СЕВЕРО-ВОСТОК РОССИИ

Е.И. Алёшина, С.В. Курткин, Л.И. Карпенко, Б.М. Седов

Магаданский филиал ГС РАН, г. Магадан, evgeniya@memsd.ru

Сейсмический мониторинг территории Магаданской области, Чукотского автономного округа (ЧАО) и шельфов прилегающих морей (Охотского, Чукотского, Берингова и Восточно-Сибирского) в 2010 г. осуществлялся сетью из 13-ти постоянных и 9-ти временных цифровых сейсмических станций Магаданского филиала ГС РАН [1]. В Магаданской области действовали 17 станций, в ЧАО – четыре («Провидения», «Билибино», «Анадырь», «Нешкан») и в Хабаровском крае – одна («Охотск»). Для расчета параметров землетрясений, произошедших в приграничных с Республикой Саха (Якутией) районах, использовались также данные станций Якутского филиала ГС СО РАН [2].

Временные станции «Ольский перевал», «Орбита», и «Клёпка», установленные в декабре 2009 г. для записи афтершоков Ланкучанского землетрясения 26.12.2009 г. с *K*_P=13.0 [3], были сняты 23 января, 26 февраля и 2 марта 2010 г. соответственно в связи с прекращением сейсмической активности. Закрыты 24 июня и 16 августа временные станции «Тал-Юрях» и «Аркагала», установленные летом 2009 г. [4] для мониторинга сейсмической активности в районе Аркагалинской ГРЭС. После длительного перерыва (с 27.07.2007 г. по 18.06.2010 г.) возобновила работу станция «Магадан», в связи с этим на сопке «Портовая» закрыта 18 июня временная сейсмическая станция «Дракон». В ЧАО восстановлена работа станций «Нешкан» 17 ноября, «Анадырь» и «Провидения» 20 декабря. Станции «Провидения» присвоен новый международный код – PVD [1].

Сведения о станциях, типах и параметрах регистрирующей аппаратуры приведены в Приложении к наст. сб. [1] на CD. Положение сейсмических станций МФ ГС РАН и карта энергетической представительности землетрясений K_{\min} по наблюдениям действовавшей в 2010 г. сети показана на рис. 1.

Как следует из рис. 1, минимальный энергетический класс представительных землетрясений соответствует K_{\min} =6.0 в центре Колымы (район № 2). На всей территории Колымы не могут быть пропущены землетрясения с K_{\min} =8. Площади, ограниченные изолиниями K_{\min} всех энергетических классов (K_{\min} =7, 8, 9, 10) в 2010 г., по сравнению с таковыми в 2009 г. [4], практически не изменились. На территории ЧАО станциями «Билибино», «Нешкан» и «Провидения» (в районах № 4–6) могут регистрироваться землетрясения с $K_P \ge 9.0$. Станция «Анадырь» была установлена 20 декабря 2010 г., поэтому в построении изолиний K_{\min} не использовалась.

Данные как постоянных, так и временных станций использовались для определения параметров землетрясений, включенных в каталог [5]. Определение основных параметров землетрясений проводилось с помощью программы HYP2DT (версия 7.1), предоставленной К. Дж. Мяки (Мичиганский университет, Ист-Лансинг, США). Координаты эпицентров землетрясений рассчитывались с использованием времен пробега прямых и преломленных *P*- и *S*-волн [6].

В каталог землетрясений Северо-Востока и приграничных районов за 2010 г. [5] включены сведения о 342 событиях с K_P =3.0–13.6. Из них 31 землетрясение находятся за границами зоны ответственности сети МФ ГС РАН, на территории Республики Саха (Якутия). В дополнении [7] к каталогу [5] содержатся сведения еще о пяти землетрясениях на территории ЧАО с m_b =3.7–4.5 из [8]. Параметры двух из них заимствованы из бюллетеней MOS [9], трех – из ISC [8]. Для локации этих землетрясений данных сети сейсмических станций МФ ГС РАН оказалось недостаточно.

Рис. 1. Расположение сейсмических станций и карта энергетической представительности *K*_{min} землетрясений Северо-Востока России за 2010 г.

1 – изолиния K_{min} ; 2, 3 – сейсмическая станция, постоянная и временная соответственно; 4, 5 – граница района и региона соответственно; 6 – номер района; в левом верхнем углу показано расположение станций в группе «ArGRES», на нижней врезке – временные станции, установленные в эпицентральной зоне Ланкучанского землетрясения [3]; коды и названия станций: OKHR – «Охотск»; NMA2 – «Магадан1»; MA2=DRAK – «Дракон»; OLAR – «Ольский перевал»; ORBT – «Орбита»; KLEP – «Клёпка»; MGD – «Стекольный»; TLAR – «Талая»; OCHR – «Омчак»; SNGR – «Синегорье»; SUUS – «Сусуман»; [GRESL+GRESR+GRESU] – «АRGRES»; SS60 – «Аргакала»; SS62 – «Тал-Юрях»; SNGR – «Синегорье»; SEY – «Сеймчан»; OMS – «Омсукчан»; EVEN – «Эвенск»; BILL – «Билибино»; ANDR – «Анадырь»; PVD – «Провидения»; NSH – «Нешкан».

Наиболее сильным (K_P =13.6) в регионе в 2010 г. является землетрясение (6) с моментной магнитудой Mw_{GCMT} =5.3 [8], произошедшее 2 августа в 14^h17^m. Минимальное значение энергетического класса в каталоге [5] соответствует K_P =3.0 и характеризует событие 22 декабря в 00^h18^m на Чукотке в районе Колючинской губы, вблизи пос. Нешкан.

По девяти событиям получены макросейсмические сведения [10]. Максимальный макросейсмический эффект наблюдался при сильнейшем землетрясении, произошедшем 2 августа в 14^h17^m с K_P =13.6. Сотрясения с интенсивностью *I*=5 баллов зафиксированы в пяти населенных пунктах на расстояниях Δ =140–176 км [5, 10]. Суммарное число сотрясенных в 2010 г. пунктов составило *n*=22 [11]. Механизм очага [12] найден только для максимального землетрясения.

Гипоцентры всех землетрясений расположены в пределах земной коры на глубинах *h*≤33 *км*. Карта эпицентров землетрясений, включенных в основной [5] и дополнительный [7] каталоги, представлена на рис. 2.

Как видим, практически все обработанные эпицентры нанесены в пределах побережья Охотского моря (район № 1) и Колымы (район № 2), в том числе и сильнейшее землетрясение года (6). Небольшая часть эпицентров изображена на крайнем востоке, на Чукотке (район № 4). Между этими полями эпицентров на карте лишь одно землетрясение (4) на излучине р. Анадырь в Западной Чукотке (район № 3).

Распределение землетрясений по энергетическим классам и выделенной ими суммарной сейсмической энергии в районах представлено в табл. 1.

Рис. 2. Карта эпицентров землетрясений Северо-Востока России за 2010 г.

1 – энергетический класс $K_{\rm P}$; 2 – добавленные из [7] эпицентры; 3, 4 – граница района и региона соответственно; 5 – номер района; 6 – номер сильных ($K_{\rm P} \ge 10.6$) землетрясений, указанный в графе 2 каталога [5]; 7 – граница сейсмического пояса Черского; 8 – граница Северо-Охотского сейсмического пояса; 9 – граница Транс-Берингийского сейсмического пояса (ТБСП) по [13].

Таблица 1. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* по районам №1–6 региона Северо-Восток и приграничной Якутии за 2010 г.

№	Район	K _P									N_{Σ}	ΣЕ, Дж			
		3	4	5	6	7	8	9	10	11	12	13	14		
1	Охотское море				1	6	4	2	1					14	$2.96 \cdot 10^{10}$
2	Колыма			2	49	105	85	21	17	2			1	282	$4.02 \cdot 10^{13}$
3	Западная Чукотка									1				1	$1.00 \cdot 10^{11}$
4	Восточная Чукотка	4	2		1			3	1	2		1		14	$4.23 \cdot 10^{12}$
5	Чукотское море													0	0
6	Берингово море													0	0
	Дополнительный список [7]								1	3	1			5	$1.35 \cdot 10^{12}$
	Всего в регионе	4	2	2	51	111	89	26	20	8	1	1	1	316	$4.59 \cdot 10^{13}$
	Якутия				6	17	5	2	1					31	$1.62 \cdot 10^{11}$
	Сумма	4	2	2	57	128	94	28	21	8	1	1	1	347	$4.61 \cdot 10^{13}$

Примечание. В таблицу дополнительно включены землетрясения из [7], их энергия определена по расчетному классу К_Р по формуле К. Дж. Мяки из [6] – К_Р=2.84+2.03 *m*_b.

Большинство землетрясений приурочены к ранее известным сейсмогенным зонам: сейсмическим поясам Черского северо-западного простирания, Северо-Охотскому – субширотного направления и Транс-Берингийскому сейсмическому поясу [13–15].

Северо-восточная граница сейсмического пояса Черского в пределах верхней Колымы (район № 2) условно проведена по глубинному разлому Улахан, общая протяженность которого около 3500 км. Юго-западная граница пояса проведена по Верхнекулинскому разлому. Ширина пояса в юго-восточной части составляет 350 км.

Северо-Охотский сейсмический пояс имеет субширотное простирание, ширина пояса около 200 км. Северная граница пояса практически совпадает с береговой линией и наложенными неотектоническими впадинами, южная граница – в Охотском море.

Транс-Берингийский сейсмический пояс (ТБСП) простирается от Колючинской губы на севере, к бухте Провидения на юге, и от Корякского нагорья на западе, до п-ова Сьюард (Аляска) – на востоке (рис. 2) [13, 16].

Проанализируем особенности сейсмичности 2010 г. по отдельным районам.

Район Охотское море (№ 1) характеризовался слабой сейсмичностью. Здесь локализованы 14 землетрясений с K_P =6.4–10.4, или 4.4 % от общего числа, а доля выделившейся сейсмической энергии всего 0.06 % (ΣE =2.96·10¹⁰ Дж). Область эпицентров вытянута в субширотном направлении, вдоль северного побережья Охотского моря и совпадает с Северо-Охотоморским сейсмическим поясом [15].

В районе **Колымы** (**№** 2) зарегистрировано наибольшее число (*N*=282) землетрясений с K_P =5.0–13.6, или 89 % от общего количества событий в регионе. Суммарная сейсмическая энергия, выделенная землетрясениями района **№** 2, равна ΣE =4.02·10¹³ Дж, что составляет 88 % от величины суммарной энергии всех зарегистрированных в регионе событий.

В тектоническом отношении эпицентры большинства землетрясений Колымского района приурочены к крупнейшим глубинным разломам северо-западного простирания сейсмического пояса Черского: Верхнекулинскому, Челомджинскому, Детринскому, Кунтукскому и Улахан (рис. 3). В южной части района, вблизи побережья, события приурочены к тектоническим нарушениям субширотного простирания (Кава-Ямский разлом), а на юго-востоке района к разломам северо-восточного направления (рис. 3).

Рис. 3. Тектоническая схема района Колымы [17] и положение эпицентров землетрясений 2010 г.

1 – крупнейшие разломы: установленные (а), предполагаемые (б), скрытые под молодыми образованиями (в) и на акватории моря (г); 2 – прочие тектонические нарушения: установленные (а), предполагаемые (б), скрытые под молодыми образованиями (в) и в акватории моря (г); 3 – скрытые разломы фундамента: М-С – Малык-Сиенский, Бр – Берелёхский, Х-М – Хейджано-Мылгинский, Д – Детринский, Бх – Бахапчинский; 4 – разломы с указанием угла наклона поверхности сместителя: надвиги (а), сдвиги (б); 5 – краевые ограничения установленных (а) и предполагаемых (б) шарьяжей, интерпретированная амплитуда их смещения, *м*; 6 – сейсмическая станция; 7 – энергетический класс землетрясений.

Наблюдается скопление эпицентров в районе Наяханского вулканического поля, где зарегистрировано 16 землетрясений с *К*_P=7.1–10.5. Область их эпицентров слегка вытянута в субмеридиональном направлении и прослеживается на расстоянии около 30 *км*.

Заслуживает внимания серия из 20 событий на юго-востоке района в области сочленения глубинных разломов субширотного простирания (Челомджа-Ямского, Кава-Ямского) и разломов северо-восточного направления (Арбутлинского, Маяканского). Энергетические классы этих событий невелики (*К*_Р≤8.8).

Область повышенной плотности эпицентров наблюдается вдоль Чай-Юрьинского разлома, особенно на его южном окончании. Максимальным (K_P =11.1) здесь было событие 9 ноября в 05^h52^m. Этот район находится вдали от населенных пунктов, вероятно, поэтому макросейсмических сведений не поступало.

Юго-восточнее г. Сусумана, в средней части Чай-Юрьинского разлома, 1 ноября произошли три ощутимых землетрясения. Первое в $03^{h}17^{m}$ с K_{P} =9.9, через 17^{s} был зарегистрирован второй толчок с K_{P} =9.7; третье ощутимое событие с K_{P} =10.1 зарегистрировано спустя 3^{h} , в $06^{h}00^{m}$. Все три землетрясения произошли в одном очаге. Интенсивность сотрясений в г. Сусуман (Δ =25–28 км) и пос. Мяунджа (Δ =31–34 км) составила *I*=2–3 балла [5, 10]. Жители на 2-х и 3-х этажах панельных зданий ощутили толчки, потряхивания. Некоторые респонденты слышали звук, как от проезжающего рядом грузовика или как звук от пробегающего по пустому коридору человека.

Продолжалась сейсмическая активность в эпицентральной зоне Ланкучанского землетрясения 26.12.2009 г. с K_P =13.0, I_0 =6–7 [3]. Благодаря быстрому развертыванию в очаговой зоне временной локальной сети было записано 83 афтершока [18], но локализовано лишь 28 афтершоков [19], из них 15 – в 2010 г. Афтершок с K_P =8.4, произошедший 12 января 2010 г. в 19^h56^m, ощущался жителями пос. Снежный (Δ =12 км) с интенсивностью I=2 балла [5, 10]. В связи с уменьшением сейсмической активности в конце февраля 2010 г. временные станции в эпицентральной области были сняты. В июне и июле 2010 г. северо-западнее эпицентральной зоны Ланкучанского землетрясения зарегистрированы еще шесть событий с K_P =6.0–9.7. Три из них ощутимы: 10 июня в 13^h06^m с K_P =9.1 – в Магадане (24 км) с I=2 балла; 4 июля в 00^h53^m с K_P =9.7 – в Снежном (15 км) и в Магадане (24 км) с I=2–3 балла; 27 июля в 07^h09^m с K_P =8.7 – в Магадане (26 км) 2 балла [5, 10]. Как отмечено в [3], эти толчки из-за удаленности во времени и другого азимута AZM=340° вместо 35° для афтершоков (см. рис. 4 в [3]) уже не могут быть афтершоками Ланкучанского землетрясения, но, возможно, им спровоцированы, хотя, скорее всего, являются самостоятельными событиями.

В верховьях р. Кулу, на границе с Республикой Саха (Якутией), 2 августа в $14^{h}17^{m}$ произошло упомянутое выше самое сильное (K_{P} =13.6) землетрясение (6), названное по своему местоположению Верхнекулинским. Его эпицентр располагался в зоне сочленения Верхнекулинского и Малык-Сиенского разломов. Детальному описанию Верхнекулинского землетрясения посвящана отдельная статья в наст. сб. [20].

На Западной Чукотке (район № 3) зарегистрировано только одно землетрясение (4) с K_P =11.0. Оно произошло 14 февраля в 13^h59^m. Эпицентр располагался вдали от населенных пунктов, поэтому сведений об его макросейсмических проявлениях не поступало. Землетрясение (4) записано станциями международных агентств. Основные его параметры по материалам различных сейсмологических служб представлены в табл. 2.

Агентство	δt_0 ,	Гипоцентр						Магнитуда	Источ-	
	ч мин с	С	φ°, Ν	Δφ,	λ°, Ε	Δλ,	<i>h</i> ,	δh ,		ник
				км		км	КМ	КМ		
ΜΦ ΓС РАН	13 59 47.9	1.0	64.79	5.9	167.88	6.4	0		$K_{\rm P} = 11.0$	[5]
MOS	13 59 43.7	1.5	64.506	17.9	168.29	9.2	10	33	$m_{\rm b}$ =4.2/22	[9]
ISC	13 59 45.5	0.41	64.524	8.8	168.195	6.0	10f		$Ms=3.5/3, m_b=4.1/32$	[8]
NEIC	13 59 45.65	0.36	64.493	9.6	168.261	9.3	10f		$m_{\rm b} = 4.2/7$	[8]
IDC	13 59 43.78	0.47	64.461	13.9	168.201	11.3	0f	34	$Ms=3.3/4, m_b=4.0/24$	[8]

Таблица 2. Основные параметры землетрясения 14 февраля с *К*_P=11.0 по региональным данным в сопоставлении с определениями других агентств

Все решения в плане показаны на рис. 4. Разброс координат по данным различных центров достигает 35 км по широте и 19 км по долготе.

Региональный эпицентр находится северо-западнее, на расстоянии около 30 км относительно мировых определений, которые хорошо согласуются между собой. Это связано с односторонним расположением станций региональной сети относительно эпицентра, а также удаленностью станций от землетрясения: минимальное эпицентральное расстояние – 372 км (станция «Билибино») (рис. 5).

Рис. 4. Сопоставление решений эпицентра землетрясения 14 февраля с *К*_Р=11.0 по данным станций сети МФ ГС РАН и других агентств

1 – инструментальный эпицентр по [5]; 2 – решения других сейсмологических служб [8, 9].

Рис. 5. Положение региональных станций относительно землетрясения 14 февраля с *К*_P=11.0

1 – сейсмическая станция; 2 – эпицентр землетрясения; 3 – эпицентральное расстояние.

Отметим, что всего в 9 км южнее описываемого землетрясения, 21 апреля 2009 г. произошло землетрясение с K_P =13.3, Mw=5.0 [21] с известным [22] решением механизма очага по данным агентства GCMT. Как указано в [4], тип подвижки в его очаге – левосторонний сдвиг с компонентами взброса по близширотной плоскости NP1, и правосторонний сдвиг – по близмеридиональной плоскости NP2. Возможно такие же движения были и в очаге землетрясения 14 февраля 2010 г. с K_P =11.0.

В районе Восточной Чукотки (№ 4) локализовано 19 землетрясений K_P=3.0–12.6 (рис. 6). Из них параметры пяти событий представлены в [7] по данным Сейсмологического бюллетеня [9] и бюллетеня ISC [8]. Как уже отмечено выше, данных региональной сети оказалось недостаточно для локации этих землетрясений.

Суммарная сейсмическая энергия в очагах землетрясений Восточной Чукотки, равная $\Sigma E = 5.59 \cdot 10^{12} \, \square \varkappa$, составила 12 % от всей выделившейся сейсмической энергии зарегистрированных землетрясений на Северо-Востоке.

Слабые землетрясения (K_P =3.0–5.7) в районе с. Нешкан определены по данным одной станции «Нешкан»: эпицентральные расстояния рассчитывались по разнице времен (t_S - t_P) вступлений Pg- и Sg-волн, азимут вычислялся по полярности первых вступлений, глубина очага ограничивалась до 5 км. Область эпицентров из восьми слабых землетрясений вблизи Нешкана вытянута в северо-восточном направлении на расстояние около 20 км. Эти землетрясения приурочены к Лоловеемскому разлому, который проходит в непосредственной близости от села (на расстоянии 1–2 км), его протяженность около 60 км. Зона активного Лоловеемского разлома была выделена в [13, 23]. Землетрясение 21 ноября в 13^h23^m с K_P =10.3 ощущалось в с. Нешкан (Δ =17 км) с интенсивностью *I*=3 балла [5, 10], многие жители ощутили толчок, вибрацию, наблюдали раскачивание висящих предметов.

Другая группа из 11 эпицентров землетрясений с K_P =8.8–12.6, локализованная южнее Колюченской губы, имеет изометричную в плане форму. Сведений об ощутимости этих событий не поступало.

Рис. 6. Карта эпицентров землетрясений Восточной Чукотки (район № 4) в 2010 г.

1 – энергетический класс; 2 – эпицентры по данным других сейсмологических служб каталога [7]; 3 – сейсмическая станция и ее код; 4 – номер сильного (*K*_P≥10.6) землетрясения, указанного в графе 2 каталога [5].

Эпицентры землетрясений района № 4 расположены в наиболее активной сейсмической зоне Чукотки – Транс-Берингийском сейсмическом поясе (ТБСП) (рис. 2) [13, 16].

В районе Чукотского и Берингова морей (№ 5, № 6) в 2010 г. сейсмических событий существующей сетью станций не зарегистрировано.

Подводя итоги, можно констатировать, что сейсмичность Северо-Востока России в 2010 г. соответствует фоновому уровню. Число зарегистрированных землетрясений и количество выделившейся сейсмической энергии по районам и в регионе сопоставимо с таковым в 2009 г. [4]. Землетрясения Северо-Востока России пространственно сосредоточены традиционно в крупных сейсмогенных поясах Черского, Северо-Охотском и ТБСП.

Литература

- 1. Алёшина Е.И., Курткин С.В., Карпенко Л.И., Седов Б.М. (сост.). Сейсмические станции Северо-Востока России в 2010 г. (код сети NERS). (См. Приложение к наст. сб. на CD).
- 2. Козьмин Б.М. Шибаев С.В. (отв. сост.). Сейсмические станции Якутии в 2010 г. (код сети YARS). (См. Приложение к наст. сб. на CD).
- Алёшина Е.И., Гунбина Л.В., Иванова Е.И., Карпенко Л.И., Седов Б.М. Ланкучанское землетрясение 26 декабря 2009 г. с К_Р=13.0, MPSP=4.5, I₀=6–7 (Северо-Восток) // Землетрясения Северной Евразии, 2009 год. – Обнинск: ГС РАН, 2015. – С. 343–351.
- 4. Алёшина Е.И., Гунбина Л.В., Карпенко Л.И., Седов Б.М. Северо-Восток России // Землетрясения Северной Евразии, 2009 год. Обнинск: ГС РАН, 2015. С. 195–202.
- 5. Алёшина Е.И. (отв. сост.), Комарова Р.С., Чернецова А.Г. (сост.). Каталог землетрясений Северо-Востока России за 2010 г. (См. Приложение к наст. сб. на CD).
- 6. Mackey K.G. Seismological Studies in Northeast Russia. Dissertation for the degree of Ph.D. Michigan State University. Department of Geological Sciences, 1999. 346 p.

- 7. Алёшина Е.И. (сост.). Дополнение к каталогу землетрясений Северо-Востока России за 2010 г. (См. Приложение к наст. сб. на CD).
- 8. International Seismological Centre, On-line Bulletin, Internatl. Seis. Cent., Thatcham, United Kingdom, 2013. – URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/.
- 9. Сейсмологический бюллетень (ежедекадный) за 2010 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2010–2011. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2010*.
- 10. Алёшина Е.И. (отв. сост.). Макросейсмический эффект ощутимых землетрясений в населенных пунктах Северо-Востока России в 2010 г. (См. Приложение к наст. сб. на CD).
- 11. Алёшина Е.И. (отв. сост.), Пойгина С.Г., Бахтиарова Г.М. (сост.). Сведения о пунктах, для которых имеется информация о макросейсмических проявлениях ощутимых землетрясений Северо-Востока России в 2010 г. (См. Приложение к наст. сб. на CD).
- 12. Алёшина Е.И. (сост.). Каталог механизмов очагов землетрясений Северо-Востока России за 2010 г. по данным ISC. (См. Приложение к наст. сб. на CD).
- Mackey K.G., Fujita K., Sedov B.M., Gounbina L.V., Leyshuk N., Kurtkin S. A seismic aftershock deployment and analysis of seismicity of the Neshkan region, Chukotka, Russia / Michigan State University, Department of Geological Sciences, USA. – NERSP Report. – 2003. – N 10. – 85 p.
- Сучкова О.Н., Седов Б.М. Сейсмичность юго-восточного окончания пояса Черского // Научная молодежь – Северо-Востоку России. Материалы III Межрегиональной конференции молодых ученых (Магадан, 27–28 мая 2010 г.) СВКНИИ ДВО РАН. – Магадан: СВНЦ ДВО РАН, 2010. – С. 153–154.
- Алёшина Е.И., Седов Б.М. Проблемы комплексного геофизического мониторинга Дальнего Востока России // Развитие структуры и геодинамики северной границы Охотоморской плиты. – Петропавловск-Камчатский: КФ ГС РАН, 2009. – С. 11–13.
- Седов Б.М., Курткин С.В., Мяки К. Сейсмичность Чукотского полуострова и прилегающего шельфа морей и экономическая безопасность // Чукотка: Рациональное природопользование и экологическая безопасность. Сборник трудов № 12. – Магадан: ЧФ СВКНИИ ДВО РАН, 2008. – С. 22–31.
- 17. **Кузнецов В.М.** Схема тектонического районирования Охотско-Колымского водораздела. Масштаб 1:1 000 000. ФГУП «Магадангеология», 2001.
- Алёшина Е.И. (отв. сост.). Афтершоки (N=83) Ланкучанского землетрясения 26 декабря 2009 г. с K_P=13.0 за 26.12.2009 г.-06.02.2010 гг. // Землетрясения Северной Евразии, 2009 год. – Обнинск: ГС РАН, 2015. – (Ha CD).
- 19. Алёшина Е.И. (сост.). Афтершоки Ланкучанского землетрясения 26 декабря 2009 г. с *К*_P=13.0 за 26.12.2009 г.-06.02.2010 гг., для которых найдены эпицентры. (См. Приложение к наст. сб. на CD).
- Алёшина Е.И., Курткин С.В., Карпенко Л.И. Верхнекулинское землетрясение 2 августа 2010 г. с K_P=13.6, Mw=5.3, I₀^P=7 (Северо-Восток России). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 21. Алёшина Е.И., Комарова Р.С. (отв. сост.). Каталог землетрясений Северо-Востока России за 2009 г. // Землетрясения Северной Евразии, 2009 год. Обнинск: ГС РАН, 2015. (На CD).
- 22. The Global CMT Project. URL: http://www.globalcmt.org/
- 23. Алёшина Е.И., Гунбина Л.В., Комарова Р.С., Седов Б.М. Северо-Восток России // Землетрясения Северной Евразии в 2003 году. Обнинск: ГС РАН, 2009. С. 193–200.