении использованы наблюденные магнитуды землетрясений MS по поверхностным волнам для тех землетрясений, для которых удалось их измерить, а для остальных выполнен пересчет магнитуд MPSP по объемным волнам в магнитуды (MS^*) по поверхностным волнам. Расчетная магнитуда MS^* найдена по формуле (2) для землетрясений с $h \le 70 \, \kappa M$, по формулам (3) и (4) из [9] — для промежуточных и глубокофокусных землетрясений соответственно:

154

2003

138

$$MS*=1.77 MPSP - 5.2, h=71-390 \kappa M,$$
 (3)

$$MS*=1.85 MPSP - 4.9, h>390 \kappa M.$$
 (4)

Сейсмическая энергия рассчитывалась из $MS(MS^*)$ по формуле К. Касахара [25]:

$$\lg E, \mathcal{I}_{\mathcal{H}} = 4.8 + 1.5 M.$$
 (5)

_										
	h,			N_{Σ}	ΣE ,					
	км	≤2.5	2.6-3.5	3.6-4.5	4.6-5.5	5.6-6.5	6.6-7.5	7.6–8.5		10 ¹⁵ Дж
_	≤70	72	1145	1497	960	145	34	2	3855	481.2
	71–390	330	252	155	45	29	4		815	9.1
_	>390	17	34	89	16	8	4	2	170	45.4
	N_{Σ}	419	1431	1741	1021	182	42	4	4840	535.7

Таблица 2. Распределение суммарного числа землетрясений N_{Σ} и суммарной сейсмической энергии ΣE Земли по интервалам глубин и магнитуд в 2010 г.

Согласно табл. 2, общее количество выделившейся в 2010 г. энергии равно ΣE =5.357·10¹⁷ Дж, что больше таковой как в 2009 г. (ΣE =3.217·10¹⁷ Дж [1]), так и в 2008 г. (ΣE =2.225·10¹⁷ Дж [26]).

Распределение суммарной сейсмической энергии, выделившейся в 2010 г. при землетрясениях с M (MS, MPLP, MPSP) \geq 6.0 в различных сейсмических поясах, приведено в табл. 3, из которой следует, что более 91 % всей сейсмической энергии высвобождено в очагах землетрясений Тихоокеанского сейсмического пояса, более 7 % — Индийского.

No	Сейсмический пояс	Число земле	трясений с М	ΣE ,	%
		6.0-6.9	≥7.0	10 ¹⁵ Дж	
I	Тихоокеанский	143	18	484.7	91.263
II	Трансазиатский	9		2.7	0.508
III	Атлантический	6	1	3.2	0.602
IV	Индийский	16	4	40.5	7.625
	Сумма	174	23	531.1	99 999

Таблица 3. Распределение числа землетрясений с M≥6.0 и их суммарной сейсмической энергии ΣE по сейсмическим поясам в 2010 г.

На рис. 3 показано распределение сейсмической энергии землетрясений за 1992-2010 гг. по данным [27], рассчитанной единообразно из MS (MS*) по формуле (5) из [25]. Как видно, уровень выделившейся в 2010 г. сейсмической энергии — один из самых высоких за последние 18 лет.

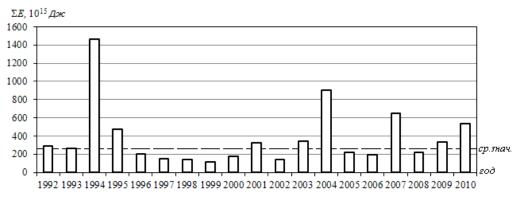
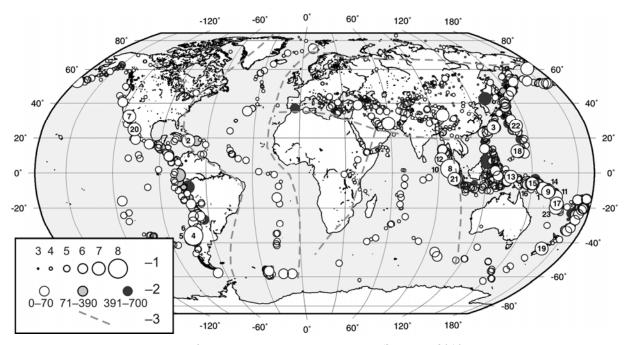



Рис. 3. Годовые значения сейсмической энергии землетрясений Земли в 1992–2010 гг.

На рис. 4 представлено географическое распределение землетрясений Земли. На карте показаны границы основных сейсмических поясов по [28] — Тихоокеанского (I), Трансазиатского (II), Атлантического (III), Индийского (IV), и Африканского грабена (V).

Далее дано описание распределения землетрясений в пределах границ сейсмических поясов в $2010 \, \Gamma$, приведен список наиболее сильных землетрясений (табл. 4) и таблица их механизмов (табл. 5), а затем дано описание сильнейших ($M \ge 7$) землетрясений.

Рис. 4. Карта эпицентров землетрясений Земли за 2010 г.:

1 – магнитуда MS/MS^* ; 2 – глубина h гипоцентра, κM ; 3 – граница сейсмического пояса.

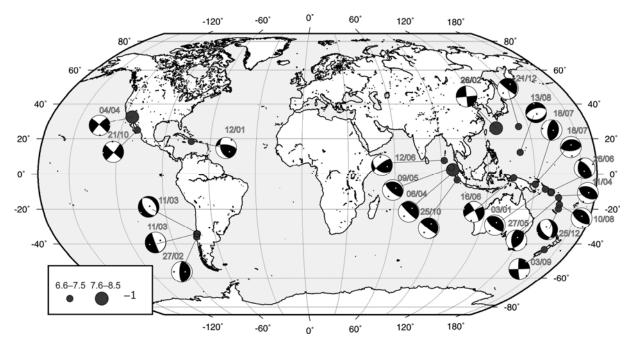
Таблица 4. Список сильных землетрясений мира с M≥7.0 в 2010 г.

No	Дата,	t_0 ,	Эпи	центр	h,	M_0 ,			итуды		Сейс-	Географический
	дм	ч мин с	φ°	λ°	км	Н∙м	Mw	MS/	MPLP/	MPSP/	мичес-	регион [29]
								n	n	n	кий	
											пояс	
1	2	3	4	5	6	7	8	9	10	11	12	13
1	03.01	22 36 28	-8.755	157.360	33f	$2.9 \cdot 10^{19}$	6.9	7.1/77	7.1/4	6.5/53	I	Соломоновы острова
							TLY					
2*	12.01	21 53 07	18.433	-72.554	10f	$5.0 \cdot 10^{19}$	7.1	7.1/77	7.0/12	6.9/119	III	Район Гаити
							OBN					
3*	26.02	20 31 25	26.001	128.490	31	$5.1 \cdot 10^{19}$	7.1	7.2/73	7.2/15	6.8/160	I	Острова Рюкю, Япония
							OBN					
4*	27.02	06 34 12	-35.993	-72.915	33f			8.5/60		7.1/37	I	Побережье
												Центрального Чили
5	11.03	14 39 46	-34.231	-72.257	33f			7.0/61	7.3/4	6.8/74	I	Побережье
												Центрального Чили
6	11.03	14 55 27	-34.388	-71.720	33f			7.1/9	7.1/5	6.6/79	I	Побережье
												Центрального Чили
7	04.04	22 40 44	32.478	-115.180	10f	$1.5 \cdot 10^{19}$	6.8	7.3/77	6.6/10	6.5/74	I	Калифорния –
							OBN					Нижняя Калифорния,
												пограничная область
8*	06.04	22 15 00	2.425	97.174	33f	$1.0 \cdot 10^{20}$	7.3	7.7/61	7.6/18	7.0/72	IV	Северная Суматра,
							OBN					Индонезия
9	11.04	$09\ 40\ 26$	-10.806	161.071				6.9/87	7.1/11	6.8/80	I	Соломоновы острова
10*	09.05	05 59 41	3.831	96.094	45	$7.3 \cdot 10^{19}$	7.2	7.2/119	7.2/11	6.9/135	IV	Северная Суматра,
							OBN					Индонезия
11*	27.05	17 14 46	-13.506	166.537	33f	$8.6 \cdot 10^{19}$	7.2	7.0/81	7.3/7	6.6/63	I	Острова Вануату
							TLY					
12*	12.06	19 26 48	7.884	91.918	33f	$1.0 \cdot 10^{20}$	7.3	7.4/65	7.4/13	6.7/50	IV	Район Никобарских
							OBN					островов, Индия
13	16.06	03 16 28	-2.216	136.484	33f	$2.1 \cdot 10^{19}$	6.8	7.0/103	7.1/6	6.6/71	I	Район Западного
							ТLҮ Ириа		Ириана, Индонезия			
14*	26.06	05 30 19	-10.382	161.426	40	$1.6 \cdot 10^{19}$	6.8 7.0/38 6.5/10 6.2/57 I		I	Соломоновы острова		
							TLY					

	1					1	T					
$N_{\underline{0}}$	Дата,	t_0 ,	Эпи	центр	h,	M_0 ,		Магн	нитуды		Сейс-	Географический
	дм	ч мин с	φ°	λ°	км	Н∙м	Mw		MPLP/	MPSP/	мичес-	регион [29]
								n	n	n	кий	
											пояс	
1	2	3	4	5	6	7	8	9	10	11	12	13
15*	18.07	13 04 10	-5.921	150.478	38	$3.5 \cdot 10^{19}$	7.0	7.1/75	6.8/5	6.4/74	I	Район Новой Британии,
							TLY					Папуа–Новая Гвинея
16	18.07	13 34 59	-5.961	150.571	52			7.3/65		6.2/70	I	Район Новой Британии,
												Папуа–Новая Гвинея
17*	10.08	05 23 45	-17.410	167.953	33f	$1.1 \cdot 10^{20}$	7.3	7.3/79	7.4/10	6.7/65	I	Острова Вануату
							TLY					
18	13.08	21 19 34	12.518	141.500	31	$3.6 \cdot 10^{19}$	7.0	7.0/118	6.9/16	6.6/85	I	Южнее Марианских
							OBN					островов
19	03.09	16 35 46	-43.220	171.340	7			7.2/79	6.9/7	6.4/20	I	Южный остров, Новая
												Зеландия
20	21.10	17 53 12	24.851	-109.128	11			7.0/59	6.4/10	6.2/68	I	Калифорнийский
						•						залив
21*	25.10	14 42 21	-3.404	100.109	26	$1.0 \cdot 10^{20}$		7.2/70	6.8/9	6.4/49	IV	Южная Суматра,
							TLY					Индонезия
22*	21.12	17 19 38	26.861	143.727	11	$1.6 \cdot 10^{20}$		7.5/123	7.5/10	7.2/94	I	Район островов Бонин,
							OBN					Р В В В В В В В В В В
23	25.12	13 16 36	-19.823	167.941	19			7.3/99	7.4/11	6.6/61	I	Район островов
												Вануату

Примечание. В графе 1 знак «*» указывает на наличие в [30] параметров механизма очага по первым вступлениям P-волн; в графе 6 буквой «f» индексирована фиксированная глубина; в графе 8 второй строкой показан код станции, по которой рассчитана Mw в агентстве MOS.

Из 23 сильнейших землетрясений Земли с M (MS, MPLP, MPSP)≥7.0, список которых приведен в табл. 4, 18 землетрясений (№ 1, 3–7, 9, 11, 13–20, 22, 23) локализованы в Тихоокеанском сейсмическом поясе, четыре (8, 10, 12, 21) — в Индийском и одно (2) — в Атлантическом поясе.


В табл. 5 и на рис. 5 представлены решения механизмов очагов всех землетрясений. Для 12 землетрясений (2–4, 8, 10–12, 14–15, 17, 21–23), они получены в ГС РАН [30] по знакам первых вступлений продольных P-волн по программе А.В. Ландера [31], а для остальных — по методу тензора момента центроида (ТМЦ) по данным Колумбийского университета США (код GCMT) [32].

I AMBILLA S I I 2	manachi i navaiiianaan ai	ΙΩΓΛΌ ΛΙΙΠΙΙΙΙΝ ΌΔΜΠΩΤΙ	ageannia Mina a 71111 c
I UUJUUUU J. 110	праметры механизмов оч	тагов сильных эсилст	зяссний мина в 2010 г
	panie i pai menaninomea e i	Test of Children Services	571 0 0 1111111 171111 p u 2 2 0 1 0 1 1

No	Дата,	t_0 ,	h,	Магнитуда С				Oc	Оси главных напряжений					Н	Агент-					
	д м	ч мин с	км	Mw	MS	MPLP	<i>MPSP</i>		T		N		P		NP	!		NP2	?	ство
								PL	AZM	PL	AZM	PL	AZM	STK	DΡ	SLIP	STK	DΡ	SLIP	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1	03.01	22 36 28	33f	6.9	7.1	7.1	6.5	65	31	4	130	24	222	321	21	102	129	69	86	GCMT
2	12.01	21 53 07	10f	7.1	7.1	7.0	6.9	52	138	36	297	10	34	160	47	144	276	65	49	MOS
3	26.02	20 31 25	31	7.1	7.2	7.2	6.8	0	309	90	0	0	39	84	90	0	354	90	180	MOS
4	27.02	06 34 12	33f		8.5		7.1	64	90	0	360	26	270	0	19	90	180	71	90	MOS
5	11.03	14 39 46	33f		7.0	7.3	6.8	10	234	0	324	80	54	324	35	-90	144	55	-90	GCMT
6	11.03	14 55 27	33f		7.1	7.1	6.6	41	252	3	159	49	65	16	6	-53	159	86	-93	GCMT
7	04.04	22 40 44	10f	6.8	7.3	6.6	6.5	3	88	84	329	6	178	223	84	-2	313	88	-174	GCMT
8	06.04	22 15 00	33f	7.3	7.7	7.6	7.0	51	44	1	135	39	226	325	7	100	135	84	89	MOS
9	11.04	09 40 26	33f		6.9	7.1	6.8	83	77	5	297	4	207	291	41	82	122	50	97	GCMT
10	09.05	05 59 41	45	7.2	7.2	7.2	6.9	63	57	9	309	25	214	284	21	63	132	71	100	MOS
11	27.05	17 14 46	33f	7.2	7.0	7.3	6.6	66	22	24	202	0	112	180	50	58	44	50	122	MOS
12	12.06	19 26 48	33f	7.3	7.4	7.4	6.7	47	103	36	243	20	349	123	40	156	232	75	52	MOS
13	16.06	03 16 28	33f	6.8	7.0	7.1	6.6	1	286	78	22	12	196	332	80	-172	241	82	-10	GCMT
14	26.06	05 30 19	40	6.8	7.0	6.5	6.2	68	186	18	329	12	63	175	36	121	318	60	69	MOS
15	18.07	13 04 10	38	7.0	7.1	6.8	6.4	77	103	1	8	13	278	6	32	88	189	58	91	MOS

No	Дата,	t_0 ,	h,		Магнитуда (Оси главных напряжений						і Нодальные плоскости					
	д м	ч мин с	$\kappa_{\mathcal{M}}$	Mw	MS	MPLP	<i>MPSP</i>	\overline{T}			N		P		NP	!		NP	2	ство	
								PL	AZM	PL	AZM	PL	AZM	STK	DΡ	SLIP	STK	DΡ	SLIP		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
16	18.07	13 34 59	52		7.3		6.2	74	9	4	264	15	173	257	30	82	87	61	95	GCMT	
17	10.08	05 23 45	33f	7.3	7.3	7.4	6.7	74	3	9	129	13	221	323	33	107	123	58	79	MOS	
18	13.08	21 19 34	31	7.0	7.0	6.9	6.6	11	346	3	255	78	149	80	34	-84	253	56	-94	GCMT	
19	03.09	16 35 46	7		7.2	6.9	6.4	7	43	82	259	5	134	178	82	1	88	89	172	GCMT	
20	21.10	17 53 12	11		7.0	6.4	6.2	3	265	85	142	4	356	41	85	-1	131	89	-175	GCMT	
21	25.10	14 42 21	26	7.3	7.2	6.8	6.4	50	27	9	129	38	226	4	11	146	128	84	81	MOS	
22	21.12	17 19 38	11	7.4	7.5	7.5	7.2	9	47	47	146	41	309	97	55	-154	351	69	-38	MOS	
23	25.12	13 16 36	19		7.3	7.4	6.6	1	251	21	160	69	342	1	48	-61	141	49	-118	GCMT	

Примечание. Параметры землетрясений в графах 2–4, 6–8 соответствуют таковым в каталоге [30]; в графе 5 значения *Мw* приведены по данным MOS; в графе 21 указаны агентства (GCMT и MOS), по данным которых приведены решения механизма очагов.

Рис. 5. Стереограммы механизмов очагов сильных землетрясений за 2010 г. в проекции нижней полусферы.

1 – магнитуда MS/MS^* ; 2 – граница сейсмического пояса.

Сильнейшее (MS=8.5) землетрясение планеты (4) возникло 27 февраля в $06^{\rm h}34^{\rm m}$ близ побережья Центрального Чили.

Ниже приводится описание решений механизмов очагов 23 землетрясений из табл. 4 по сейсмическим поясам I, III и IV. Все очаги расположены в пределах земной коры.

В пределах Тихоокеанского пояса (I) произошла большая часть сильных землетрясений 2010 г., в том числе упомянутое выше сильнейшее (MS=8.5) землетрясение планеты 27 февраля в $06^{\rm h}34^{\rm m}$ (4) близ побережья Центрального Чили. Там же 11 марта реализовались землетрясения (5) и (6): в $14^{\rm h}39^{\rm m}$ с MS=7.0, в $14^{\rm h}55^{\rm m}$ с MS=7.1.

Очаг катастрофического землетрясения века находился близ побережья Центрального Чили, на глубине 33 км, в 86 км к север—северо-востоку от Консепсьона и в 355 км к юг-юго-западу от Сантьяго, столицы Чили. За землетрясением последовала серия цунами. Волны обрушились на 11 чилийских городов. Это землетрясение привело к человеческим жертвам и разрушениям. В большей степени пострадали регионы Био-Био и Мауле, где погибли 540 и 64 человека соответственно. В области Либертадор-Хенераль-Бернардо-О'Хиггинс жертвами стихии стали 46, а в столичной области — 36 человек. Землетрясение вызвало цунами, которое обрушилось

на 11 островов и побережье Мауле, однако число жертв, вызванных цунами, было минимально: большинство жителей побережья успели убежать в горы [33].

На о. Робинзон Крузо из архипелага Хуан-Фернандес трехметровая волна унесла жизни как минимум пяти человек. В Новой Зеландии максимальная высота волн составила $2\, \mathit{m}$. Гавайи атаковали волны высотой $2.3\, \mathit{m}$. В США самые высокие (>1 m) волны были зарегистрированы в районе Санта-Барбары, штат Калифорния. Волна на побережье о. Хонсю достигла $1.45\, \mathit{m}$. По информации Сахалинского центра цунами, специальный датчик, установленный на о. Парамушир, отметил вторичный подъем волны >2 m . Город Северо-Курильск на этом острове построен на высоте $17\, \mathit{m}$ над уровнем моря, поэтому никто не пострадал. На о. Шикотан высота остаточной волны-цунами составила $68\, \mathit{cm}$, на о. Итуруп она не превышала $10-15\, \mathit{cm}$. Как сообщил Камчатский центр предупреждения о цунами, максимальная высота приливной волны на юге Камчатки достигала $60-70\, \mathit{cm}$.

В [34] приведено распределение интенсивности сотрясений в баллах MSK-64 для области сейсмогенных разрушений в Чили, при землетрясении 2010 г. в Мауле. Обследованы одноквартирные дома в 111 городах. Более всего пострадали строения, расположенные вблизи северной оконечности зоны вспарывания, в большей степени – глиняные и неармированные дома. Длина зоны вспарывания – более 450 км, но только в одном пункте были отмечены сотрясения интенсивностью I=9 баллов. Около 21 % обследованной территории разрушений относят к 7-балльной интенсивности. Затухание интенсивности определяется расстоянием скорее до главной шероховатости, чем до гипоцентра. Это связывают с основными характеристиками меганадвиговых землетрясений, что следует учитывать при анализе сейсмического риска. В [35] изучены характеристики поля поглощения поперечных волн в районе очага землетрясения, которые рассматриваются в сопоставлении с сейсмичностью и вулканизмом региона. Использовался метод, основанный на анализе отношения амплитул поперечных и продольных волн. Установлено, что в районе исследований, как и в других зонах субдукции, перед землетрясением сформировались две кольцевые структуры сейсмичности: мелкое кольцо на глубинах 0-33 км и глубокое на глубинах 34-70 км. Эпицентр главного события находился в области наибольшего сближения кольцевых структур. Мелкому кольцу соответствует пониженное поглощение поперечных волн, глубокому – высокое, вулканической области – промежуточное. Обсуждается природа кольцевых структур и их связь с миграцией глубинных флюидов.

При землетрясении 27 февраля с MS=8.5 (4) движение произошло под действием превалирования напряжений сжатия ($PL=26^{\circ}$), ориентированных на запад ($AZM=270^{\circ}$). Напряжения растяжения ($PL=64^{\circ}$) направлены на восток ($AZM=90^{\circ}$). По крутопадающей ($DP_2=71^{\circ}$) плоскости NP2 меридионального ($STK_2=180^{\circ}$) простирания тип движения — взброс, по пологой ($DP_2=19^{\circ}$) меридиональной ($STK_1=0^{\circ}$) плоскости NPI — надвиг.

Землетрясение (5) возникло 11 марта в $14^{\rm h}$ $39^{\rm m}$ под действием преобладания напряжений растяжения ($PL_{\rm T}$ = $10^{\rm o}$), ориентированных на юго-запад (AZM= $234^{\rm o}$). Плоскость NPI простирается в северо-западном (STK_1 = $324^{\rm o}$) направлении, NP2 — в юго-восточном (STK_2 = $144^{\rm o}$), тип движения по обеим плоскостям — сброс. При землетрясении (6), произошедшем 11 марта в $14^{\rm h}55^{\rm m}$, движение возникло под действием близких по величине напряжений сжимающих ($PL_{\rm P}$ = $49^{\rm o}$) северо-восточной ориентации и растягивающих ($PL_{\rm T}$ = $40^{\rm o}$), ориентированных на запад—юго-запад. Близгоризонтальная (DP_1 = $6^{\rm o}$) плоскость NPI простирается в север—северо-восточном (STK_1 = $16^{\rm o}$) направлении, близвертикальная (DP_2 = $86^{\rm o}$) плоскость NP2 — в юг—юго-восточном (STK_2 = $159^{\rm o}$) направлении. Тип движения по близвертикальной плоскости NP2 — сброс с компонентами правостороннего сдвига, по близгоризонтальной плоскости NPI — поддвиг с элементами левостороннего сдвига.

Землетрясения (1, 9, 14) произошли в районе Соломоновых островов: 3 января в $22^{\rm h}36^{\rm m}$ с MS=7.1; 11 апреля в $09^{\rm h}40^{\rm m}$ с MS=6.9; 26 июня в $05^{\rm h}30^{\rm m}$ с MS=7.0. Механизмы их очагов подобны. Землетрясения произошли под действием превалирования напряжений сжатия (табл. 5). Простирание обеих нодальных плоскостей NP2 в очагах (1) и (9) – юго-восточное (STK_2 =129° и 122°), плоскостей NP1 — северо-западное (STK_1 =321° и 291°). В случае (1) по пологой (DP_1 =21°) плоскости NP1 северо-западного простирания отмечается надвиг; в случае (9) обе плоскости залегают под близкими углами (DP_1 =41°, DP_2 =50°), тип движения по ним — взброс с компонентами сдвига. В случае (14) обе плоскости также залегают под близкими углами (DP=36° и 60°), тип движения по ним — взброс с компонентами сдвига (правостороннего

по NP1, левостороннего – по NP2). Плоскость NP1 имеет близмеридиональное (STK_1 =175°) простирание, NP2 – северо-западное (STK_2 =318°).

Землетрясения (3) и (22) произошли в Японии 26 февраля в $20^{\rm h}31^{\rm m}$ с MS=7.2 в районе островов Рюкю и 21 декабря в $17^{\rm h}19^{\rm m}$ с MS=7.5 – в районе островов Бонин. Землетрясение (3) произошло под действием горизонтальных напряжений сжатия и растяжения ($PL_{\rm P}$ = $PL_{\rm T}$ =0°), ориентированных на северо-восток (39°) и северо-запад (309°) соответственно. В (3) обе плоскости вертикальные (DP_1 = DP_2 =90°). Плоскость NPI – близширотна (STK_1 =84°), NP2 – близмеридиональна (STK_2 =354°); тип движения по обеим плоскостям – сдвиг (правосторонний – по NP1, левосторонний – по NP2). Землетрясение (22) произошло под действием превалирования напряжений растяжения ($PL_{\rm T}$ =9°), ориентированных на северо-восток (AZM=47°). Ось сжатия наклонена к горизонту под углом $PL_{\rm P}$ =41° и ориентирована в северо-западном (AZM=309°) направлении. Плоскость NP1 – более пологая (DP_1 =55°), ее простирание – близширотное (STK_1 =97°), тип движения – правосторонний сдвиг с компонентами сброса. Вторая плоскость NP2 залегает более круто (DP_2 =69°), ее простирание – близмеридиональное (STK_2 =351°), тип движения – сброс с компонентой левостороннего сдвига.

Землетрясения (7) и (20) произошли в районе Калифорнийского залива: (7) – 4 апреля в $22^{h}40^{m}$ с MS=7.3; (20) — 21 октября в $17^{h}53^{m}$ с MS=7.0. Механизмы очагов подобны. Движение в очаге произошло под действием близгоризонтальных и близких по величине как сжимающих. так и растягивающих напряжений (табл. 5). В случае (7) сжимающие напряжения ориентированы на юг ($AZM=178^{\circ}$), в (20) – на север ($AZM=356^{\circ}$). Плоскости в обоих очагах залегают близвертикально. В случае (7) по плоскости NP2 северо-западного ($STK_2=313^\circ$) простирания отмечается правосторонний сдвиг, по NPI юго-западного (STK_1 =223°) простирания – левосторонний сдвиг. В [36] изучен механизм очага Северо-Мексиканского землетрясения 4 апреля 2010 г. Высокоскоростные записи GPS в ближней зоне сопоставлены с широкополосными сейс- мограммами. Записи GPS соответствуют дважды интегрированным записям сильных колебаний в ближней зоне, а широкополосные в этой зоне обрезаны из-за сильных колебаний. Соответствие исчезает на расстояниях более 150 км от эпицентра, где амплитуды приближаются к уровню этим методом механизм очага GPS-сейсмограмм. Полученный с определениями по телесейсмическим данным.

При землетрясении (13), зарегистрированном 16 июня в 03^h16^m с MS=7.0 в районе Западного Ириана (Индонезия), движение в очаге возникло под действием как напряжений сжатия ($PL_P=12^o$), так и растяжения ($PL_T=10^o$), ориентированных на юг и на запад соответственно. Тип движения по обеим плоскостям – сдвиги с компонентами сброса.

Землетрясения (15) (18 июля в $13^{h}04^{m}$ с MS=7.1) и (16) (18 июля в $13^{h}34^{m}$ с MS=7.3) произошли в районе островов Новая Британия под действием напряжений сжатия (PL_{P} =13° и 15°), в случае (15) — ориентированных на запад (AZM=278°), в (16) — на юг (AZM=173°). В (15) обе плоскости наклонены к горизонту под углами (DP_{1} =32°, DP_{2} =58°) и имеют близмеридиональное простирание (STK_{1} =6°, STK_{2} =188°), тип движения по обеим плоскостям — взброс. Для землетрясения (16) обе плоскости имеют близширотное простирание (STK_{1} =257°, STK_{2} =87°), тип движения по более крутой плоскости — взброс, по пологой — надвиг.

Землетрясения (11, 17, 23) имели место в районе островов Вануату 27 мая в $17^{\rm h}14^{\rm m}$ с MS=7.0, 10 августа в $05^{\rm h}23^{\rm m}$ с MS=7.3 и 25 декабря в $13^{\rm h}16^{\rm m}$ с MS=7.3. Механизмы очагов землетрясений (11) и (17) близки. Землетрясения возникли под действием напряжений сжатия (PL=1°, 13°), ориентированных на северо-запад (AZM=292) и юго-запад (AZM=221°). Плоскость NP1 в (11) меридиональна (STK_1 =180°), в (17) – простирается на северо-запад (STK_1 =323°), она наклонена к горизонту под углами 50° и 33° соответственно. Плоскости NP2 имеют простирание северо-восточное (44°) и юго-восточное (123°) и наклонены к горизонту под углами 50° и 58° соответственно. Тип движения по обеим плоскостям — взбросы с компонентами сдвига. Землетрясение (23) возникло под действием горизонтальных (PL_=1°) напряжений растяжения, ориентированных на запад—юго-запад (AZM=251°). Обе нодальные его плоскости имеют почти одинаковые углы наклона к горизонту (DP_1 =48°, DP_2 =49°), плоскость NP1 — меридиональна (STK_1 =1°), NP2 — простирается на юго-восток (STK_2 =141°). Тип движения по обеим плоскостям — сбросы с компонентами сдвига, левостороннего — по NP1, правостороннего — по NP2.

Землетрясение (18) 13 августа в $21^{\rm h}19^{\rm m}$ с MS=7.0 произошло южнее Марианских островов под действием напряжений растяжения ($PL_{\rm T}$ =11°), ориентированных на север–северо-запад

 $(AZM=346^{\circ})$. Обе плоскости имеют близширотное простирание $(80^{\circ}$ и $253^{\circ})$, тип движения по ним – сброс с компонентами правостороннего сдвига по более крутой $(DP_2=56^{\circ})$ плоскости NP2 – и левостороннего – по плоскости NP1 более пологого $(DP_1=34^{\circ})$ залегания.

Землетрясение (19) 3 сентября в $16^{\rm h}35^{\rm m}$ с MS=7.2 произошло в районе Новой Зеландии под действием близгоризонтальных сжимающих ($PL_{\rm P}$ =5°) и растягивающих ($PL_{\rm T}$ =6°) напряжений, ориентированных на юго-восток и северо-восток соответственно. Обе нодальные его плоскости – крутые (табл. 5). Тип движения по ним – левосторонний сдвиг по меридиональной (STK_1 =178°) плоскости NP1 и правосторонний сдвиг – по широтной (STK_2 =88°) плоскости NP2.

В Атлантическом сейсмическом поясе (III) произошло разрушительное землетрясение (2) в районе о. Гаити 12 января в $21^{\rm h}53^{\rm m}$ с MS=7.1, повлекшее многочисленные жертвы и разрушения [33]. Движение в его очаге произошло под действием близгоризонтальных напряжений сжатия ($PL_{\rm P}$ =10°), ориентированных на северо-восток. Плоскости залегают достаточно круто ($DP_{\rm I}$ =47° и $DP_{\rm 2}$ =65°). Тип движения по плоскости NP2 близширотного ($STK_{\rm 2}$ =276°) простирания — взброс с компонентами левостороннего сдвига, по плоскости NP1 юг-юговосточного ($STK_{\rm I}$ =160°) простирания — правосторонний сдвиг (с компонентами взброса).

В Индийском сейсмическом поясе (IV) произошло четыре землетрясения (8, 10, 12, 21). Землетрясение (12) зарегистрировано 12 июня в $19^{\rm h}26^{\rm m}$ с MS=7.4 в районе Никобарских островов. Плоскости в очаге наклонены к горизонту под углами (DP_1 =40° и DP_2 =75°), движение в очаге произошло под действием превалирования напряжений сжатия (PL_P =20°), ориентированных на север–северо-запад (AZM=349°). Тип движения по плоскости NP2 юго-западного (STK_2 =232°) простирания представлен взбросом с компонентами левостороннего сдвига, по плоскости NP1 юго-восточного (STK_1 =123°) простирания — правосторонним сдвигом с компонентами взброса.

В районе о. Суматра (Индонезия) произошли три землетрясения: (8) – 6 апреля в $22^{\rm h}15^{\rm m}$ с MS=7.7; (10) – 9 мая в $05^{\rm h}59^{\rm m}$ с MS=7.2; (21) – 25 октября в $14^{\rm h}42^{\rm m}$ с MS=7.2. Механизмы их очагов подобны. Землетрясения (8,10) возникли под превалирующим действием напряжений сжатия (PL=39° и $25^{\rm o}$), ориентированных на юго-запад. Простирание плоскостей NP1 для землетрясений (8 и 10) – северо-западное $(STK_1$ =325° и $284^{\rm o}$), для NP2 – юго-восточное $(STK_2$ =135° и $132^{\rm o}$). Плоскости NP2 залегают круто (DP=84° и $71^{\rm o}$), NP1 – полого (DP=7° и $21^{\rm o}$), движение в очаге по крутопадающим плоскостям NP2 представлено взбросом, по пологим NP1 – надвигом с компонентами сдвига. Землетрясение (21) возникло под действием как напряжений сжатия $(PL_P$ =38°), так и растяжения $(PL_T$ =50°). Плоскость NP1 северного $(STK_1$ =4°) простирания залегает полого $(DP_1$ =11°), крутопадающая $(DP_2$ =84°) плоскость NP2 простирается на юго-восток $(STK_2$ =128°). По NP1 тип движения – сдвиг, по NP2 – взброс с компонентами левостороннего сдвига.

В заключение отметим, что в 2010 г. наблюдалась высокая сейсмическая активность в Чили. Всего в пределах Тихоокеанского сейсмического пояса произошло 18 землетрясений с магнитудой *MS*≥7, среди них катастрофическое цунамигенное с *MS*=8.5. Уровень выделившейся в 2010 г. сейсмической энергии – один из самых высоких за последние 18 лет (1992–2010 гг.). Это, несомненно, явилось результатом аномального проявления тектонической активности в Тихоокеанском регионе, где выделилось более 91% всей энергии 2010 г.

Литература

- 1. **Чепкунас Л.С., Болдырева Н.В., Пойгина С.Г.** Оперативная обработка землетрясений мира по телесейсмическим наблюдениям ГС РАН // Землетрясения Северной Евразии, 2009 г. Обнинск: ГС РАН, 2015. С. 244–256.
- 2. **Старовойт О.Е., Чепкунас Л.С., Коломиец М.В., Рыжикова М.И.** Служба срочных донесений ГС РАН. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 3. **Красилов С.А., Коломиец М.В., Акимов А.П.** Организация процесса обработки цифровых сейсмических данных с использованием программного комплекса WSG // Современные методы обработки и интерпретации сейсмологических данных. Материалы Международной сейсмологической школы, посвященной 100-летию открытия сейсмических станций «Пулково» и «Екатеринбург». Обнинск: ГС РАН, 2006. С. 77–83.

- 4. **Болдырева Н.В., Пойгина С.Г. (сост.).** Список сейсмических станций России и мира, использованных при создании Сейсмологического бюллетеня за 2010 г.
- 5. **Болдырева Н.В., Пойгина С.Г.** Список сейсмических станций России и мира (*N*=710), использованных при создании Сейсмологического бюллетеня за 2009 г. // Землетрясения Северной Евразии, 2009 год. Обнинск: ГС РАН, 2014. (На CD).
- 6. **Сейсмологический бюллетень (ежедекадный) за 2010 год** / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2010–2011. URL: *ftp://ftp.gsras.ru/pub/Teleseismic bulletin/2010*.
- 7. **Общие сведения о сейсмичности России.** Результаты сейсмического мониторинга различных регионов России // Землетрясения России в 2010 году. Обнинск: ГС РАН, 2012. С. 10–15.
- 8. **Болдырева Н.В. (отв. сост.), Аторина М.А., Бабкина В.Ф., Дуленцова Л.Г., Малянова Л.С., Рыжикова М.И., Щербакова А.И. (сост.).** Каталог землетрясений Земли за 2010 г. (См. Приложение к наст. сб. на CD).
- 9. **Кондорская Н.В., Горбунова И.В., Киреев И.А., Вандышева Н.В.** О составлении унифицированного каталога сильных землетрясений Северной Евразии по инструментальным данным (1901—1990 гг.) // Сейсмичность и сейсмическое районирование Северной Евразии. Вып. 1. М.: АН СССР, 1993. С. 70—79.
- 10. Оперативный сейсмологический каталог (ежедекадный) за 2010 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2010–2011. URL: ftp://ftp.gsras.ru/pub/Teleseismic Catalog/2010.
- 11. Геофизическая служба РАН [сайт]. URL: http://www.ceme.gsras.ru.
- 12. **Епифанский А.Г.** Определение параметров гипоцентров и магнитуд землетрясений в телесейсмической зоне (ЭПИ-74) // Алгоритмы и практика определения параметров гипоцентров землетрясений на ЭВМ. М.: Наука, 1983. С. 92–97.
- 13. **Рихтер Ч.** Элементарная сейсмология. М.: ИЛ, 1963. 670 с.
- 14. **Jeffreys H., Bullen K.E.** Seismological tables // Brit. Assoc. for the advancement of Sci. London: Gray-Milne Trust, 1958. 65 p.
- 15. **Bolt B.A.** Estimation of *PKP* travel times // Bull. Seism. Soc. Am. 1968. **58**. N 4. P. 1305–1324.
- 16. **Голенецкий С.И., Круглякова М.И., Перевалова Т.И.** Годографы сейсмических волн землетрясений Прибайкалья // Сейсмичность и глубинное строение Прибайкалья. Новосибирск: Наука (СО РАН), 1978. С. 30–38.
- 17. **Wadati K.** Travel time *P* and *S*-waves // Geophys. Mag. 1933. 11.
- 18. **Архангельская В.М.** Использование записей поверхностных волн при интерпретации сейсмограмм // Бюллетень Совета по сейсмологии. М.: АН СССР, 1957. № 6. С. 81–88.
- 19. **Горбунова И.В., Захарова А.И., Чепкунас Л.С.** Максимальная фаза поверхностной волны Релея по наблюдениям различной аппаратурой в ЦСО «Обнинск» // Магнитуда и энергетическая классификация землетрясений. Т. II. М.: ИФЗ АН СССР, 1974. С. 19–25.
- 20. **Gutenberg B., Richter C.** Earthquake magnitude, intensity, energy and acceleration // Bull. Seism. Soc. Am. 1942. **32**. N 3. P. 163–191.
- 21. **Gutenberg B., Richter C.** Earthquake magnitude, intensity, energy and acceleration // Bull. Seism. Soc. Am. 1956. **46**. N 2. P. 105–145.
- 22. Ванек И., Затопек А., Карник В., Кондорская Н.В., Ризниченко Ю.В., Саваренский Е.Ф., Соловьёв С.Л., Шебалин Н.В. Стандартизация шкал магнитуд // Известия АН СССР. Серия геофизическая. 1962. № 2. С. 153–158.
- 23. **Горбунова И.В., Шаторная Н.В.** О калибровочной кривой для определения магнитуды землетрясений по волнам PKIKP // Физика Земли. − 1976. № 7. С. 77–81.
- 24. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 273 с.
- 25. **Касахара К.** Механика землетрясений. М.: Мир. 1985. С. 25.
- 26. **Чепкунас Л.С., Болдырева Н.В., Пойгина С.Г.** Оперативная обработка землетрясений мира по телесейсмическим наблюдениям ГС РАН // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 273—283.
- 27. **Оперативный сейсмологический каталог (ежедекадный) за 1992–2009 гг.** / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ИФЗ РАН, 1992–2004; ГС РАН, 2005–2010.
- 28. Гутенберг Б., Рихтер Ч. Сейсмичность Земли. М.: ИЛ, 1948. 160 с.

- 29. **Young J.B., Presgrave B.W., Aichele H., Wiens D.A., Flinn E.A.** The Flinn-Engdahl Regionalisation Scheme: the 1995 revision // Physics of the Earthand Planetary Interiors. 1996. N 96. P. 223–297.
- 30. **Малянова Л.С. (отв. сост.).** Каталог механизмов очагов сильных землетрясений Земли в 2010 г. (См. Приложение к наст. сб. на CD).
- 31. **Ландер А.В.** Комплекс программ определения механизмов очагов землетрясений и их графического представления // Комплексные сейсмологические и геофизические исследования Камчатки и Командорских островов (01.01.–31.12.2003 г.) // Отчет КОМСП ГС РАН. Петропавловск-Камчатский: Фонды КОМСП ГС РАН, 2004. С. 359–380.
- 32. International Seismological Centre [сайт]. On-line Bulletin. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/. Thatcham, United Kingdom: ISC, 2013.
- 33. Старовойт О.Е., Чепкунас Л.С., Коломиец М.В. Хроника сейсмичности Земли. Сейсмичность в первом полугодии 2010 г. // Земля и Вселенная. 2011. № 6. С. 98–102.
- 34. **Astroza Maximiliano, Ruiz Sergio, Astroza Rodrigo.** Анализ разрушений и определение сейсмической интенсивности землетрясения 2010 г. в Мауле (Чили). Damage assessment and seismic intensity analysis of the 2010 (*Mw*=8.8) Maule earthquake / The Professional Journal of the Earthquake Engineering Research Institute. 2012. **28**. N 1. P. 145–164 // →РЖ «Физика Земли». 2013. № 6 (реф. 90).
- 35. **Копничев Ю.Ф., Соколова И.Н.** Неоднородности поля поглощения короткопериодных *S*-волн в районе очага землетрясения Мауле (Чили, 27.02.2010 г., Mw=8.8) и их связь с сейсмичностью и вулканизмом региона / Геофизические исследования − 2011. − **12**. − № 3. − C. 22–32 // →РЖ «Физика Земли». − 2012. − № 1 (реф. 77).
- 36. **Zheng Yong, Li Jun, Xie Zujun, Ritzwoller Michael H.** 5Hz GPS seismology of the El Mayor_sCucapah earthquake: estimating the earthquake focal mechanism / Geophys. J. Int. 2012. **190.** N 3. P. 1723–1732 / /→РЖ «Физика Земли». 2013. № 3 (реф. 127).