СПЕКТРАЛЬНЫЕ и ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ

СЕВЕРНОГО КАВКАЗА

Л.С. Малянова, И.П. Габсатарова

Геофизическая служба РАН, г. Обнинск, Imal@gsras.ru, ira@gsras.ru

Для десяти землетрясений Северного Кавказа (табл. 1) построены спектры по записям станций «Сочи» и «Кисловодск» с использованием методики [1], примененной ранее [2–5] в этом же регионе. В отличие от данных в 2008 г. [6]

э лишь одно из анализируемых землетрясений произошло в западной, остальные в центральной зонах. Одно из них произошло в приграничном районе Грузии 7 сентября 2009 г. в $22^{h}41^{m}$ с $K_{p}=14.3$ [7], MS=5.8 [8], Mw=6.0 [9] и сопровождалось афтершоками. Оно описано в отдельной статье наст. сб. как Онийское-II [10]. Спектральные и очаговые параметры этого землетрясения и семи его сильнейших афтершоков приводятся также в табл. 1.

Таблица 1. Список землетря	ясений Северног	о Кавказа, для кото	рых рассчитаны с	спектры в 2009 г.
----------------------------	-----------------	---------------------	------------------	-------------------

№	Дата,	<i>t</i> ₀ ,	Эпицентр		h,	$K_{ m P}$	Район
	дм	ч мин с	φ°, Ν	λ°, Ε	КМ		
1	22.03	02 46 39.6	44.71	37.48	39	9.4	Краснодарский край
2	07.09	22 41 36.4	42.56	43.38	6	14.2	Грузия
3	07.09	22 49 29.7	42.54	43.52	7	12.3	Грузия
4	07.09	23 21 03.3	42.61	43.42	6	11.2	Грузия
5	07.09	23 33 50.7	42.61	43.53	10	10.6	Грузия
6	08.09	17 50 48.3	42.54	43.43	1	11.2	Грузия
7	09.09	08 36 17.5	42.53	43.53	6	11.5	Грузия
8	09.09	09 44 21.6	42.53	43.57	9	10.7	Грузия
9	12.09	09 41 19.3	42.53	43.44	11	11.3	Грузия
10	12.10	23 26 02.2	43.77	42.98	16	9.3	Кабардино-Балкария

Рис. 1. Карта эпицентров землетрясений 2009 г., для которых проведен спектральный анализ

1 – энергетический класс K_P ; 2 – широкополосная сейсмическая станция опорной сети; 3 – короткопериодная станция региональной сети.

Так как спектр записи реального землетрясения в точке наблюдения является суперпозицией эффектов самого источника, амплитудно-частотной характеристики регистрирующего прибора, среды на пути очаг–станция и направленности излучения, то была применена методика учета всех этих факторов при переходе от станционного спектра к спектру источника, которая подробно изложена в [11–13]. Значение сейсмического момента в очаге землетрясения M_0 получено по формуле из [12]:

$$M_0 = \Omega_0(4\pi\rho \upsilon^3) / R_{\theta\varphi} \cdot G(\Delta, h) \cdot C(\omega), \tag{1}$$

где Ω_0 – максимальное значение спектральной плотности при $\omega \rightarrow 0$; υ и ρ – скорость распространения волны и плотность пород в окрестности очага; $R_{\theta\phi}$ – функция, характеризующая направленность излучения из очага на станцию; $G(\Delta, h)$ – поправка за геометрическое расхождение; $C(\omega)$ – частотная характеристика земной коры под станцией.

Для относительно слабых по магнитуде землетрясений при неизвестном механизме очага обычно принимается среднее значение $R_{\theta\phi}=0.6$ [14], что было сделано и в наст. ст., т.к. механизмы исследуемых очагов не удалось построить из-за недостаточного числа знаков первого движения в *P*-волне.

Функция геометрического расхождения $G(\Delta, h)$ для близких землетрясений на расстояниях от станции регистрации $r < 1000 \ \kappa m$ может быть оценена как 1/r [15], где r – гипоцентральное расстояние. Частотная характеристика земной коры под станцией принимается в среднем равной $C(\omega)=2$ в случае отсутствия данных конкретных исследований.

В станционные спектры были введены поправки S(f) за неупругое затухание волны в мантии, которая рассчитывается по формуле (2) из [13]:

$$S_{\rm m}(f) = e^{-t_{\rm S}^* \pi f},$$
 (2)

где t_s^* – отношение времени t_s пробега *S*-волны до станции регистрации к средней добротности среды Q_{cp} вдоль луча по [13] равно

$$t_{\rm S}^{*} = t_{\rm S} / Q_{\rm cp}.$$
 (3)

Значение Q_{cp} для *S*-волн Северо-Западного Кавказа по записям «Сочи» и «Кисловодск» определено О.В. Павленко [16] и находится для полосы частот $\Delta f=1-8 \ \Gamma u$ из зависимостей $Q(f) \sim 80 \ f^{0.9}$ для «Сочи» и ~85 $f^{0.9}$ – для «Кисловодска».

Для построения спектров выбирался фрагмент записи *S*-волны от начала вступления до момента, когда амплитуда этой группы волн достигла примерно $1/3 A_{\rm S}$ max [15] (пример на рис. 2). В зависимости от удаленности станции от очага землетрясения длительность τ записи выбранных фрагментов варьировала от 70 до 90 *c* от вступления *S*-волны.

Рис. 2. Записи землетрясения 7 сентября 2009 г. в 22^h49^m с *K*_P=12.3 на горизонтальных компонентах широкополосного сейсмометра СМ-3-ОС на станциях «Кисловодск» и «Сочи»

Спектры S-волн станции «SOC» десяти землетрясений для двух горизонтальных компонент приводятся на рис. 3. Здесь помещены спектры только тех землетрясений, для которых корректно проведены две асимптоты в соответствии с моделью Брюна [17].

Рис. 3. Станционные спектры на горизонтальных составляющих (BHN, BHE, BLN, BLE) станций «Сочи» и «Кисловодск» для землетрясений из табл. 2 (помещены спектры землетрясений, для которых проведены две асимптоты в соответствии с моделью Брюна)

Замеры спектральной амплитуды Ω_0 осуществлялись также для обеих горизонтальных компонент и приведены в табл. 2 вместе с вычисленными по ним сейсмическими моментами M_0 и моментными магнитудами Mw по формулам (4) Канамори из [18]:

$$Mw = 2/3 (\lg M_0 + 7) - 10.7.$$
(4)

N⁰	Дата, дм	t ₀ , ч мин с	$K_{ m P}$	Код с/ст	Δ°	Компонента	$\Omega_0,\ {\cal M}\cdot c$	М ₀ , <i>Н</i> ∙м
1	23.03	02 46 39.6	9.4	SOC	2.00	BHE	0.000000476	$1.3 \cdot 10^{14}$
						BHN	0.000000588	$1.6 \cdot 10^{14}$
2	07.09	22 41 36.4	14.2	SOC	2.84	BLE	0.01469	$5.6 \cdot 10^{18}$
						BLN	0.02488	$9.4 \cdot 10^{18}$
				KIV	1.48	BHE	0.0276	$5.5 \cdot 10^{17}$
						BHN	0.0256	$5.1 \cdot 10^{17}$
3	07.09	22 49 29.7	12.3	SOC	2.94	BHE	0.0000516	$2.0 \cdot 10^{16}$
						BHN	0.0000476	$1.9 \cdot 10^{16}$
				KIV	1.54	BHE	0.000178	$3.7 \cdot 10^{16}$
						BHN	0.0000743	$1.5 \cdot 10^{16}$
4	07.09	23 21 03.3	11.2	SOC	2.84	BHE	0.0000213	$8.1 \cdot 10^{15}$
						BHN	0.0000314	$1.0 \cdot 10^{16}$
5	07.09	23 33 50.7	10.6	SOC	2.92	BHE	0.00000664	$2.6 \cdot 10^{15}$
						BHN	0.00000744	$2.9 \cdot 10^{15}$
6	08.09	17 50 48.3	11.2	SOC	2.88	BHE	0.0000438	$1.7 \cdot 10^{16}$
						BHN	0.0000432	$1.7 \cdot 10^{16}$
7	09.09	08 36 17.5	11.5	SOC	2.95	BHE	0.0000401	$1.6 \cdot 10^{16}$
						BHN	0.0000316	$1.2 \cdot 10^{16}$
8	09.09	09 44 21.6	10.7	SOC	2.84	BHE	0.00000819	$3.1 \cdot 10^{15}$
						BHN	0.0000108	$4.1 \cdot 10^{15}$
9	12.09	09 41 19.3	11.3	SOC	2.89	BHE	0.0000299	$1.2 \cdot 10^{16}$
						BHN	0.0000500	$1.9 \cdot 10^{16}$
10	12.10	23 26 02.2	9.3	SOC	2.34	BHE	0.00000103	$3.2 \cdot 10^{14}$
						BHN	0.00000908	$2.9 \cdot 10^{14}$

Таблица 2. Значения спектральной амплитуды Ω₀, скалярного сейсмического момента M₀ для десяти землетрясений Северного Кавказа в 2009 г.

Для всех десяти землетрясений из табл. 2 определены характеристики амплитудных спектров f_0 и Ω_0 в соответствии с моделью Брюна [17], которые использованы для расчета динамических параметров их очагов и Mw (табл. 3). Представлены следующие параметры очагов землетрясений: Δ – эпицентральное расстояние, Ω_0 – спектральная плотность, f_{Π} – частота перегиба спектра, f_0 – угловая частота, M_0 – сейсмический момент, L – длина разрыва, $\Delta \sigma$ – сброшенное напряжение, $\eta \sigma$ – кажущееся напряжение, \overline{u} – средняя подвижка по разрыву.

Таблица 3. Спектральные и динамические параметры очагов землетрясений Северного Кавказа в 2009 г. (*S*-волны)

№	Дата, д м	t ₀ , ч мин с	Код с/ст	Компо- нента	Δ°	$\Omega_{0,}$ $10^{-6} \cdot M \cdot c$	fп, Гц	f ₀ , Гц	М ₀ , Н∙м	Mw	L, $10^3 \cdot M$	$\Delta \sigma,$ $10^5 \cdot H/M^2$	$\eta \sigma$, $10^5 \cdot H/M^2$	_ и, м
1	23.03	02 46 39.6	SOC	BHE	2.00	0.476	2.5	2.5	$1.3 \cdot 10^{14}$	3.4	1.0	5	6	0.01
				BHN		0.588	2.5	2.5	$1.6 \cdot 10^{14}$	3.4	1.0	6	5	0.01
2	07.09	22 41 36.4	SOC	BLE	2.84	14690	0.13	0.13	$5.6 \cdot 10^{18}$	6.4	20	24	8	0.59
				BLN		24880	0.15	0.15	$9.4 \cdot 10^{18}$	6.6	17.4	62	5	1.32
			KIV	BHE	1.48	2760	0.6	0.6	$5.5 \cdot 10^{17}$	5.8	4.4	225	86	1.21
				BHN		2560	0.6	0.6	$5.1 \cdot 10^{17}$	5.8	4.4	210	93	1.12
3	07.09	22 49 29.7	SOC	BHE	2.94	51.6	2.0	2.0	$2.0 \cdot 10^{16}$	4.8	1.2	400	30	0.59
				BHN		47.6	2.0	2.0	$1.9 \cdot 10^{16}$	4.8	1.2	380	32	0.56

	r	1		1				r			1			
№	Дата,	<i>t</i> ₀ ,	Код	Компо-	Δ°	$\Omega_{0,}$	f_{π} ,	f_{0} ,	<i>M</i> ₀ ,	Mw	<i>L</i> ,	Δσ,	_ ησ,	\overline{u} ,
	дм	ч мин с	с/ст	нента		$10^{-6} \cdot M \cdot c$	Гц	Гų	Н∙м		10 ³ ·м	$10^5 \cdot H/M^2$	$10^5 \cdot H/M^2$	м
3	07.09	22 49 29.7	KIV	BHE	1.54	178	0.6	0.6	$3.7 \cdot 10^{16}$	5.0	4.4	33	16	0.08
				BHN		74.3	1.0	1.0	$1.5 \cdot 10^{16}$	4.8	2.6	30	40	0.09
4	07.09	23 21 03.3	SOC	BHE	2.84	21.3	1.8	1.8	$8.1 \cdot 10^{15}$	4.6	1.4	100	6	0.18
				BHN		27.0	1.4	1.4	$1.0 \cdot 10^{16}$	4.6	1.8	60	5	0.13
5	07.09	23 33 50.7	SOC	BHE	2.92	6.64	2.0	2.0	$2.6 \cdot 10^{15}$	4.2	1.3	52	5	0.06
				BHN		7.44	1.5	1.5	$2.9 \cdot 10^{15}$	4.3	1.7	17	4	0.04
6	08.09	17 50 48.3	SOC	BHE	2.88	43.8	1.6	1.6	$1.7 \cdot 10^{16}$	4.8	1.6	142	3	0.28
				BHN		43.2	1.5	1.5	$1.7 \cdot 10^{16}$	4.8	1.8	102	3	0.22
7	09.09	08 36 17.5	SOC	BHE	2.95	40.1	1.2	1.2	$1.6 \cdot 10^{16}$	4.8	2.2	52	6	0.14
				BHN		31.6	1.2	1.2	$1.2 \cdot 10^{16}$	4.7	2.2	39	8	0.10
8	09.09	09 44 21.6	SOC	BHE	2.84	8.19	1.8	1.8	$3.1 \cdot 10^{15}$	4.3	1.4	40	5	0.07
				BHN		10.8	1.3	1.3	$4.1 \cdot 10^{15}$	4.4	2.0	18	4	0.04
9	12.09	09 41 19.3	SOC	BHE	2.89	29.9	1.2	1.2	$1.2 \cdot 10^{16}$	4.7	2.2	39	5	0.10
				BHN		50.0	1.1	1.1	$1.9 \cdot 10^{16}$	4.8	2.4	48	3	0.14
10	12.10	23 26 02.2	SOC	BHE	2.34	1.03	2.0	2.0	$3.2 \cdot 10^{14}$	3.6	1.3	5	2	0.01
				BHN		0.908	1.8	1.8	$2.9 \cdot 10^{14}$	3.6	1.4	4	2	0.01

Для сильнейшего в 2009 г. Онийского землетрясения 7 сентября в $22^{h}41^{m}$ получены различные оценки M_0 и Mw по станциям «Сочи» и «Кисловодск», но среднее значение Mw составило 6.1, что близко к данным GCMT: $M_0 = 1.16 \cdot 10^{18}$, Mw = 6.0.

Оценки скалярного сейсмического момента M_0 и магнитуды Канамори Mw позволили получить следующие корреляционные связи с K_P (рис. 4):

 $lg M_0, \partial H \cdot cM = 0.86(\pm 0.06) \cdot K_P + 13.30(\pm 0.87), r=0.98$

$$M_W = 0.53(\pm 0.04) \cdot K_P - 1.35(\pm 0.51), r = 0.98$$

Рис. 4. Корреляция магнитуды Канамори *Мw* и скалярного сейсмического момента *M*₀ с энергетическим классом *K*_P

Литература

- 1. Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры Пшехского землетрясения в Краснодарском крае // Землетрясения Северной Евразии, 2004 год. – Обнинск: ГС РАН, 2010. – С. 268–271.
- 2. Габсатарова И.П. Пшехское землетрясение 15 ноября 2004 года с *Mw*=4.6, *MS*=4.6, *I*₀^p=5−6 (Краснодарский край) // Землетрясения Северной Евразии, 2004 год. – Обнинск: ГС РАН, 2010. – С. 386–394.
- 3. Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 331–335.
- 4. Габсатарова И.П., Малянова Л.С. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. С. 286–291.

- 5. Габсатарова И.П., Малянова Л.С. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2013. С. 301–305.
- 6. Габсатарова И.П., Малянова Л.С. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 297–303.
- 7. Габсатарова И.П., Головкова Л.В., Асманов О.А., Девяткина Л.В. (отв. сост.), Абдуллаева А.Р., Александрова Л.И., <u>Амиров С.Р.</u>, Гамидова А.М., Иванова Л.Е., Калоева И.Ю., Киселёва О.А., Лещук Н.М., Малянова Л.С., Морозова Я.Н., Мусалаева З.А., Петросян Э.Н., Сагателова Е.Ю., Селиванова Е.А., Цирихова Г.В. (сост.). Каталог землетрясений и взрывов Северного Кавказа за 2009 г. (См. Приложение к наст. сб. на CD).
- 8. Сейсмологический бюллетень (ежедекадный) за 2009 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2009–2010. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2009*.
- 9. International Seismological Centre. On-Line Bulletin // International Seismological Centre [сайт]. [2012]. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/2009/.
- 10. Габсатарова И.П. Онийское-II землетрясение 7 сентября 2009 г. с *К*_P=14.2, *Ms*=5.8 (Грузия). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 11. Аптекман Ж.Я., Дараган С.К., Долгополов В.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – № 2. – С. 60–70.
- 12. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И. и др. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология. 1989. № 2. С. 66–79.
- 13. Anderson D.L., Hart R.S. Q of the Earth // J. Geophys. Res. 1978. 83. N B12. P. 5869–5882.
- 14. Ризниченко Ю.В., Джибладзе Э.А., Болквадзе И.Н. Спектры колебаний и параметры очагов Кавказа // Исследования по физике землетрясений. – М.: Наука, 1976. – С. 74–86.
- 15. Пустовитенко Б.Г. Сейсмические процессы в Черноморском регионе и сейсмическая опасность Крыма // Диссертация на соискание ученой степени доктора физ.-мат. наук. Киев: ИГ НАНУ, 2003. С. 58–71.
- 16. Павленко О.В. Изучение закономерностей излучения и распространения сейсмических волн в коре и верхней мантии Северного Кавказа по записям сейсмостанций «Сочи» и «Анапа» // Современные методы обработки и интерпретации сейсмологических данных. Материалы Пятой Международной сейсмологической школы, Владикавказ. – Обнинск: ГС РАН, 2010. – С. 138–142.
- 17. Brune I.V. Tectonic stress and the spectra of seismic shear waves from earthquakes // J. Geophys. Res. 1970. 75. N 26. P. 4997–5009.
- Hanks T.S., Kanamori H. A moment magnitude scale // J. Geophys. Res. 1979. 84. N 135. P. 2348–2350.