СРЕДНЯЯ АЗИЯ и КАЗАХСТАН

УДК 550.348. (574+575.1+575.2)

Центральная Азия

А.М. Муралиев¹, К.Д. Джанузаков¹, Р. Шукурова¹, М.О. Гессель², М.Т. Тулаганова³

¹Институт сейсмологии НАН Кыргызской Республики, г. Бишкек, abmuraliev@mail.ru ²Сейсмологическая опытно-методическая экспедиция МОН Республики Казахстан, г. Алматы, kalmykova@mail.kz ³Институт сейсмологии АН Узбекистана, г. Ташкент, complex@uzsci.net

Сеть станций Центральной Азии. В 2010 г. регистрация землетрясений на территории Центральной Азии осуществлялась, как и ранее [1–4], сетью станций трех государств: Кыргызстана, Казахстана и Узбекистана. Сеть станций Кыргызстана подверглась значительным изменениям: продолжался постепенный переход от аналогового способа регистрации сейсмических событий к цифровому. В течение года было открыто 5 цифровых станций и общее их количество к концу года достигло 13. Из 10 аналоговых станций, работавших в начале года, к концу остались только 2 («Фрунзе» и «Каджи-Сай»); в январе перестала существовать аналоговая станция «Манас», в марте были закрыты «Суфи-Курган», «Терек-Сай» и «Ош», в мае – «Дараут-Курган», «Салом –Алик» и «Боом», и в ноябре – «Пржевальск». Остались без изменений 10 цифровых телеметрических станций сети КNET научной станции Российской академии наук [5].

В системе сейсмических наблюдений Казахстана из 31 цифровой станции, функционировавших в первой половине года, к концу года осталось 28, т.к. в августе были закрыты станции «Аухатты», «Кызыласкер» и «Кыргызсай» [6]. Сеть сейсмических наблюдений Узбекистана в 2010 г. составляли 23 цифровых станций [7]. Карта расположения сейсмических станций Центральной Азии приведена на рис. 1.

Рис. 1. Карта расположения сейсмических станций Центральной Азии в 2010 г.

Методика обработки землетрясений и погрешность. Обработка землетрясений и оценка точности определения координат очагов в основном осуществлялись по общепринятой инструкции [8].

Расположение густой высокочувствительной сети сейсмических станций в трех зонах – Северо-Тянь-Шаньской I₁, Ферганской II₁ и Приташкентско-Чимкентско-Каратауской II₂ – обеспечивало представительную регистрацию землетрясений на уровне K_{\min} =7 и наименьшую погрешность определения координат гипоцентров в пределах $\delta = \pm (5-10) \kappa M$.

На юго-востоке региона (на территории Китая), в Кокшаальско-Кашгарской зоне III₁ Южного Тянь-Шаня, погрешность определения координат эпицентров землетрясений с дополнительным привлечением некоторых станций Китая, как и прежде [4], осталась в пределах $\delta = \pm 25 \ \kappa m$, за исключением лишь отдельных землетрясений в окраинных частях этой зоны, где погрешность превышает $\delta = \pm 25 \ \kappa m$ и достигает $\delta = \pm 50 \ \kappa m$.

Районы и зоны. Общие границы региона, границы крупных районов (№ 1, № 2, № 3) не изменились[1–4]. Вся территория региона разделена на три района: Северо-Восточный, Юго-Западный и Южный Тянь-Шань (№ 1–№ 3). В районе № 1 имеются три зоны: Северо-Тянь-Шаньская (І₁), Срединно-Тянь-Шаньская (Нарынская) (І₂) и Джунгарская (І₃). В район № 2 входят пять зон: Ферганская (ІІ₁), Приташкентско-Чимкентско-Каратауская (ІІ₂), Самаркандско-Газлийская (ІІ₃), Сурхандарьинско-Кашкадарьинская (ІІ₄) и Кизыл-Кумская (ІІ₅). Район № 3 состоит их двух зон: Кокшаальско-Кашгарской (ІІІ₁) и Алайско-Гармской (ІІІ₂).

Каталог землетрясений. Общее число событий энергетических классов $K_P \ge 8.6$ для трех крупных районов в 2010 г. составило $N_{\Sigma} = 398$ [9], что меньше такового в 2009 г. ($N_{\Sigma} = 586$ [4]). Итоговое распределение землетрясений по классам дано в табл. 1.

Таблица 1. Распределение землетрясений Центральной Азии по классам *К*_Р в 2010 г.

K_{P}	9	10	11	12	13	N_{Σ}
N(K)	268	82	32	13	3	398
lg N	2.428	1.914	1.505	1.114	0.477	

Построенный по этим данным график повторяемости в исследуемом диапазоне $K_P \ge 8.6$ прямолинеен и характеризуется наклоном $\gamma = 0.50$. Из графика видно, что землетрясения с $K_{\min} = 9$ представительны на всей территории Центральной Азии.

льной Азии.
Максимальный энергетический класс землетрясений в 2010 г. равен K_P=13.5 и характеризует толчок, зарегистрированный 7 сентября в 15^h41^m в Южном Тянь-Шане (районе № 3), в его Алайско-Гармской зоне (III₂), граничащей с Китаем и Таджикистаном. Согласно бюллетеню ISC [10], его записали 1127 сейсмических станций земного шара. Решения его эпицентра получены во многих мировых и региональных агентствах (табл. 2).

Глубина землетрясения по фазе pP достаточно велика и равна $h_{pP}=32 \ \kappa m$. Согласно каталогу афтершоков [11] Нуринского землетрясения 05.10.2008 г. с $K_P=15.4$, Mw=6.7, $h=35-40 \ \kappa m$, $I_0=8 \ баллов$ [12], оно является его афтершоком. Его координаты, равные по региональным данным $\phi=39.63^{\circ}$ N,

 λ =73.90°E (табл. 2, [9]), достаточно близки к координатам (ϕ =39.53°N, λ =73.75°E) главного толчка 05.10.2008 г. [12], расстояние между их эпицентрами равно Δ =19 км.

Таблица 2. Основные параметры землетрясения 7 сентября 2010 г. в 15^h41^m по данным различных сейсмологических центров

Агент-	$t_0,$	δt_0 ,	Гипоцентр					Магнитуда	Источ-
ство	ч мин с	С	φ°, Ν	δφ°	λ°, Ε	δλ°	һ, км		ник
ИС НАН КР	15 41 38.3		39.63	0.04	73.90	0.04		$K_{\rm P}=13.5, MPVA=6.1$	[9]
MOS	15 41 39	1.04	39.46	0.04	73.85	0.04	27	MS=5.1/63, MPSP=5.6/68	[13]
ISC	15 41 41.6	0.27	39.500	0.03	73.768	0.03	32	Ms=5/2/242, mb=5.5/326 hpp=32 км	[10]
							32*		

Агент-	$t_0,$	δt_0 ,	(19. N	Ги	поцентр)	h m	Магнитуда	Источ-
Ство	ч мин с	C	φ ⁻ , N	οφ-	Λ ⁻ , E	01-	п, км		ник
NEIC	15 41 38.0	0.13	39.453	0.04	73.840	0.03	10f	$M_s=5.2/192, m_b=5.5/138, M_w=5.3$	_ " _
KRNET	15 41 37.9	0.10	39.492		73.972			$K_{\rm P}$ =13.0, $m_{\rm b}$ =6.7	_ ″ _
NNC	15 41 38.9	0.94	39.587	0.09	73.796	0.05	0f	$K_{\rm P}$ =13.7, $m_{\rm b}$ =6.1, $m_{\rm pv}$ =5.9	_ " _
BJI	15 41 39.3		39.51		73.90		30	$Ms=5.5/81, m_b=5.2/68$	_ " _
IDC	15 41 36.4	0.40	39.483	0.09	73.924	0.08	0f	$Ms=4.9/21, m_b=5.1/42,$	_ " _
GCMT	15 41 38.0	0.10	39.58		73.98		21	<i>Mw</i> =5.4/91	[14]

Примечание. Расшифровка кодов агентств дана в обозначениях к наст. сб.

Каталог механизмов очагов землетрясений [15] содержит параметры для 53 землетрясений, из них для ряда событий решения присланы из Казахстана и Узбекистана, что отмечено в сводном каталоге [15] меткой. Для события 2 марта в $01^{h}55^{m}$ приведено второе решение из GCMT [14] и еще для трех толчков (10 июня в $06^{h}38^{m}$, 7 сентября в $15^{h}41^{m}$, 8 декабря в $08^{h}21^{m}$) из этого же источника.

Определение механизмов очагов землетрясений выполнено по методике А.В. Введенской [16]. В качестве исходных данных использованы знаки первых вступлений *P*-волн, зарегистрированных региональной сетью сейсмических станций. Решение механизма очага для каждого землетрясения найдено с помощью компьютерных программ [17, 18]. Карта механизмов очагов землетрясений представлена на рис. 3.

1 – стереограммы механизмов очагов в проекции нижней полусферы, зачернена область сжатия, номер рядом со стереограммой соответствует номеру механизма очага в [15]; 2 – некоторые сейсмические станции.

Анализ механизмов очагов изученных землетрясений показал, что положения нодальных плоскостей разрывов в основном хорошо согласуются с положениями в пространстве основных геологических разломов. Надвиговые и взбросовые типы подвижек в очагах по-прежнему преобладают, по сравнению с другими типами подвижек (сдвиг, сброс и др.) (см. табл. 3).

Таблица 3. Типы подвижек в очагах землетрясений Центральной Азии с *К*_Р≥9.6 в 2010 г.

Типы подвижек в их очагах	Взброс	Взброс по крутой плоскости или сдвиг по пологой	Надвиг	Сдвиго- надвиг	Сдвиг	Сдвиго- сброс	Сброс
Ni	5	11	9	5	6	4	3

Надвиговым и взбросовым типам подвижек соответствует напряженное состояние: близмеридиональное близгоризонтальное сжатие и вертикальное растяжение.

Рассмотрим более детально механизм очага максимального в 2010 г. землетрясения 7 сентября. В региональном каталоге механизмов [15], как указано выше, даны параметры механизма методом СМТ агентства GCMT, но в [10] есть еще два решения агентства NEIC как методом СМТ, так и по знакам первых вступлений *P*-волн. Все три решения собраны в верхней половине табл. 4.

Агентство	t_0 ,	h,	K _P	Mw	Оси главных напряжений Нодальные плоскости							Ис-					
	ч мин с	км				Т		N P		NP1			NP2			точ-	
					PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	ник
07.09.2010 г.																	
GCMT	15 41 38.3	21	13.5	5.4	7	267	84	67	3	177	312	83	177	43	87	7	[14]
NEIC (CMT)	15 41 38.0	10f		5.2	39	275	45	61	17	171	305	48	162	47	77	43	[10]
NEIC (<i>P</i> -волн)	_ " _			5.3	32	261	57	87	2	353	303	70	154	43	66	22	[10]
				05.	10.2	2008	г. (-	«Нур	a»)								
ИС НАН КР	15 52 43.7	37	15.4		52	287	35	84	11	183	308	45	144	65	65	50	[19]
GCMT	15 53 01 1	33f		67	79	31	8	256	7	165	246	38	78	82	53	99	[14]

Таблица 4. Параметры механизма очага землетрясения 7 сентября 2010 г. и 5 октября 2008 г. по данным различных агентств

Стереограммы этих трех решений, приведенные на рис. 4, свидетельствуют о преимущественных сдвиговых подвижках по обеим крутым нодальным плоскостям. Правда, оба решения NEIC содержат компоненты взброса по обеим плоскостям, т.е. получаются подвижки типа сдвиго-взброса.

Рис. 4. Стереограммы механизмов очагов землетрясений 05.10.2008 г. и 07.09.2010 г. в проекции нижней полусферы

1 - нодальные линии; 2, 3 - оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

В нижней половине табл. 4 даны параметры двух решений механизма очага главного толчка – Нуринского землетрясения 05.10.2008 г., а их стереограммы – на рис. 4. Как видим, практически такое же движение типа взбросо-сдвига по более крутой плоскости и сдвиговзброса – по другой, описывают параметры механизма очага Нуринского землетрясения 05.10.2008 г. [12], но только по региональному решению [19], а по решению GCMT [14] – преимущественные взбросы по обеим некрутым плоскостям. Подводя итог сравнения, можно утверждать, что нет принципиальных различий движений в очагах Нуринского землетрясения 05.10.2008 г. [12] и его крупного позднего афтершока 07.09.2010 г. [11].

Дополнительные каталоги за 2010 г. содержат сведения о макросейсмическом эффекте [20], количестве сотрясенных населенных пунктов и их координаты [21], списки и параметры сейсмических станций Кыргызстана [5], Узбекистана [6] и Казахстана [7], по записям которых созданы каталоги землетрясений и механизмов очагов. В частности, большая часть сведений о макросейсмическом эффекте максимального (K_P =13.5) в 2010 г. землетрясения 7 сентября представлена по региональным данным [20], согласно которым оно ощущалось с интенсивностью *I*=6–7 баллов в Нуре (8 км) и Иркештаме (10 км), 5 баллов – в Сары-Таше (60 км), 3 балла – в Оше (120 км). Кроме того, *ред.* добавлены сведения из Сейсмологического бюллетеня (Суфи-Курган – 4 балла [13]) и данные агентства NEIC (ощущалось в Каши, Китай [10]).

Карта эпицентров землетрясений за 2010 г. Пространственное распределение эпицентров землетрясений с $K_P \ge 8.6$ для территории Центральной Азии за 2010 г. показано на карте эпицентров землетрясений (рис. 5).

Рис. 5. Карта эпицентров землетрясений Центральной Азии за 2010 г.

1 – энергетический класс $K_{\rm P}$; 2 – глубина *h* гипоцентра, κm ; 3 – сейсмическая станция: а) казахская, b) киргизская (телеметрическая сеть), c) киргизская (цифровая сеть), d) узбекская, e) китайская; 4 – изолиния $K_{\rm min}$ =8.6; 5–7 – граница зоны, района, региона соответственно; 8 – граница СНГ.

Сравнение ее с аналогичными картами за предыдущие годы [1–4] показывает, что основные сейсмоактивные зоны и их конфигурация достаточно стабильно сохраняются во времени и в целом совпадают с их распределением за предыдущие годы. Своеобразным в каждом году оказывается лишь изменение уровня сейсмической активности разных зон, расположение очагов сильных ($K_P \ge 11.6$) землетрясений и их миграция во времени вдоль высокосейсмичных глубинных разломов большой протяженности: Северо-Тянь-Шаньского, Южно- и Северо-Ферганского, Гиссаро-Кокшаальского.

Распределение их по районам № 1–№ 3, энергетическим классам и суммарной сейсмической энергии приводится в табл. 5.

№	Район	K_{\min}			K_{P}			N_{Σ}	ΣE ,
			9	10	11	12	13		Дж
1	Северо-Восточный Тянь-Шань	9	75	23	5	3	1	107	$6.396 \cdot 10^{12}$
2	Юго-Западный Тянь-Шань	9	58	19	8	2		87	$2.230 \cdot 10^{12}$
3	Южный Тянь-Шань	9–10	135	40	19	8	2	204	$4.786 \cdot 10^{13}$
	Всего		268	82	32	13	3	398	5.649·10 ¹³

Таблица 5. Распределение числа землетрясений разных классов *K*_P и суммарная сейсмическая энергия Σ*E* по районам

Суммарное число зарегистрированных на описываемой территории землетрясений с $K_{\rm P} \ge 8.6$ в 2010 г. ниже, чем в 2009 г. (табл. 6). Величина выделенной сейсмической энергии в 2010 г. ($\Sigma E=0.56 \cdot 10^{14} \ Ammedia$) также ниже, чем в 2009 г. ($\Sigma E=2.55 \cdot 10^{14} \ Ammedia$).

Год				N_{Σ}	ΣE ,				
	9	10	11	12	13	14	15	_	10 ¹⁴ -Дж
1996	348	102	42	9	3		1	505	4.637
1997	550	280	134	42	3	3	6	1018	38.280
1998	493	196	75	19	7	2	1	789	8.074
1999	345	123	41	12	3			524	0.4596
2000	323	107	46	4	1	1		483	1.3034
2001	270	86	34	8		1		399	1.360
2002	270	78	31	6	2			387	0.2795
2003	534	141	66	14	5	4	2	766	0.2394
2004	351	99	40	8	2			500	0.2394
2005	361	80	17	8	3		1	488	8.2996
2006	392	93	34	9	1	2	1	531	2.277
2007	317	105	32	13	3	1	1	471	7.0300
2008	622	201	62	18	6	2	1	912	102.9
2009	386	144	41	9	4	2		586	2.55
Среднее за 14 лет	397.28	131.07	49.64	12.86	3.143	1.286	1.0	596	18.2
2010	268	82	32	13	3			398	0.5649

Таблица 6. Распределение по годам землетрясений разных классов *K*_P и суммарная сейсмическая энергия Σ*E* на территории Центральной Азии с 1996 г. по 2010 г.

Средние значения основных характеристик уровня сейсмичности – $N_{cp}=596$ и $\Sigma E_{cp}=18.2 \cdot 10^{14} \ Дж$ – за 14 лет (1996–2009 гг.) выше соответствующих значений этих параметров в 2010 г. в 1.5 и в 32 раза соответственно (табл. 6).

Рассмотрим детально сейсмичность каждого из трех районов, разделенных на зоны (рис. 5). **В районе № 1 – Северо-Восточном Тянь-Шане**, который включает три зоны: I₁ – Северный Тянь-Шань, I₂ – Срединный Тянь-Шань, I₃ – Джунгарию, эпицентры землетрясений расположены в основном полосой северо-восточного простирания вдоль южной границы всего района № 1 и отсутствуют в параллельной полосе, севернее Бишкека и Алматы (рис. 5). Суммарное число землетрясений в районе в 2010 г., равное $N_{\Sigma}=107$ (табл. 7), почти такое же, как в 2009 г. ($N_{\Sigma}=111$ [4]), но уровень сейсмической энергии ниже значительно – $\Sigma E \sim 0.06 \cdot 10^{14} Дж$ в табл. 7 вместо 1.22 $\cdot 10^{14} Дж$ в [4]. Если сравнить показатели за 2010 г. со средними значениями за 14 лет, то число землетрясений в 2010 г. чуть выше ($N_{\Sigma}=107$ вместо $N_{\Sigma}=88$), но высвобожденная энергия ниже средней ее величины в 19 раз (табл. 7).

Год				K_{P}				N_{Σ}	$\Sigma E \cdot 10^{14}$,
	9	10	11	12	13	14	15	1	Дж
1996	60	18	8	4	2			92	0.2680
1997	72	17	2	4	1		1	97	4.1440
1998	53	23	9	3	1	1		90	1.1418
1999	55	23	5		2			85	0.2080
2000	39	17	5		2			63	0.2071
2001	37	18	6	1				62	0.0204
2002	46	12	5					63	0.0089
2003	92	19	8	3		2		124	3.8280
2004	64	10	5	2	1			82	0.0802
2005	67	15	5	3			1	91	7.982
2006	76	21	10	3		1	1	111	1.6420
2007	48	23	2	2	1			76	0.0842
2008	52	19	6	3	1			81	0.1384
2009	83	17	7	1	2	1		111	1.22
Среднее за 14 лет	60.286	18	5.929	2.071	0.929	0.357	0.214	88	2.62
2010	75	23	5	3	1		0	107	0.0640

Таблица 7. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* в Северо-Восточном Тянь-Шане (№ 1) за 1996–2010 гг.

В центральной и северо-восточной частях Северо-Восточного Тянь-Шаня произошло несколько ощутимых землетрясений.

Максимальное (K_P =12.6) землетрясение в зоне I₁ зарегистрировано 2 марта в 01^h55^m. Оно ощущалось с интенсивностью *I*=6 баллов в Бординском (15 км) и в Кок-Мойноке (16 км); 5–6 баллов – в Орто-Токое (32 км) и 5 баллов – в Балыкчи (46 км). В этой же зоне ощущалось землетрясение 20 апреля в 10^h18^m с K_P =11.6 с интенсивностью 5–6 баллов в Бабатугане (15 км) и 4 балла – в Чилике (35 км).

В Срединно-Тянь-Шаньской зоне I₂ ощущалось землетрясение 28 января в $19^{h}44^{m}$ с K_{P} =11.6 в Арпе (10 км) 5–6 баллов, в Кара-Су (32 км) – 4–5 баллов.

В Джунгарской зоне I₃ землетрясение 12 сентября в $13^{h}01^{m}$ с $K_{P}=12.0$ ощущалось в Калпе (44 км) с I=4-5 баллов, в Уштюбе (50 км) – 4–5 баллов.

Для названных четырех землетрясений в каталоге механизмов [15] получены региональные решения их параметров, согласно которым построены стереограммы (рис. 6).

Рис. 6. Стереограммы механизмов очагов землетрясений района № 1 в 2010 г. в проекции нижней полусферы

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Решение механизма очага землетрясения 2 марта получено по данным знаков первых вступлений *P*-волн, собранных по 25 сейсмическим станциям региона. Знаки первых вступлений *P*-волн в большинстве случаев четкие. Ось напряжения сжатия в очаге ориентирована с юговостока на северо-запад (AZM=150°), угол с горизонтом составляет PL_P =8°. Ось напряжения растяжения – с юго-запада на северо-восток (AZM=240°, PL_T =4°). Ось промежуточного напряжения ориентирована на северо-запад (азимут 352°, угол 82°). Таким образом, в очаге землетрясения произошла подвижка типа сдвиго-сброс. Обе нодальные плоскости близвертикальны.

В целом в Северо-Восточном Тянь-Шане наблюдалось незначительное понижение уровня сейсмической активности, по сравнению с таковой в 2009 г. [4], но по энергии уменьшение в 19 раз.

В Юго-Западном Тянь-Шане (район № 2) в 2010 г. наибольшей плотностью эпицентров, так же как и в предыдущие годы [1–4], характеризуется Ферганская зона (II₁), особенно ее восточная и северо-восточная части. Самое сильное (K_P =11.9) зарегистрированное здесь землетрясение произошло 11 мая в 22^h58^m. Оно ощущалось с интенсивностью *I*=6 баллов в Кызыл-Джаре (8 км); 5–6 баллов – в Шамалды-Сае (20 км) и Таш-Кумыре (20 км); 3 балла – Кара-Куле (68 км). Для него в [15] имеется региональное решение механизма очага (рис. 7), согласно которому в его очаге под действием преобладающих напряжений сжатия реализовалась подвижка типа сдвиго-взброс.

Рис. 7. Стереограмма механизма очага землетрясения 11 мая в 22^h58^m с *К*_P=11.9 в проекции нижней полусферы

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

В Приташкентско-Чимкентско-Каратауской зоне II_2 заметна группа из шести землетрясений возле Ташкента, максимальным из которых ($K_P=10.6$) является толчок 28 июля в 15^h35^m с $h=5 \ \kappa m$, и чуть слабее ($K_P=10.5$) – толчок 23 января в 19^h19^m . Ни по одному из них макросейсмических данных, к сожалению, нет. Интересны большие глубины у двух событий: $h=30 \ \kappa m$ у землетрясения 23 мая в 10^h10^m с $K_P=9.2$ и $h=35 \ \kappa m - 28$ августа в 10^h17^m с $K_P=9.0$.

В Самаркандско-Газлийской зоне II₃ ежегодно регистрируются немногочисленные афтершоки сильнейших Газлийских землетрясений 1976 г. [22] и 1984 г. [23]. В 2010 г. их всего три с K_P ÷10: 4 апреля в 10^h50^m с K_P =10.4, 9 июня в 20^h53^m с K_P =10.5 и 25 июня в 18^h16^m с K_P =9.6.

В Сурхандарьинско-Кашкадарьинской зоне II_4 в 2010 г. зарегистрировано только одно землетрясение 11 января в 09^h45^m с K_P =9.9, а в Кызыл-Кумской зоне – ни одного.

В целом по району № 2 наблюдалось значительное понижение числа землетрясений и уровня выделенной сейсмической энергии в 2010 г. – N_{Σ} =87, ΣE =0.0223·10¹⁴ Дж в табл. 8 – по сравнению с таковыми в 2009 г., равными N_{Σ} =102 и ΣE =0.1466·10¹⁴ Дж.

Более того, имеет место значительное понижение числа землетрясений и выделенной суммарной сейсмической энергии по сравнению со средними значениями этих параметров (N_{Σ} =122.8, ΣE =0.94·10¹⁴ Дж) за предыдущие 14 лет (табл. 8).

Год				K_{P}				N_{Σ}	$\Sigma E \cdot 10^{14}$,
	9	10	11	12	13	14	15	-	Дж
1996	126	16	13					155	0.014
1997	112	16	7					135	0.006
1998	86	24	4					114	0.0091
1999	73	30	10	3	1			117	0.1227
2000	90	23	11	1		1		126	1.0242
2001	85	26	11	2		1		125	1.289
2002	75	29	8	2	1			115	0.1394
2003	94	20	9	2	1			126	0.07056
2004	68	22	9		1			100	0.07065
2005	93	26	3	3	1			126	0.07296
2006	83	22	8					113	0.0107
2007	94	35	10	6	1		1	147	10.17
2008	81	28	7	2	1			119	0.1306
2009	65	29	3	4	1			102	0.1466
Среднее за 14 лет	87.5	24.71	8.071	1.786	0.571	0.143	0.071	122.8	0.94
2010	58	19	8	2				87	0.0223

Таблица 8. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* в Юго-Западном Тянь-Шане (№ 2) за 1996–2010 гг.

В Южном Тянь-Шане (район № 3) в 2010 г. наибольшее из трех районов суммарное число землетрясений, равное N_{Σ} =204, и наибольшее суммарное количество высвобожденной в очагах энергии – ΣE =0.4786·10¹⁴ Дж (табл. 9). В то же время эти значения меньше таковых в 2009 г. (N_{Σ} =373, ΣE =1.183·10¹⁴ Дж) [4]. Информация по району № 3 за последние 14 лет собрана в табл. 9.

Таблица 9. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* в Южном Тянь-Шане (№ 3) за 1996–2009 гг.

Год				$K_{ m P}$					N_{Σ}	$\Sigma E \cdot 10^{14}$,
	9	10	11	12	13	14	15	16		Дж
1996	155	68	20	5	1		1		250	4.3540
1997	366	247	125	38	2	3	5		786	34.130
1998	354	149	62	16	6	1	1		589	7.6010
1999	217	70	26	9					322	0.1499
2000	193	67	30	3					293	0.0686
2001	148	41	17	5					211	0.0498
2002	149	37	18	4	1				209	0.1312
2003	348	102	49	9	4	2	2		516	14.7200
2004	219	67	26	6					318	0.08856
2005	201	39	9	3	2				253	0.02446
2006	233	50	16	6	1	1			307	0.6238
2007	175	47	19	5	1	1			248	1.175
2008	489	154	49	13	4	2		1	712	102.756
2009	238	98	31	4	1	1			373	1.183
Среднее за 14 лет	249.77	87.54	35.85	9.385	1.69	0.769	0.692	0.072	384.8	14.66
2010	135	40	19	8	2				204	0.4786

В отдельных зонах III₁ и III₂ района следует отметить ряд ощутимых землетрясений.

В Кокшаальско-Кашгарской зоне III_1 в 2010 г. отмечены два ощутимых землетрясения. Одно из них произошло 25 марта в 15^h50^m с K_P =11.9 и ощущалось с интенсивностью *I*=5–6 баллов в Кызылое (16 км), 3 балла в Кашгаре (66 км) и Иркештаме (90 км). Второе землетрясение зарегистрировано 8 апреля в 05^h30^m с K_P =11.6 ощущалось в Учтурфане (22 км) с *I*=5–6 баллов и в Чагараке (46 км) – 4 балла.

*В Алайско-Гармской зоне III*₂ произошло 9 ощутимых землетрясений выше 12-го класса, а именно:

– землетрясение 10 июня в $06^{h}38^{m}$ с K_{P} =12.4 ощущалось в Улугате (40 км) с *I*=4–5 баллов, в Суфи-Кургане (110 км) – 3 балла;

– землетрясение 17 июня в 08^h06^m K_P=11.9 ощущалось в Джергетале (10 км) с *I*=5.5 балла, в Карамыке (50 км) – 5.5 балла, Зардалы (60 км) – 3 балла;

– землетрясение 20 августа в $16^{h}57^{m}$ с $K_{P}=11.9$ ощущалось в Ходжаташе (15 км) с I=5-6 баллов, в Джергетале (65 км) – 4 балла;

– землетрясение 7 сентября в $15^{h}41^{m}$ с $K_{P}=13.5$ ощущалось в Нуре (8 км) и в Иркештаме (10 км) с I=6-7 баллов, в Сары-Таше (60 км) – 5 баллов, в Оше (120 км) – 3 балла.

– землетрясение 7 сентября в $15^{h}49^{m}$ с $K_{P}=11.8$ ощущалось в Нуре (5 км) с I=6 баллов, в Кёктюбе (56 км) 4–5 баллов;

– землетрясение 8 сентября в $18^{h}17^{m}$ с $K_{P}=11.8$ ощущалось в Нуре (11 км) с I=5-6 баллов, в Иркештаме (16 км) 5 баллов;

– землетрясение 7 октября в $01^{h}40^{m}$ с $K_{P}=11.6$ ощущалось с I=5 баллов в Полдараке (18 км) и в Навабаде (40 км);

– землетрясение 9 октября в $10^{h}58^{m}$ с $K_{P}=12.1$ ощущалось в Жаныжере (26 км) с I=5 баллов, в Маркансу (40 км) – 4 балла, Ачык-Суу (72 км) – 3 балла;

– землетрясение 8 декабря в $08^{h}21^{m}$ с $K_{P}=12.8$ ощущалось в Ачык-Суу (16 км) с I=6-7 баллов, в Сарымоголе (30 км) – 5–6 баллов, Дараут-Кургане (44 км) – 5 баллов, Лянгаре (65 км) – 4 балла.

Механизм очага в [15] имеется для двух из них (рис. 8):

Рис. 8. Стереограммы механизмов очагов землетрясений 10 июня с *K*_P=12.4 (GCMT) и 8 декабря с *K*_P=12.8 (GCMT) в проекции нижней полусферы

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Рассматривая сейсмический процесс в регионе в целом, можно констатировать, что в 2010 г. эпицентральные зоны и их конфигурация остались без особых изменений во времени и в целом совпадают с их распределением за предыдущие годы.

Литература

- 1. Джанузаков К.Д., Муралиев А.М., Калмыкова Н.А., Холикова М.А. Центральная Азия// Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. С. 108–115.
- 2. Джанузаков К.Д., Муралиев А.М., Калмыкова Н.А., Холикова М.А. Центральная Азия // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2013. С. 127–132.
- 3. Джанузаков К.Д., Муралиев А.М., Калмыкова Н.А., Холикова М.А. Центральная Азия // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 119–127.
- 4. Джанузаков К.Д., Муралиев А.М., Калмыкова Н.А., Холикова М.А. Центральная Азия // Землетрясения Северной Евразии, 2009 год. Обнинск: ГС РАН, 2015 С. 107–113.
- 5. Берёзина А.В. (отв. сост.). Сейсмические станции, работавшие на территории Кыргызстана в 2010 г. (См. Приложение к наст. сб. на CD).
- 6. **Холикова М.А. (сост.).** Сейсмические станции комплексной сейсмологической экспедиции Узбекистана, действовавшие в 2010 г. (См. Приложение к наст. сб. на CD).

- Неверова Н.П. (СОМЭ МОН РК) (сост.). Сейсмические станции Сейсмологической опытнометодической экспедиции Министерства образования и науки Республики Казахстан в 2010 г. (См. Приложение к наст. сб. на CD).
- 8. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 273 с.
- Джанузаков К.Д. (отв. сост. по региону), Шукурова Р. (сост. по региону), Соколова Н.П. (Кыргызстан), Гессель М.О. (Казахстан), Тулаганова М.Т. (Узбекистан); Молдобекова С., Афонина Л.Р., Неверова Н.П., Бектурганова Б.Б., Содикова К.И., Кучкаров К.И., Артёмова Е.В. (сост.). Каталог землетрясений Центральной Азии за 2010 г. (См. Приложение к наст. сб. на CD).
- 10. International Seismological Centre, On-line Bulletin, Internatl. Seis. Cent., Thatcham, United Kingdom, 2013. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/.
- 11. Фролова А.Г., Берёзина А.В., Молдобекова С., Першина Е.В. (отв. сост.). Афтершоки землетрясения Нура 5 октября 2008 г. с *K*_P=15.4, *Mw*=6.7, *I*₀=8 (Кыргызстан) за 2008–2010 гг. с *K*_P=5.7–14.5. (См. Приложение к наст. сб. на CD).
- Абдрахматов К.Е., Омуралиев М., Ормуков Ч. Землетрясение Нура 5 октября 2008 г. с K_P=15.4, Mw=6.7, I₀=8 (Кыргызстан) // Землетрясения Северной Евразии, 2008 год. – Обнинск: ГС РАН, 2014. – С. 408–416.
- 13. Сейсмологический бюллетень (ежедекадный) за 2010 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2010–2011. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2010*.
- 14. Global CMT Catalog Search. URL: http://www.globalcmt.org/.
- 15. Муралиев А.М. (отв. сост.), Малдыбаева М.Б., Абдыраева Б.С., Досайбекова С., Холикова М.А. (сост.). Каталог механизмов очагов землетрясений Центральной Азии за 2010 г. (См. Приложение к наст. сб. на CD).
- 16. **Введенская А.В.** Определение полей смещений при землетрясениях с помощью теории дислокаций // Изв. АН СССР. – Сер. геофизическая. – 1956. – № 3. – С. 34 – 47.
- 17. Suetsugu D. Source Mechanism. Tsukuba, Japan: IISEE, 1998. 103 p.
- Reasenberg P.A. and Oppenheimer D. FPFIT, FPPLOT and FPPAGE: Fortran computer programs for calculating and lisplaying earthquake fault-plaue solutions. – Open-file report 85-739. – Menlo Park, California, 1985. – 109 p.
- Муралиев А.М. (отв. сост.), Малдыбаева М.Б., Абдыраева Б.С., Полешко Н.Н., Каймачникова Н.И. Каталог механизмов очагов землетрясений Центральной Азии за 2008 г. (*N*=95) // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. (Ha CD).
- 20. Берёзина А.В., Артёмова Е.В. (сост.). Макросейсмический эффект ощутимых землетрясений в населенных пунктах Центральной Азии в 2010 г. (См. Приложение к наст. сб. на CD).
- 21. Берёзина А.В., Артёмова Е.В., Бахтиарова Г.М. (сост.). Сведения о пунктах, для которых имеется информация о макросейсмических проявлениях ощутимых землетрясений Центральной Азии за 2010 г. (См. Приложение к наст. сб. на CD).
- 22. Ананьин И.В., Касымов С.М., Джураев А., Мадатов П., Абдурахманов С.А., Голинский Г.Л., Мурадов Ч., Рахимов А.Р., Иодко В.К., Краснова А.Ф. Макросейсмические данные Газлийских землетрясений 1976 г. // Землетрясения в СССР в 1977 году. М.: Наука, 1981. С. 47–67.
- 23. Абдыкадыров А.А., Азизов Г.Ю., Аронов А.Г., Яковлев В.Н., Зарифбаев Х.З., Исмаилов Ш.Ш., Джураев А., Иодко В.К., Шебалин Н.В., Краснова А.Ф. Газлийское землетрясение 19 марта 1984 г. // Землетрясения в СССР в 1984 году. – М.: Наука, 1987. – С. 67–85.