
<u>II. СПЕКТРЫ И ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ</u>

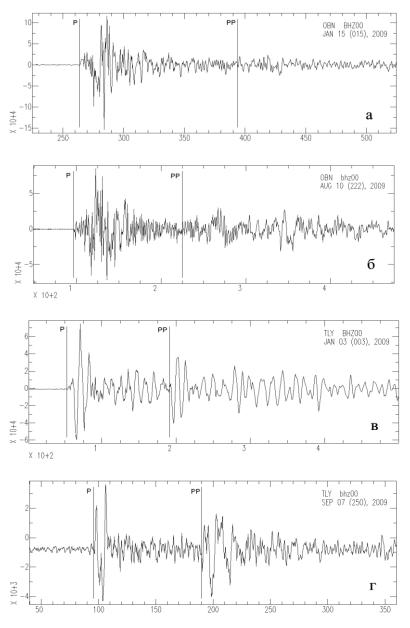
УДК 550.348. (100)

ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ Л.С. Чепкунас, Л.С. Малянова

Геофизическая служба РАН, г. Обнинск, luba@gsras.ru

Для двенадцати наиболее сильных землетрясений Земли в 2009 г. из [1], приведенных в табл. 1, рассчитаны очаговые параметры по спектрам продольных волн, зарегистрированных на станциях «Обнинск» (ОВN) и «Талая» (ТLY). Все землетрясения расположены в Восточном сегменте земного шара на расстоянии Δ <100° с очагами в земной коре (рис. 1), кроме события № 10, глубина очага которого составляет h=92 κm . Восемь землетрясений №№ 1–4, 7, 10–12 имеют магнитуды MS≥7.0, остальные — меньшие магнитуды, но представляют заметный интерес. Это три события на территории России №№ 5, 6 с MS=6.9 и 6.6, соответственно, на Курильских островах; № 9 с MS=5.8 — на Западном Кавказе и одно под № 8 — в районе Индонезии, о. Ява с MS=6.9 из [1].

Рис. 1. Карта эпицентров землетрясений с рассчитанными спектрами за 2009 г.


1 – магнитуда MS по [1]; 2 – сейсмическая станция ГС РАН.

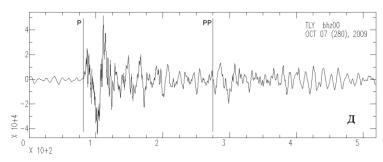

На обеих станциях использовались записи вертикального канала цифрового широкополосного сейсмометра STS-1. Анализируемый интервал длительностью τ =120—150 c выбирался от вступления продольной волны P до вступления отраженной волны PP. В качестве примера на рис. 2 приведены записи P-волн для пяти землетрясений, зарегистрированных на станциях «Обнинск» и «Талая».

Таблица 1. Сведения о рассмотренных землетрясениях в 2009 г.

No	Дата,	t_0 ,		Гипоце	нтр		Магнитуда	Район из [3]			
	д м	ч мин с	φ° λ°		h , h_{pP} ,		MS				
			·		км [1]	км [2]					
1	03.01	19 43 52.5	-0.462	132.812	33f	31	7.3	Район Западного Ириана, Индонезия			
2	03.01	22 33 39.7	-0.699	133.283	33f	35	7.0	Район Западного Ириана, Индонезия			
3	15.01	17 49 38.1	46.978	155.261	38	31	7.6	Восточнее Курильских островов			
4	11.02	17 34 50.6	3.874	126.470	33f	24	7.2	Острова Талауд, Индонезия			
5	07.04	04 23 33.3	46.020	151.670	56	40	6.9	Курильские острова			
6	18.04	19 17 59.2	46.035	151.441	54	50	6.6	Курильские острова			
7	10.08	19 55 37.7	14.036	92.984	33f	31	7.5	Район Андаманских островов, Индия			
8	02.09	07 54 57.8	-7.645	107.496	33f	58	6.9	Ява, Индонезия			
9	07.09	22 41 34.6	42.554	43.338	8	14	5.8	Западный Кавказ			
10	30.09	10 16 09.5	-0.652	99.899	92	90	7.9*	Южная Суматра, Индонезия			
11	07.10	22 03 12.3	-12.956	166.445	33f	34	7.8	Острова Санта-Крус			
12	30.10	07 03 37.0	29.121	129.938	33f	34	7.0	Острова Рюкю, Япония			

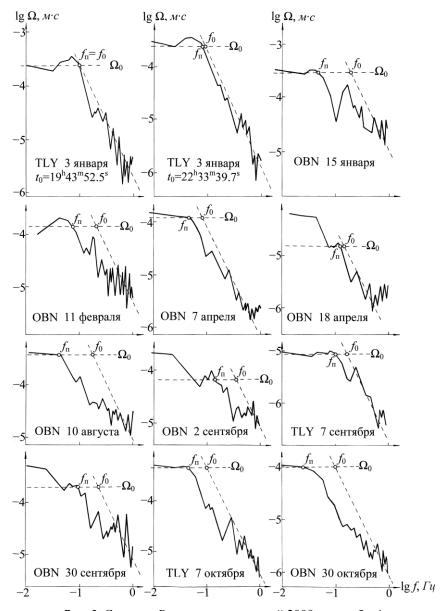

Примечание. Знаком * отмечена поправленная за глубину (+0.8) наблюденная магнитуда $MS_{\text{набл.}}$ =7.1 из [1] в соответствии с рекомендациями в [4]; глубины по фазе pP добавлены из-за большого числа (7 из 12) фиксированных глубин.

Рис. 2. Сейсмограммы продольных волн на станции «Обнинск» для землетрясений 15 января в $17^{\rm h}49^{\rm m}$ с MS=7.6, Δ =65.94° (a); 10 августа в $19^{\rm h}55^{\rm m}$ с MS=7.5, Δ =59.62° (б); на станции «Талая» для землетрясений 3 января в $19^{\rm h}43^{\rm m}$ с MS=7.3, Δ =57.50° (в); 7 сентября в $22^{\rm h}41^{\rm m}$ с MS=5.8, Δ =40.96° (г); 7 октября в $22^{\rm h}03^{\rm m}$ с MS=7.8, Δ =84.08° (д)

Амплитудные спектры, приведенные на рис. 3, рассчитаны по программе Access Service Controller (SAC) [5]. Это интерактивная программа общего назначения, снабженная модулями спектрального анализа, позволяющая выделять, рассчитывать и анализировать спектральные данные сигналов. Аппроксимация спектров и расчет очаговых параметров проводился по [6–8].

Рис. 3. Спектры P-волн землетрясений 2009 г. из табл. 1

Станционные спектры исправлялись за влияние амплитудно-частотной характеристики аппаратуры и приводились к очагу с учетом геометрического расхождения $G(\Delta)$ фронта P-волн, направленности излучения из очага $R_{\theta\phi}$, неупругого затухания m(f), частотной характеристики земной коры под станцией c(f). Первые два фактора $G(\Delta)$ и $R_{\theta\phi}$ не зависят от частоты, они лишь корректируют уровень спектра, а два последних -m(f) и c(f) — приводят к изменению всей спектральной картины. В данной работе величина поправки за направленность излучения из очага $R_{\theta\phi}$ принималась средней и равной 0.4 для всех землетрясений.

Спектральные и очаговые параметры для всех 12 землетрясений даны в табл. 2. Определены следующие спектральные характеристики: уровень Ω_0 длиннопериодной ветви спектра, частота f_{Π} точки перелома спектра, частота угловой точки f_0 . На их основе вычислялись динамические параметры: сейсмический момент M_0 , сброшенное $\Delta \sigma$ и кажущееся $\eta \sigma$ напряжения, а также длина L разрыва и подвижка \bar{u} в очагах по методике [6–8]. Для получения значений $L, \bar{u}, \Delta \sigma$ использовалась дислокационная модель Брюна [9], которая нашла широкое применение в сейсмологической практике.

Таблица 2. Характеристики спектров P-волн и динамические параметры очагов землетрясений 2009 г. по записям STS-1 на станциях «Обнинск», «Талая»

No	Дата,	t_0 ,	Стан-	MS	Δ°	Ω_0 ,	$f_{\rm n}$,	f_0 ,	M_0 ,	Mw		Δσ,	_ ησ,	\bar{u} ,
	д м	ч мин сек	ция			$10^{-4} \text{M} \cdot c$	$10^{-2} \Gamma y$	$10^{-2} \Gamma y$	$10^{19}H$ · M		$10^3 M$	$10^5H/{\rm M}^2$	$10^5 H/m^2$	м
1	03.01	19 43 52.5	TLY	7.3	57.50	2.51	10.0	10.0	10.0	7.3	50	25	19	1.53
2	03.01	22 33 39.7	TLY	7.0	57.89	2.45	7.6	8.5	9.0	7.3	58	16	7	3.58
3	15.01	17 49 38.1	OBN	7.6	65.94	2.88	5.0	20.1	12.0	7.4	24	304	40	8.85
4	11.02		OBN	7.2	86.17	1.35	6.9	20.0	8.1	7.2	24	205	15	5.97
_ 5	07.04	04 23 33.3	OBN	6.9	65.34	1.26	4.0	7.9	9.6	7.3	73	9	12	0.29
6	18.04	19 17 59.2	OBN	6.6	65.24	0.15	12.6	15.1	1.1	6.7	38	7	36	0.12
_ 7	10.08	19 55 37.7	OBN	7.5	59.62	3.63	4.0	17.4	13.0	7.4	28	207	26	7.04
8	02.09	07 54 57.8	OBN	6.9	85.53	0.64	14.4	19.9	5.2	7.1	24	132	8	3.83
9	07.09	22 41 34.6	TLY	5.8	40.96	0.08	11.9	17.4	0.4	6.3	28	6	2	0.22
10	30.09	10 16 09.5	OBN	7.1	75.60	2.00	10.0	22.4	17.0	7.5	26	338	12	4.00
			KIV		67.46	6.8	2.3		27.0	7.6				
			ARU		69.94	7.9	3.4		31.0	7.6				
			TLY		52.24	13.8	3.6		44.0	7.7				
11	07.10	22 03 12.3	TLY	7.8	84.08	9.12	5.0	10.7	24.0	7.5	42	104	43	5.30
12	30.10	07 03 37.0	OBN	7.0	68.49	1.00	2.5	10.5	4.3	7.0	46	16	14	0.86

Примечание. Для землетрясения № 10 средние значения M_0 и Mw составляют: \overline{M}_0 =29.7·10¹⁹ H·M, и $\overline{M}w$ =7.6.

На основе значений M_0 , полученных по цифровым записям на станциях «Обнинск» (OBN) и «Талая» (TLY), вычислена моментная магнитуда Mw. Расчет Mw выполнен по формуле X. Канамори [10]:

$$Mw = \frac{2}{3}(1gM_0 + 7) - 10.7,$$

где M_0 имеет размерность $[H \cdot M]$ в системе СИ (табл. 2).

Литература

- 1. **Болдырева Н.В. (отв. сост.), Аторина М.А., Бабкина В.Ф., Малянова Л.С., Рыжикова М.И., Щер-бакова А.И. (сост.).** Каталог землетрясений Земли за 2009 г. (См. Приложение к наст. сб. на CD).
- 2. Bulletin of the International Seismological Centre for 2009. Thatcham, United Kingdom: ISC, 2011.
- 3. **Young J.B., Presgrave B.W., Aichele H., Wiens D.A. and Flinn E.A.** The Flinn-Engdahl Regionalisation Scheme: the 1995 revision // Physics of the Earth and Planetary Interiors. 1996. **96**. P. 223–297.
- 4. **Кондорская Н.В.** Инструментальные данные // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука, 1977. С. 13.

- 5. **Golstein P., Dodge D., Firpoand M. and Lee M.** The IASPEI International Handbook of Earthquake and Engineering Seismology / Ed. by W.H.K. Lee, H. Kanamori, P.C. Jennings and C. Kisslinger. London: Academic Press, 2003.
- 6. **Захарова А.И., Чепкунас Л.С.** Динамические параметры очагов сильных землетрясений по спектрам продольных волн на станции «Обнинск» // Физика Земли. 1977. № 2. С. 9—17.
- 7. **Аптекман Ж.Я.**, Дараган С.К., Долгополов Д.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. 1985. № 2. С. 60—70.
- 8. **Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С.** Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология 1989. № 2. С. 66–79.
- 9. **Brune I.N.** Tectonic stress and the spectrum of seismic shear waves from earthquake // J. Geophys. Res. 1970. **75**. N 26. P. 4997–5009.
- 10. **Hanks T.C., Kanamori H.** A Moment Magnitude Scale // J. Geophys. Res. 1979. **84**. N 135. P. 2348–2350.