КУРИЛО-ОХОТСКИЙ РЕГИОН

Т.А. Фокина¹, Д.А. Сафонов^{1,2}, Е.Н. Дорошкевич¹, В.И. Михайлов¹

¹Сахалинский филиал ГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru ²Институт морской геологии и геофизики ДВО РАН, г. Южно-Сахалинск, d.safonov@imgg.ru

Региональная сеть и карта M_{min} . Сеть сейсмических станций на территории Курило-Охотского региона в 2010 г. состояла из четырех станций: «Северо-Курильск» (SKR), «Курильск» (KUR), «Южно-Курильск» (YUK) и «Шикотан» (SHO). Станция «Шикотан» открыта 28 ноября 2009 г. на о. Шикотан в пос. Малокурильское в рамках мероприятия № 18 Федеральной целевой программы «Снижение рисков и смягчение последствий чрезвычайных ситуаций природного и техногенного характера в РФ до 2010 года» (рис. 1). Сведения о местоположении курильских станций и регистрирующей аппаратуре приведены в Приложении к наст. сб. [1].

Рис. 1. Карта магнитудной представительности землетрясений *M*_{min} Курило-Охотского региона в 2010 г.

1 – изолиния M_{\min} ; 2 – сейсмическая станция; 3 – граница и номер района соответственно; 4 – граница региона; 5 – ось глубоководного Курило-Камчатского желоба.

Сейсмическая сеть из четырех курильских станций совместно со станциями Приамурья-Приморья [2] и Сахалина [3] обеспечила на значительной части территории Курило-Охотского региона регистрацию без пропусков землетрясений с расчетной магнитудой M^P>4.0 (K_C>9), а на территории Онекотан-Матуанского района и северо-восточной части Охотского моря без пропусков могут регистрироваться лишь события $\vec{c} M^{P} \ge 4.5$ ($\vec{K}_{C} \ge 10$). И только на небольшом участке юго-западной части Охотского моря, находящемся в окружении трех региональных станций, представительными являются землетрясения с $M^{P}>3.5$ ($K_{C}>8$). Карта магнитудной представительности в пределах границ Курило-Охотского региона показана на рис. 1, она не изменилась по сравнению с картой за 2009 г. [4].

Методика обработки землетрясений, изложенная в [5–13], не изменилась. По-прежнему, для определения параметров землетрясений региона привлекались инструментальные данные сейсмических станций Приамурья и Приморья [2] и Сахалина [3], а также бюллетени ГС РАН [14], ЈМА и ISC [15]. Границы региона оставались в рамках изменений 2004 г., когда северовосточная часть региона вошла в зону ответственности Камчатского филиала ГС РАН, а юго-западная часть (о. Хоккайдо и Японское море) была исключена

из зоны ответственности СФ ГС РАН, т.к. для этой территории существуют значительно более представительные каталоги, составляемые в Японии [16, 17]. Но небольшая восточная часть острова, отрезанная по меридиану λ=144° (рис. 1), осталась как район № 6.

Для расчета энергии землетрясений используются расчетные магнитуды M^P . Если для мелкофокусных ($h \le 80 \ \kappa m$) толчков определена магнитуда *MLH* по стандартной методике [18], то она и берется в качестве расчетной магнитуды. Для всех остальных землетрясений производится пересчет (или из класса K_C , или из разных магнитуд *MPV*, *MPVA*, *MSH*, *MSHA*) по формулам связи магнитуд по объемным и поверхностным волнам С.Л. Соловьёва и О.Н. Соловьёвой из [10–12]:

– для событий с глубиной *h*≤80 км: M^{P} =*MLH*; M^{P} =(*K*_C−1.2)/2; M^{P} =(*MSH*−1.71)/0.75; M^{P} =(*MPV*−2.5)/0.65; M^{P} =(*MSH*−1.71)/0.75; M^{P} =(*MPV*−2.5)/0.65;

– для событий с $h>80 \ \kappa M$: $M^{P} = (MSH-1.71)/0.75$; $M^{P} = (MPV-2.5)/0.65$; $M^{P} = (K_{C}-1.2)/2$; $M^{P} = (MSHA-1.71)/0.75$; $M^{P} = MLH$; $M^{P} = (MPVA-2.5)/0.65$.

Каталоги региона в 2010 г. Результаты обработки записей землетрясений, сбора сведений о знаках первых вступлений *P*-волн, о макросейсмических данных представлены в наст. сб. в четырех Приложениях на CD – это каталог всех землетрясений Курило-Охотского региона [19], каталог только ощутимых землетрясений с представлением всех пунктов ощутимости [20], каталог механизмов очагов некоторых землетрясений [21] и список названий населенных пунктов [22], в которых один или более раз отмечены сотрясения земной поверхности в 2010 г.

В региональный каталог землетрясений [19] включены параметры 717 землетрясений с $M^P = 2.5 - 6.2$ (что на 164 события больше, чем в 2009 г. [23]). Гипоцентры 541 землетрясения (75.5 % общего числа) локализованы в верхнем глубинном интервале с $h \le 80 \ \kappa m$, 151 (21 %) – в промежуточном слое с $h = 81 - 300 \ \kappa m$, а в нижнем интервале глубин $h > 300 \ \kappa m$ зарегистрировано 25 землетрясений, т.е. 3.5 %. Распределение всех землетрясений по глубине дано на рис. 2.

Существовавшая в 2010 г. сеть СФ ГС РАН не позволила зарегистрировать и обработать значительное число землетрясений, произошедших в регионе. Поэтому для получения реальной картины сейсмичности *ред*. был составлен каталог дополнитель-

.///

Рис. 2. Распределение землетрясений Курило-Охотского региона по глубине гипоцентра *h*, *км* в 2010 г.

ных событий по данным международных агентств и Камчатского филиала ГС РАН [24]. В него вошли 189 событий в диапазоне магнитуд *М*=2.3–4.5 по данным [15, 25].

26 землетрясений проявили макросейсмический эффект в населенных пунктах Курильских островов и Японии, максимальная интенсивность сотрясений на территории региона не превышала I=5 баллов [19, 20]. Гипоцентры ощутимых землетрясений находились в глубинном диапазоне $h=24-110 \ \kappa m$, наибольшее их число (n=21) зафиксировано, как обычно, на глубине менее 80 κm .

Помимо указанного выше числа ощутимых землетрясений, в каталоге [15] имеются сведения о 42 курильских событиях, ощущавшихся на территории Японии. Сведения об этих землетрясениях добавлены *ped*. в [20]. В дополнение к имеющимся в каталоге [20] сведениям о макросейсмических проявлениях 26 курильских землетрясений в населенных пунктах Курило-Охотского региона в этот же каталог добавлены также сообщения о сотрясениях на территории Японии для 18 событий.

Механизмы очагов в 2010 г. определены методом полярности первых смещений [26, 27] для 19 землетрясений Курило-Охотского региона [21], что на 4 механизма меньше, чем в 2009 г. [4].

Дополнительно для 255 землетрясений Курило-Охотского региона в каталоге [15] имеются определения механизмов очагов различными агентствами. *Ред.* составлен дополнительный каталог механизмов, включающий в себя 300 определений для 255 землетрясений, которые в обзоре не рассматриваются. Карта эпицентров и механизмов очагов землетрясений Курило-Охотского региона в 2010 г. приведена на рис. 3. Как всегда, основная часть землетрясений располагается под западным склоном Курило-Камчатского глубоководного желоба, углубляясь в северозападном направлении.

Рис. 3. Сейсмическая сеть и карта эпицентров землетрясений Курило-Охотского региона в 2010 г.

1 – магнитуда M^P ; 2 – глубина *h* гипоцентра, *км*; 3 – стереограмма механизма очага в проекции на нижнюю полусферу, зачернены области сжатия; 4 – сейсмическая станция; 5 – граница и номер района соответственно; 6 – граница зоны ответственности сети СФ ГС РАН; 7 – ось глубоководного Курило-Камчатского желоба. Самое сильное (*MLH*=6.2, Mw_{GCMT} =6.2) мелкофокусное землетрясение (7) локализовано на глубине *h*=53 км к юго-востоку от о. Итуруп 18 июня в 02^h23^m [19]. В населенных пунктах южных Курильских островов оно ощущалось с интенсивностью не более 3 баллов. Самое сильное (K_C =12.7, Mw_{GCMT} =5.0) землетрясение (20) с промежуточной глубиной гипоцентра (*h*=103 км) произошло 24 декабря в 23^h42^m, к востоку от о. Уруп. Эпицентры глубоких (*h*>300 км) землетрясений расположены в акватории Охотского моря, самое сильное из них (*MSH*=5.8, Mw_{GCMT} =5.5) реализовалось 2 ноября в 18^h 10^m на глубине *h*=364 км (рис. 3).

Сейсмичность региона. В табл. 1 и 2 даны распределения землетрясений по магнитудам в поверхностном (*h*≤80 *км*) и глубоком (*h*≥81 *км*) сейсмоактивных слоях в 2001–2010 гг.

Год	M^{P}								N_{Σ}	N_{Σ}	ΣE	ΣE
	≤4	4.5	5	5.5	6	6.5	7	8		$(M^{P} \ge 4.5)$	10 ¹² Дж	10 ¹² Дж,
												$(M^{r} \ge 4.5)$
2001	239	108	26	5	4		1		383	144	4362.23	4343.75
2002	217	85	10	2	3	1			318	101	734.72	717.02
2003	256	140	33	15	9	2			455	199	1959.97	1937.82
2004	173	155	24	8	2	2	2		366	193	3887.31	3874.87
2005	150	79	16	2	2				249	99	242.22	230.36
2006	405	371	75	21	7	5	1	1	886	481	66766.49	66730.70
2007	545	283	49	8	4	1		1	891	346	89918.32	89877.22
2008	270	114	19	4	2	1			410	140	476.93	460.21
2009	316	88	15	4	2	2	1		428	112	2505.76	2489.66
Сумма	2571	1423	267	69	35	14	5	2	4386	1815	170853.95	170661.61
Среднее	286	158	30	8	4	1.5	0.5	0.2	487	202	18983.77	18962.40
2010	431	87	17	3	3				541	110	301.56	285.51

Таблица 1. Число мелкофокусных (*h*≤80 *км*) землетрясений разных магнитуд *N*(*M*) и их суммарная сейсмическая энергия Σ*E* в Курило-Охотском регионе в 2001–2010 гг.

Примечание. Распределение землетрясений по магнитудам построено для следующих диапазонов: M^P =4.0 для M=3.8–4.3; M^P =4.5–M=4.3–4.8; M^P =5.0–M=4.8–5.3; M^P =5.5–M=5.3–5.8 и т.д.

Таблица 2. Число глубокофокусных (*h*>80 *км*) землетрясений разных магнитуд *N*(*M*^P) и суммарная сейсмическая энергия Σ*E* в Курило-Охотском регионе в 2001–2010 гг.

Год	M^{P}							N_{Σ}	N_{Σ}	ΣE	ΣE		
	≤4	4.5	5	5.5	6	6.5	7	8	8.5		$(M^{P} \ge 4.5)$	10 ¹² Дж	10 ¹² Дж,
													$(M^{*} \ge 4.5)$
2001	64	53	25	8	4	3	1			158	94	6087.98	6083.70
2002	64	53	32	11	3	2	1	1		167	103	65492.03	65487.96
2003	54	55	31	19	4		1			164	110	1479.57	1476.04
2004	25	21	24	13	3		1			87	62	1852.69	1851.02
2005	24	17	20	17	3	1				82	58	741.38	739.79
2006	16	22	48	31	4	2				123	107	1241.02	1240.30
2007	38	41	23	13	5	3	1			124	86	3851.16	3848.15
2008	79	46	14	18	3	1			1	162	83	380945.37	380939.56
2009	70	28	12	10	3	2				125	55	1978.18	1973.28
Сумма	434	336	229	140	32	14	5	1	1	1192	758	463669.38	463639.8
Среднее	48	37	25	15.5	3.5	1.5	0.6	0.1	0.1	132	84	51518.82	51515.53
2010	102	46	19	8	1					176	74	190.09	185.36

По совокупности данных за 2010 г. построены графики повторяемости землетрясений разных магнитуд M^{P} (рис. 4), из которых следует, что в рассматриваемом году для поверхност-

ных землетрясений можно считать представительной магнитуду M^P =4.0, для глубоких – M^P =4.5. Для единообразия дальнейший сравнительный анализ сейсмичности региона в 2010 г. проведен для землетрясений с M^P ≥4.5.

Рис. 4. Графики повторяемости для землетрясений из поверхностного (а) и глубокого (б) слоев по данным каталога Курило-Охотского региона за 2010 г. [19]

Число поверхностных землетрясений с $M^{P} \ge 4.5$ (*N*=110) в 1.8 раза ниже среднего значения за 2001–2009 гг., меньше было лишь в 2002 и 2005 гг. Сейсмическая энергия, высвобожденная поверхностными очагами в 2010 г. ($\Sigma E = 285.51 \cdot 10^{12} \ \square m$), в 66 раз меньше среднего значения за предыдущие девять лет.

Продолжался затухающий сейсмический процесс в очагах Симуширских землетрясений 15.11.2006 г. с *Мw*=8.3 и 13.01.2007 г. с *Мw*=8.1 [28], поэтому Симушир-Урупский район (№ 3) проявил довольно высокую активность, уступив только Северо-Итурупскому району, испытавшему всплеск мелкофокусной сейсмической активности. В остальных районах наблюдалась весьма умеренная активность (табл. 3).

Глубокофокусная ($h>80 \ \kappa m$) сейсмическая активность продолжала падать: хотя число землетрясений с $M^P \ge 4.5$ в 1.3 раза больше, чем в 2009 г., но оно ниже среднего значения за 2001–2009 гг. Сейсмическая энергия, высвобожденная глубокофокусными очагами в 2010 г., равная $E_{\Sigma}=185.36 \cdot 10^{12} \ Дж$, в 10.6 раза меньше ее значения в 2009 г. и почти в 300 раз меньше среднего значения за предыдущие девять лет.

Из 26 ощутимых на территории региона землетрясений [20] наибольшее их число (N=15) произошло в Кунашир-Шикотанском районе ($N \ge 5$), пять – в Северо-Итурупском ($N \ge 4$), по три – в Онекотан-Матуанском ($N \ge 2$) и в районе о. Хоккайдо ($N \ge 6$) (табл. 4).

N⁰	Район			ΣN	ΣΕ,						
		<4	4	4.5	5	5.5	6		10 ¹² Дж		
h≤80 км											
1	Парамуширский		1					1	0.08		
2	Онекотан-Матуанский	13	57	20	2	1		93	20.23		
3	Симушир-Урупский	17	62	24	4	1	2	110	106.2		
4	Северо-Итурупский	67	54	19	5	1	1	147	151.65		
5	Кунашир-Шикотанский	86	55	19	6			166	21.67		
6	Восток о. Хоккайдо	3	13	5				21	2.02		
8	Охотское море	1	2					3	0.1		
	Всего	187	244	87	17	3	3	541	301.95		
			h	>80 км							
1	Парамуширский										
2	Онекотан-Матуанский	3	13	4	1			21	2.7		
3	Симушир-Урупский	8	18	14	6	3	1	50	114.04		
4	Северо-Итурупский	4	8	9	1	1		23	8.97		
5	Кунашир-Шикотанский	14	17	6	3	1		41	22.95		
6	Восток о. Хоккайдо	1	3	4	1			9	3.5		
8	Охотское море	7	6	8	8	3		32	37.93		
	Всего	37	65	45	20	8	1	176	190.09		

Таблица 3. Распределение землетрясений по магнитудам *M*^P и суммарная сейсмическая энергия Σ*E* по районам Курило-Охотского региона в 2010 г.

Таблица 4. Распределение землетрясений по интервалам глубины *h*, максимальные значения интенсивности сотрясений *I*_{max}, энергетического класса *K*_{Cmax} и магнитуд *MLH*, *MSH*, $M^{\rm P}$ в районах Курило-Охотского региона в 2010 г.

N⁰	Район	һ км	N_{Σ}	N _{ощут.}	I _{max}	$K_{\rm Cmax}$	M_1	max
				-			MLH	MSH
1	2	3	4	5	6	7	8	9
1	Парамуширский	0–30	1			9.3		
2	Онекотан-Матуанский	0–30	18			10.3	4.0	
		31-80	75	3	2–3	12.8	5.3	6.3
		81-168	21			10.4	5.1	5.3
3	Симушир-Урупский	0–30	11			10.6	4.1	5.2
		31-80	99	+1		12.9	5.8	6.1
		81-201	50	+1		12.7	4.8	6.2
4	Северо-Итурупский	0–30	24	2	2-3	10.1		
		31-80	123	3 +1	3	12.1	6.2	6.6
		81-168	23			11.2	4.3	5.7
5	Кунашир-Шикотанский	0-30	27	+1		9.7		
		31-80	139	10+13	5	12.0	5.1	5.9
		81-173	41	5+5	3	11.3	4.2	5.8
6	О. Хоккайдо	0-30	2	+1		9.4	4.1	
		31-80	19	3+7	3	12.0	4.4	4.8
		81-142	9	+8		10.9		5.2
8	Охотское море	0–30	2	+1		9.2	4.0	
	-	31-80	1			9.0	3.8	
		81-569	32	+2		9.8	4.6	5.8

Примечание *ped*. По данным Бюллетеня ISC [15] в 2010 г. имеются сведения еще о 42 землетрясениях, произошедших на в Курил-Охотском регионе, но ощущавшихся на территории Японии. Число дополнительных событий приведено в графе 5 (со знаком «+»).

Представление о вариациях сейсмического режима в отдельных районах Курило-Охотского региона можно получить из анализа табл. 5 и рис. 6, где приведены ежегодные числа землетрясений и величина сейсмической энергии в каждом из районов за 2001–2010 гг. Сопоставление параметров сейсмичности проведено для землетрясений с магнитудой $M^{P} \ge 4.5$.

Год	Район										
		Nº 2		Nº 3		Nº 4	J	<u>№</u> 5		<u>№</u> 8	
	N_{Σ}	ΣE									
h≤80 км											
2001	12	50.19	21	79.76	38	4078.94	35	69.10	1	0.25	
2002	12	40.79	16	5.98	21	510.43	26	95.72			
2003	17	101.79	15	13.08	31	89.03	28	50.75			
2004	23	416.02	28	21.47	32	147.53	65	2047.56			
2005	12	87.63	20	18.18	17	6.89	25	13.42			
2006	220	1084.34	199	65584.81	18	16.97	38	1.58			
2007	130	89572.74	143	238.91	32	26.96	32	27.88	1	0.50	
2008	24	24.61	58	400.13	24	9.97	27	19.18			
2009	29	1493.13	42	907.55	12	19.64	20	15.76	3	0.18	
Сумма	479	92871.24	542	67269.87	225	4906.36	296	2340.95	5	0.93	
Среднее	53.22	10319.03	60.22	7474.43	25	545.15	32.89	260.11	0.56	0.1	
2010	23	16.61	31	101.83	26	148.28	25	17.51			
					h>80 км	!					
2001	5	710.14	17	357.56	10	12.79	13	4005.37	27	880.33	
2002	13	1426.10	10	89.16	17	19.09	17	435.59	21	63315.52	
2003	11	17.76	20	67.88	5	15.29	21	75.60	13	55.21	
2004	5	32.49	13	1508.37	10	88.04	16	66.29	13	119.44	
2005	1	0.7	12	213.06	8	50.72	18	346.75	15	123.81	
2006	21	161.78	35	195.34	10	374.35	24	118.5	12	360.32	
2007	6	17.50	33	3206.19	5	192.28	27	410.94	13	19.73	
2008	12	42.91	29	169.90	8	34.82	17	330.38	12	380353.02	
2009	6	602.76	12	350.76	12	916.51	16	80.87	8	18.53	
Сумма	80	3012.14	181	6158.22	85	1703.89	169	5870.29	134	445245.91	
Среднее	8.89	334.68	20.11	684.25	9.44	189.32	18.78	652.25	14.89	49471.77	
2010	5	1.79	24	112.7	11	8.43	10	21.77	19	37.41	

Таблица 5. Число землетрясений с *M*^P≥4.5 и их суммарная сейсмическая энергия (в единицах 10¹² Дж) по некоторым районам Курило-Охотского региона за 2001–2010 гг.

Рис. 6а. Распределение ежегодных чисел землетрясений с *M*^P≥4.5 и величины суммарной сейсмической энергии Σ*E* в поверхностном слое по районам Курило-Охотского региона в 2001–2010 гг. (в районах № 2 и № 3 гистограмма числа событий ограничена значением *N*=100 в целях более наглядного представления малых значений)

Усл. обозначения те же, что и на рис. 5

Рис. 66. Распределение ежегодных чисел землетрясений с *М*^Р≥4.5 и величины суммарной сейсмической энергии Σ*E* в глубоком слое по районам Курило-Охотского региона в 2001–2010 гг.

Усл. обозначения те же, что и на рис. 5

Сейсмичность районов региона. Рассмотрим особенности сейсмического процесса в каждом из семи районов Курило-Охотского региона.

В Парамуширском районе (\mathbb{N} 1) зарегистрировано лишь одно мелкофокусное землетрясение с K_{C} =9.3, макросейсмический эффект не отмечен. Ни одного землетрясения в промежуточном слое не зафиксировано.

Сейсмичность Онекотан-Матуанского (\mathbb{N} 2) района заметно снизилась. Зарегистрировано 93 мелкофокусных землетрясения, из них 23 имеют $M^P \ge 4.5$, что всего лишь в 1.3 раза меньше, чем в 2009 г., и в 2.3 раза меньше среднего значения за период 2001–2009 гг., но суммарная сейсмическая энергия, равная $E_{\Sigma}=16.61\cdot10^{12} \ \square m m$, уменьшилась в 90 раз, по сравнению с энергией в 2009 г., и в 620 раз, по сравнению со средним значением энергии за указанный период (табл. 5, рис. 6 а).

Сейсмическая активность в промежуточном слое тоже уменьшилась: зарегистрировано 21 землетрясение, из них пять – с $M^P \ge 4.5$, что на одно событие меньше, чем в 2009 г., и на три события меньше среднего значения за период 2001–2009 гг. При этом суммарная сейсмическая энергия, равная $E_{\Sigma}=1.79\cdot10^{12} \ Дж$, уменьшилась в 300 раз, по сравнению с энергией в 2009 г., и в 180 раз, по сравнению со средним ее значением за указанный период (табл. 5, рис. 6а).

Самое сильное (*MLH*=5.3, *Mw*=5.7) мелкофокусное (*h*=62 км) землетрясение произошло 30 ноября в $17^{h}54^{m}$ (18 на рис. 3), которое ощущалось в г. Северо-Курильск (Δ =220 км) с интенсивностью *I*=2–3 балла. Кроме этого землетрясения (18), в районе зафиксировано еще два мелкофокусных толчка с интенсивностью *I*=2 балла в г. Северо-Курильск (табл. 4).

Самое сильное (*MSH*=5.3) землетрясение с гипоцентром в промежуточном слое (h=128 км) произошло 4 марта в 00^h36^m, макросейсмический эффект отмечен не был (табл. 5, рис. 6 б).

В каталоге [21] имеются определения механизмов очагов четырех землетрясений (8, 15, 18, 19). Три из них (8, 18, 19) имеют типичный для зоны субдукции механизм – взброс с небольшой сдвиговой компонентой (рис. 3). Ось сжатия направлена перпендикулярно островной дуге. Но землетрясение (15) имеет сбросовый характер механизма, что противоречит характерным сейсмодислокациям зоны субдукции (рис. 3).

В Симушир-Урупском районе (№ 3) продолжался спад сейсмической активности в очагах двух Симуширских землетрясений (15.11.2006 г. с *Мw*=8.3 и 13.01.2007 г. с *Mw*=8.1 [29]). В 2010 г. здесь зарегистрировано 110 мелкофокусных землетрясений, из них 31 событие с $M^P \ge 4.5$, что в 2 раза меньше среднего значения за период 2001–2009 гг., а суммарная сейсмическая энергия в 73 раза меньше среднего значения за указанный период (табл. 5, рис. 6 а).

Два самых сильных (MLH=5.8) в районе мелкофокусных землетрясения (1 и 2 на рис. 3) произошли 18 января в $01^{h}02^{m}$ и 6 февраля в $04^{h}44^{m}$ соответственно.

В слое $h=81-201 \ \kappa m$ зарегистрировано 50 землетрясений, из них 24 имеют магнитуду с $M^P \ge 4.5$, что в 1.2 раза больше среднего значения за период 2001–2009 гг., но суммарная сейсмическая энергия в шесть раз меньше среднего значения за этот период (табл. 5, рис. 6 б). Самое сильное (MSH=6.2) землетрясение (20) в промежуточном ($h=103 \ \kappa m$) слое произошло 24 декабря в $23^h 42^m$.

Землетрясения, происходящие на Средних Курилах, как правило, на флангах Курильской гряды не ощущаются, кроме самых сильных. В 2010 г. ни одного ощутимого на территории Курильских островов землетрясения с эпицентром в Симушир-Урупском районе отмечено не было.

Для восьми землетрясений (1–3, 9, 12, 13, 17, 20) определены механизмы очагов. В очагах поверхностных землетрясений преобладают подвижки, характерные для сейсмофокальной зоны – северо-западное сжатие в направлении движения Тихоокеанской плиты. Одна из нодальных плоскостей имеет северо-восточное простирание, совпадающее с направлением островной дуги.

В Северо-Итурупском районе (\mathbb{N} 4) мелкофокусная сейсмическая активность повысилась по сравнению с 2009 г., но тем не менее осталась на довольно низком уровне: на глубине $h \le 80 \ \kappa m$ произошло 147 землетрясений, из них 26 с $M^P \ge 4.5$, что в 2.1 раза больше, чем в предыдущем году, но на одно событие меньше среднего значения за период 2001–2009 гг.; сейсмическая энергия в 7.5 раз больше, чем в 2009 г., но в 3.7 раза меньше среднегодового значения за указанный период (табл. 5, рис. 6 а).

Самое сильное (MLH=6.2) мелкофокусное землетрясение района (7) произошло 18 июня в 02^h23^m на глубине *h*=53 км. Оно ощущалось в г. Курильск (Δ =144 км) и пос. Малокурильское (Δ =178 км) с интенсивностью *I*=3 балла, в пос. Южно-Курильск (Δ =251 км) – 2 балла.

Всего макросейсмический эффект проявили пять землетрясений, интенсивность сотрясений не превышала 3 баллов (табл. 4).

В промежуточном слое сейсмическая активность района, напротив, снизилась: в интервале $h=81-168 \ \kappa m$ зарегистрировано 23 землетрясения, из них 11 с $M^P \ge 4.5$, что в 1.2 раза меньше среднегодового числа за 2001–2009 гг., суммарная сейсмическая энергия в 22.5 раза меньше среднегодового значения за указанный период (табл. 5, рис. 6 б).

Самое сильное (*MSH*=5.7) землетрясение с гипоцентром в промежуточном слое произошло 14 марта в $20^{h}56^{m}$ на глубине *h*=54 км.

Для двух землетрясений (7, 11) определены механизмы очагов (рис. 3).

В Кунашир-Шикотанском районе (№ 5) мелкофокусная сейсмическая активность оставалась на невысоком уровне, а в глубоком слое еще и понизилась. Общее число мелкофокусных землетрясений достигло N=166. Число землетрясений с $M^P \ge 4.5$ (N=25) в 1.3 раза, а величина сейсмической энергии – в 15 раз оказались ниже среднегодовых значений, рассчитанных для этого района по данным 2001–2009 гг. (табл. 5, рис. 6 а).

В промежуточном слое *h*=81–173 *км* число землетрясений в 1.9 раза, а величина сейсмической энергии – в 30 раз ниже среднегодовых значений за период 2001–2009 гг. (табл. 5, рис. 6 б).

Самое сильное (MLH=5.2) мелкофокусное землетрясение в районе произошло 16 марта в $08^{h}11^{m}$ на глубине $h=52 \ \kappa m$. Самое сильное (MLH=5.5) землетрясение промежуточного слоя произошло 4 апреля в $08^{h}35^{m}$ на глубине $h=91 \ \kappa m$, макросейсмический эффект этих землетрясений на территории региона отмечен не был. Землетрясение 4 апреля ощущалось в восточной части о. Хоккайдо с интенсивностью *I*=II по шкале JMA [29] (*I*=3–4 балла по шкале MSK-64 [30]).

В населенных пунктах Кунашир-Шикотанского района ощущались 15 землетрясений. Максимальная интенсивность сотрясений составила 5 баллов (табл. 4) для двух землетрясений: 15 января в 15^h 44^m с *MLH*=4.7, *h*=57 км и 5 июня в 05^h22^m с *MLH*=4.9, *h*=77 км. Макросейсмический

эффект с I=5 баллов отмечался в обоих случаях в пос. Малокурильское на расстояниях 33 и 57 км соответственно. В бюллетене ISC [15] имеется еще 20 сообщений о землетрясениях из Кунашир-Шикотанского района, которые ощущались на территории Японии. Максимальные сотрясения I=III балла по шкале JMA [29] или 5 баллов по шкале MSK-64 [30] наблюдались в восточной части о. Хоккайдо для землетрясения, произошедшего 4 октября в $02^{h}47^{m}$ на глубине h=55 км, с $K_{C}=10.0$

Для трех землетрясений (4, 6, 14) определены механизмы очагов [21].

Восток о. Хоккайдо (№ 6) составляет лишь малую часть прежней территории района до 2004 г., в связи с чем сопоставления параметров сейсмического режима с данными 2001–2009 гг. не проводится.

Здесь в верхнем интервале глубины $h \le 80 \ \kappa m$ было зарегистрировано пять землетрясений с магнитудой $M^P = 4.3 - 4.5$; в интервале глубины $h = 81 - 142 \ \kappa m$ – пять землетрясений в том же диапазоне магнитуд [19].

Три землетрясения проявили макросейсмический эффект на территории региона, который не превышал 3 баллов (табл. 4). На территории Японских островов 16 землетрясений из района № 6 вызвали колебания с интенсивностью от 2 до 6–7 баллов по шкале MSK-64 [30]. Максимальный макросейсмический эффект с *I*=IV балла по шкале JMA [29] или 6–7 баллов по шкале MSK-64 [30] наблюдался в восточной части о. Хоккайдо при землетрясении 8 апреля в 18^h41^m с *MLH*=4.4, *Mw*_{GCMT}=4.9, *h*=76 км.

В Охотском море (\mathbb{N} 8) отмечено три слабых мелкофокусных землетрясения, в глубоком слое ($h=81-569 \ \kappa m$) зарегистрировано 19 землетрясений с $M^P \ge 4.5$, что в 1.3 раза больше среднего значения за период 2001–2009 гг. При этом суммарная сейсмическая энергия на три порядка меньше среднего значения за указанный период (табл. 5, рис. 6 б).

Данных о макросейсмическом эффекте землетрясений района Охотское море на территории Курило-Охотского региона не поступало (табл. 4). По данным [15] два землетрясения (10 и 16) ощущались на территории Японских островов. Событие (10) 13 августа в 01^h33^m , $h=390 \ \kappa M$, MSH=5.7, $Mw_{\rm GCMT}=5.4$ ощущалось с интенсивностью I=I балл по шкале JMA [29] или 1–2 балла по шкале MSK-64 [30] на о. Хоккайдо, а также на о. Хонсю, в гг. Аомори ($\Delta=1028 \ \kappa M$) и Иватэ ($\Delta=1085 \ \kappa M$). Аналогичные макросейсмическиме проявления наблюдаются и для землетрясения (16), которое произошло 2 ноября в 18^h10^m с MSH=5.8, $Mw_{\rm GCMT}=5.5$, $h=364 \ \kappa M$ и ощущалось с интенсивностью I=II балла по шкале JMA [29], или 3–4 балла по шкале MSK-64 [30] на о. Хоккайдо: в гг. Аомори ($\Delta=827 \ \kappa M$) и Иватэ ($\Delta=886 \ \kappa M$). Макросейсмические проявления глубоких землетрясений на столь удаленных расстояниях – явление нередкое для Курило-Камчатской зоны субдукции.

Для землетрясений (10 и 16) определены механизмы очагов [21].

В сейсмологическом понимании 2010 г. был относительно спокойным, механизмов очагов землетрясений удалось определить немного – 19 (рис. 3 [21]). Среди полученных решений традиционно преобладают очаги типа взброс и пологий надвиг (11 событий), также получены решения сдвигового типа (3 события) и сбросового (4 события). Обычная для региона ориентация нодальных плоскостей вдоль островной дуги в этом году прослеживается плохо, для меньшей части событий. Возможно, очаги относительно слабых землетрясений 2010 г. формировались не только в условиях общего регионального напряжения сжатия северовосточного направления, но и под воздействием более локальных геодинамических причин.

Литература

- 1. **Михайлов В.И. (сост.).** Сейсмические станции Курило-Охотского региона в 2010 г. (См. Приложение к наст. сб. на CD).
- 2. Михайлов В.И. (сост.). Сейсмические станции Приамурья и Приморья в 2010 г. (См. Приложение к наст. сб. на CD).
- 3. **Михайлов В.И. (сост.).** Стационарные сейсмические станции Сахалина в 2010 г. (См. Приложение к наст. сб. на CD).
- 4. Фокина Т.А., Сафонов Д.А., Дорошкевич Е.Н. В.И. Михайлов Курило-Охотский регион // Землетрясения Северной Евразии, 2009 год. – Обнинск: ГС РАН, 2015. – С. 169–179.

- Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. Методические работы ЕССН. – М.: Наука, 1989. – С. 32–51.
- 6. **Миталёва Н.А., Бойчук А.Н.** Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1985 году. М.: Наука, 1988. С. 144–154.
- 7. Поплавская Л.Н., Миталёва Н.А., Бобков А.О., Бойчук А.Н., Рудик М.И. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1990 году. – М.: Наука, 1996. – С. 91–100.
- Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.
- Тараканов Р.З., Ким Чун Ун, Сухомлинова Р.И. Закономерности пространственного распределения гипоцентров Курило-Камчатского и Японского регионов и их связь с особенностями геофизических полей // Геофизические исследования зоны перехода от Азиатского континента к Тихому океану. – М.: Наука, 1977. – С. 67–75.
- Соловьёв С.Л., Соловьёва О.Н. Скорость колебания земной поверхности в объемных волнах неглубокофокусных Курило-Камчатских землетрясений на расстояниях до 17° // Физика Земли. – 1967. – № 1. – С. 37–60
- 11. Соловьёв С.Л., Соловьёва О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. 1967. № 2. С. 13–23.
- 12. Соловьёва О.Н., Соловьёв С.Л. Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. М.: Наука, 1968. С. 75–97.
- 13. Вермишева Л.Ю., Гангнус А.А. Применение типизации подвижек в очагах землетрясений для решения сейсмотектонических задач // Физика Земли. 1977. № 3. С. 103–109.
- 14. Сейсмологический бюллетень (ежедекадный) за 2010 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2010–2011. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2010*.
- 15. International Seismological Centre, On-line Bulletin, Internatl. Seis. Cent., Thatcham, United Kingdom, 2013. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/.
- 16. Фокина Т.А., Дорошкевич Е.Н., Нагорных Т.В., Сафонов Д.А. Курило-Охотский регион // Землетрясения Северной Евразии, 2004 год. – Обнинск: ГС РАН, 2010. – С. 180–187.
- 17. **Габсатарова И.П.** Границы сейсмоактивных регионов с 2004 г. // Землетрясения России в 2004 году. Обнинск: ГС РАН, 2007. С. 139.
- 18. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 272 с.
- 19. Дорошкевич Е.Н. (отв. сост.), Пиневич М.В., Швидская С.В. (сост.). Каталог землетрясений Курило-Охотского региона за 2010 г. (См. Приложение к наст. сб. на CD).
- 20. Фокина Т.А., Дорошкевич Е.Н., Величко Л.Ф. (отв. сост). Макросейсмический эффект ощутимых землетрясений в населенных пунктах Курило-Охотского региона и прилегающих территорий в 2010 г. (См. Приложение к наст. сб. на CD).
- 21. Сафонов Д.А. (отв. сост.), Гладырь Ж.В. (сост.). Каталог механизмов очагов землетрясений Курило-Охотского региона за 2010 г. (См. Приложение к наст. сб. на CD).
- 22. Дорошкевич Е.Н., Пойгина С.Г. (сост.). Сведения о пунктах, для которых имеется информация о макросейсмических проявлениях ощутимых землетрясений Курило-Охотского региона в 2010 г. (См. Приложение к наст. сб. на CD).
- 23. Дорошкевич Е.Н. (отв. сост.), Пиневич М.В., Швидская С.В. Каталог землетрясений Курило-Охотского региона за 2009 г. (*N*=553) // Землетрясения Северной Евразии, 2009 год. – Обнинск: ГС РАН, 2015 – (Ha CD).
- 24. Артёмова Е.В., Левина В.И. (сост.). Дополнение к каталогу землетрясений Курило-Охотского региона по данным ISC за 2010 г. (См. Приложение к наст. сб. на CD).
- 25. Сенюков С.Л., Дрознина С.Я. (отв. сост.), Козлова Н.И., Карпенко Е.А., Леднева Н.А., Митюшкина С.В., Назарова З.А., Напылова Н.А, Раевская А.А., Ромашева Е.И. (сост.). Каталог землетрясений Камчатки и Командорских островов за 2010 г. (См. Приложение к наст. сб. на CD).

- 26. Snoke J.A., Munsey J.W., Teague A.C., Bollinger G.A. A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data // Earthquake Notes. 1984. 55. No. 3. P. 15
- 27. Сафонов Д.А., Коновалов А.В. Апробация вычислительной программы FOCMEC для определения фокальных механизмов землетрясений Курило-Охотского и Сахалинского регионов // Тихоокеанская геология. 2013. **32**. № 3. С. 102–117.
- Рогожин Е.А., Левина В.И. Симуширские землетрясения 15 ноября 2006 г. (I) и 13 января 2007 г. (II) с *Мw*=8.3 и *Mw*=8.1 (Средние Курилы) // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2013. С. 326–338.
- 29. Hisada T., Nakagawa K. Present Japanese Development in Engincering Seismology and their Application to Buildings. Japan, 1958.
- 30. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.