ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ КРЫМА

Б.Г. Пустовитенко, И.В. Калинюк, Е.А. Мержей, А.А. Пустовитенко

Институт сейсмологии и геодинамики Крымского федерального университета им. В.И. Вернадского, г. Симферополь, bella@seismoexpert.crimea.ua

В 2009 г. все региональные сейсмические станции Крыма перешли на цифровой способ регистрации сейсмических колебаний [1]. Соответственно, была прекращена ручная оцифровка записей по «характерным» точкам и расчет спектров экспресс-методом с использованием аналоговых записей [2]. Цифровой способ регистрации сейсмических колебаний обладает более высокой разрешающей способностью дискретизации сейсмической записи и оперативностью ее получения по сравнению с аналоговой. Вместе с тем при обработке и интерпретации цифровых записей для четкого выделения сейсмических волн используются различные полосовые фильтры, от корректности выбора которых часто зависит правильность (чистота) результатов. Проблема также заключается в отсутствии строгой теории и единого метода расчета амплитудночастотных характеристик (АЧХ) цифровых сейсмографов. В связи с этим для расчета спектров землетрясений 2009 г. и восстановления по ним динамических параметров очагов отобраны записи только по тем станциям, для которых в 2009 г. АЧХ были определены достаточно надежно, а фон помех был минимальным.

Использованы волновые формы тринадцати землетрясений с энергетическими классами $K_{\Pi} \ge 8.4$ (табл. 1), произошедших в Ялтинском ($\mathbb{N} \ge 2$) и Северо-Западном ($\mathbb{N} \ge 8$) районах Крыма, а также в Черноморской впадине ($\mathbb{N} \ge 9$) на глубинах от 7 до 45 км. Большая часть изученных землетрясений относится к форшокам и афтершокам Симеизского землетрясения 12 апреля с $K_{\Pi}=11.2$, $I_0=4$ балла, произошедшего в районе $\mathbb{N} \ge 2$ (рис. 1).

N⁰	Дата,	<i>t</i> ₀ ,	Эпиг	центр	h,		Ma	гнитуды		K_{Π}	Район
	дм	ч мин с	φ°, N	λ°, E	км	$MC Mw/n, MPSP/n, m_{b}/n,$					
							табл. 2	[3]	[4]		
1	2	3	4	5	6	7	8	9	10	11	12
1	18.02	09 44 13.6	43.98	31.65	16		3.9/3	4.2/6	4.0/11	11.1	Северо-Западный (№ 8)
2	03.03	19 54 29.2	44.47	34.40	16	1.9	2.8/3			8.4	Ялтинский (№ 2)
3	15.03	01 28 26.6	45.37	30.89	7		3.2/4		3.1/3	9.1	Северо-Западный (№ 8)
4	11.04	00 09 10.8	44.13	34.07	28	3.3	3.5/3	3.7/2	3.3/4	9.9	Ялтинский (№ 2), форшок
5	11.04	05 18 45.8	44.12	34.07	45	2.4	3.2/3			8.7	Ялтинский (№ 2), форшок
6	11.04	22 02 44.6	44.07	34.12	29	2.6	3.4/3			9.5	Ялтинский (№ 2), форшок
7	12.04	16 31 40.8	44.06	34.14	32	4.0	4.3/9	4.2/15	4.0/24	11.2	Ялтинский (№ 2), гл. толчок
8	12.04	19 01 55.2	44.02	34.09	28	3.3	3.4/3			9.5	Ялтинский (№ 2), афтершок
9	15.04	07 48 37.5	44.09	34.09	35	2.4	3.1/1			8.7	Ялтинский (№ 2), афтершок
10	18.04	00 42 18	44.33	34.32	22	2.6	3.55/6	3.9/1	3.5/4	10.4	Ялтинский (№ 2)
11	20.05	07 36 14	42.89	36.54	25		2.95/2			8.6	Черноморская впадина (№9)
12	21.06	19 36 54.1	44.00	34.11	28	2.7	3.5/3	4.1/1		10.2	Ялтинский (№ 2), афтершок
13	20.11	06 43 32	44.66	31.02	35		3.0/1			8.7	Северо-Западный (№ 8)

Таблица 1. Список землетрясений Крыма, для которых рассчитаны спектры в 2009 г.

Примечание. Параметры землетрясений в графах 2-7, 10, 11 соответствуют таковым в [5].

Для отобранных землетрясений рассчитано 46 амплитудных спектров объемных *P*- и *S*-волн по записям станций: «Алушта» (ALU), «Севастополь» (SEV), «Симферополь» (SIM), «Судак» (SUDU), расположенных по отношению к исследованным очагам на эпицентральных расстояниях в диапазоне Δ =56–330 км. Абсолютное большинство спектров получено по запи-

сям высокочувствительной станции «Судак» [6], с минимальным уровнем помех и, соответственно, повышенной селективностью.

Рис. 1. Карта эпицентров землетрясений 2009 г., для которых рассчитаны спектры (номера в кругах по табл. 1)

1 – энергетический класс K_{Π} [7]; 2 – сейсмическая станция; 3 – граница района. На врезке дана развернутая картина эпицентров форшоков и афтершоков ощутимого землетрясения 12 апреля с K_{Π} =11.2, Mw=4.3.

Для анализа отбирались записи с четкими временами вступления волн (индекс четкости «*i*»), не осложненные микросейсмическим шумом. Примеры цифровых записей даны на рис. 2.

Рис. 2. Примеры цифровых записей землетрясения 12 апреля в $16^{h}31^{m}40.2^{s}$ с K_{Π} =11.2, *Мw*=4.3 по короткопериодным каналам ЕН на станциях «Алушта» с Δ =73 км (а) и «Симферополь» с Δ =99 км (б)

Если условия отбора позволяли, спектры рассчитывались по обеим горизонтальным составляющим (N-S) и (E-W). Как и при обработке аналоговых записей, относительная длительность исследуемого участка принята равной интервалу времени от вступления *P*- или *S*-волн до времени спада максимальных амплитуд колебаний A_{max} до уровня $\frac{1}{_3}A_{\text{max}}$ [2].

Амплитудные спектры получены с учетом АЧХ сейсмографов методом быстрого преобразования Фурье по стандартной программе с учетом методических рекомендаций по [8].

На рис. 3 даны примеры по каждому землетрясению и по отдельным сейсмическим станциям.

Видно (рис. 3), что спектры, полученные по цифровым станциям, можно надежно аппроксимировать в рамках дислокационной модели Брюна (ω^{-2}) [9] со спадом уровня спектральной плотности в высокочастотную область по квадратичному закону. Вид и аппроксимация остальных спектров изученных землетрясений аналогичны приведенным на рис. 3. Все спектры 2009 г. отнесены к классу надежных.

3 марта в 19^h54^m29.2^s (№ 2)

ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ КРЫМА Б.Г. Пустовитенко, И.В. Калинюк, *Е.А. Мержей, А.А. Пустовитенко*

Рис. 3. Примеры амплитудных спектров землетрясений Крыма за 2009 г. по записям цифровых сейсмических станций (номера землетрясений из табл. 1)

Следуя модели Брюна, спектр объемной волны аппроксимируется в билогарифмическом масштабе двумя прямыми: в длиннопериодной части спектра прямой, параллельной оси частот, в области коротких периодов – наклонной прямой с угловым коэффициентом $\gamma \sim -2$. Таким образом, спектр смещения можно описать с помощью трех основных характеристик: спектральной плотности $\Omega_0(x, f)$ при $f \rightarrow 0$, наклоном асимптоты высочастотной ветви спектра γ и угловой частоты $f_0(\omega_0)$.

Спектральная плотность $\Omega_0(x, f)$ пропорциональна сейсмическому моменту, а угловая частота f_0 – размеру дислокации. Они являются главными параметрами для оценки скалярного момента M_0 землетрясения и радиуса круговой дислокации r_0 . Параметр γ используется для проверки соответствия полученных станционных спектров модели Брюна и их аппроксимации в рамках данной модели. В случае сильного отклонения значения γ от $\gamma \sim -2$ спектры отбраковывались.

Можно отметить (рис. 3), что полученные спектры записи поперечных волн на станциях «Алушта»» (ALU) и «Севастополь» (SEV) иногда осложнены появлением повышенного уровня амплитуд на спаде, в диапазоне частот $\Delta f=3-5 \Gamma \mu$. Это может быть связано либо с резонансными свойствами пород, подстилающих станции, либо со спектральным составом микросейсмического фона. Анализ амплитудного спектра помех [10] не подтвердил вторую возможную причину: на частотах $f=3-5 \Gamma \mu$ фон микросейсм как по станции «ALU», так и «SEV» на 1–2 порядка меньше, чем в области длиннопериодных колебаний.

В связи с этим при аппроксимация спектров двумя прямыми линиями всплески амплитуд на спаде в высокочастотной области игнорировались. Изучение резонансных свойств грунта на станции регистрации и их учет при анализе спектров должно стать предметом специального исследования.

Спектр записи реального землетрясения в точке наблюдения является суперпозицией эффектов самого источника, характеристики регистрирующего прибора, среды на пути очагстанция, направленности излучения. Методика учета всех этих факторов при переходе от станционного спектра к спектру источника подробно изложена в [2, 8]. Формула для расчета M_0 по станционному спектру имеет вид [11]:

$$M_0 = \Omega_0 \left(4 \pi \cdot \rho \cdot \upsilon^3 \right) / R_{\theta \phi} \cdot G(\Delta, h) \cdot C(\omega) \cdot Sm(f),$$

где Ω_0 – максимальное значение спектральной плотности при $\omega \to 0$; υ – скорость распространения волны; ρ – плотность пород в окрестности очага, $R_{\theta\phi}$ – поправка за направленность излучения из очага на станцию; $G(\Delta, h)$ – поправка за геометрическое расхождение; $C(\omega)$ – частотная характеристика земной коры под станцией; Sm(f) – поправка за неупругое затухание в мантии.

Функция геометрического расхождения $G(\Delta, h)$ для близких землетрясений на расстояниях от станции регистрации с $\Delta < 350 \ \kappa m$ оценивалась как 1/R, где R – гипоцентральное расстояние. Значения скоростей υ и плотностей пород ρ выбирались в зависимости от глубины очага по моделям среды для Крымского региона из [2].

Для землетрясения 12 апреля с K_{Π} =11.2, Mw=4.3 при оценке скалярного сейсмического момента учитывалась поправка за направленность излучения $R_{\theta\phi}$ по данным о параметрах механизма очага [12]. Наглядное представление поля излучения волн *P*, *SV* и *SH* из очаговой зоны дано на рис. 4.

Рис. 4. Диаграммы направленности излучения для волн *P* (*a*), *SV* (*б*) и *SH* (*в*); затемнены области максимального (+1) и минимального (-1) значений коэффициента направленности для каждого типа волн

Поправки за направленность излучения из очага $R_{\theta\phi}$ на станции Крыма, которые использованы для восстановления динамических параметров, даны в табл. 2.

Код станции	SI	OK	SY	М	A	LU	SEV		
Тип волны	Р	S	Р	S	Р	S	S		
$R_{ m heta \phi}$	0.36	0.45	0.13	0.3	0.2	0.41	0.37		

Таблица 2. Направленность излучения (коэффициент $R_{\theta\phi}$) на станции регистрации

Такие же значения $R_{\theta\phi}$ использованы для афтершоков и форшоков (№4–6, 8, 9, 12) в предположении унаследования типа подвижки в очагах предшествующих и последующих толчков. Для других землетрясений при неизвестном механизме очага принято среднее значение $R_{\theta\phi}$ =0.4.

Геометрические размеры очага определены по угловой частоте f_0 амплитудного спектра смещения. Частота f_0 связана с длительностью импульса, излученного очагом, которая в свою очередь определяется размером источника, скоростью вспарывания и положением точки наблюдения по отношению к источнику. Для дислокационной модели Брюна [9, 11] с разрывом в виде круга радиус дислокации r_0 вычисляется по формуле:

$$r_0 = 2.34 \frac{\upsilon_P}{2\pi \cdot f_0}.$$

По значениям скалярного сейсмического момента M_0 и размеров разрыва r_0 с использованием формул из работ [13, 14] определены другие очаговые параметры: сброшенное напряжение $\Delta \sigma$, величина деформации сдвига ε , средняя подвижка по разрыву (или величина дислокации) \bar{u} , моментная магнитуда Mw (табл. 3). Моментная магнитуда рассчитана по индивидуальным оценкам сейсмических моментов M_0 с использованием формулы Канамори [15]:

$$Mw = 2/3 \cdot lg M_0 - 10.7,$$

 $Mw = 2/3 \cdot (lg M_0 + 7) - 10.7$

где *M*⁰ имеет размерность *дин*·*см* и *H*·*м* в системах СГС и СИ соответственно.

При расчете динамических параметров очагов по спектрам записи поперечных S-волн использован полный вектор колебаний по составляющим N-S и E-W (в табл. 3 указано, как N+E), а по продольным P-волнам – спектр записи вертикальной составляющей Z. В случае оцифровки только по одной составляющей, вектор спектральной плотности находился с учетом коэффициента из соотношения амплитуд A_N/A_E с использованием подробных данных из [16]. В табл. 3 полный вектор спектральной плотности обозначен $\Sigma\Omega_0$. Средние значения всех динамических параметров (S) и их стандартное отклонение (δS) найдены с учетом логнормального закона распределения величин [2]. Среднее значение моментной магнитуды M_W определено, как среднее арифметическое с соответствующей погрешностью (табл. 3).

Таблица 3. Спектральные и динамические параметры очагов землетрясений Крыма за 2009 г.

Станция	Состав- ляющая	Δ, км	$\sum_{10^{-6}} \Omega_0,$	f ₀ , Гц	$\begin{array}{c} M_{0},\\ 10^{13} H \cdot M\end{array}$	$r_0, 10^3 M$	$\Delta \sigma,$ $10^5 H \cdot m^2$	ε· 10 ⁻⁶	$\bar{u},$ $10^{-2}\cdot M$	Mw	
№ 1 – 18 февраля: <i>t</i> ₀ =09 ^h 44 ^m 13.6 ^s , φ=43.98°, λ=31.65°, <i>h</i> =16 км, <i>K</i> _П =11.1											
Судак	Ν	284	0.7	1.67	78.6	0.8	66.5	22.2	1.29	3.9	
Алушта	Ν	232	1.22	1.7	74.7	0.79	66.6	22.2	1.27	3.9	
Севастополь	Ν	173	1.1	1.63	75.2	0.83	58.0	19.3	1.16	3.9	
S					76.2	0.81	63.6	21.2	1.24	3.9	
δS					0.01	0.006	0.020	0.020	0.014	0	
№ 2 – 3 марта: <i>t</i> ₀ =19 ^h 54 ^m 29.2 ^s , φ=44.47°, λ=34.40°, <i>h</i> =16 км, <i>K</i> _П =8.5											
Судак	N+E	66	0.09	2.2	1.98	0.58	4.5	1.51	0.063	2.8	
Симферополь	Ν	59	0.21	2.18	2.08	0.58	4.6	1.55	0.065	2.85	
S					2.03	0.58	4.6	1.53	0.064	2.82	
δS					0.01	0	0.005	0.006	0.007	0.02	
№ 3 – 15 марта: <i>t</i> ₀ =01 ^h 28 ^m 26.6 ^s ; φ=45.37°, λ=30.89°, <i>h</i> =7 км, <i>K</i> _Π =9.1											
Судак	Ζ	330		2	6.99	0.97	3.4	1.12	0.08	3.2	
Судак	N+E	330	0.098	1.45	7.31	0.77	7.0	2.33	0.13	3.2	

Станция	Состав-	Δ,	ΣΩ₀,	f_{0} ,	M_0 ,	r_0 ,	Δσ,	•3	ū,	Mw		
	ляющая	км	$10^{-6} M \cdot c$	Гц	10 ¹³ <i>Н</i> ·м	$10^{3} M$	$10^5 H \cdot M^2$	10 ⁻⁶	10 ⁻² ·м			
Алушта	Ν	289	0.17	1.44	7.42	0.78	6.9	2.32	0.13	3.2		
S					7.24	0.84	5.5	1.82	0.11	3.2		
δS			0.008	0.033	0.104	0.106	0.007	0				
	№ 4 – 11	апрел	ия: $t_0 = 0^h 09^n$	ⁿ 10.8 ^s , ¢)=44.13°, λ=34.07°, <i>h</i> =28 <i>км</i> . <i>K</i> _Π =9.9							
Алушта	Ν	67	1.2	1.41	21.2	0.95	10.8	3.6	0.25	3.5		
Симферополь	Ν	91	1.1	1.36	19.9	0.99	9.1	3.0	0.22	3.5		
Севастополь	Ν	56	0.79	1.4	17.5	0.96	8.7	2.9	0.20	3.5		
S			1		19.5	0.97	9.5	3.2	0.22	3.5		
δS					0.025	0.005	0.029	0.03	0.028	0		
№ 5 – 11 апреля: <i>t</i> ₀ =05 ^h 18 ^m 45.8 ^s , φ=44.12°, λ=34.07°, <i>h</i> =45 км, <i>K</i> _П =8.7												
Севастополь	Ν	56	0.13	1.55	6.44	1.06	2.4	0.4	0.03	3.2		
Судак	Ν	109	0.09	1.5	8.92	1.09	3.0	0.5	0.04	3.3		
Симферополь	Ν	92	0.12	1.6	4.9	1.02	2.0	0.33	0.025	3.1		
<u> </u>					6.55	1.06	2.4	0.40	0.031	3.2		
δS					0.075	0.008	0.051	0.052	0.059	0.1		
	№ 6 – 11	апреля	я: <i>t</i> ₀ =22 ^h 02	$^{m}44.6^{s}$,	φ=44.07°, λ	=34.12°,	h=29 км, Н	K _Π =9.5				
Сулак	N+E	115	0.22	1.55	10.1	0.86	6.8	2.27	0.14	3.3		
Алушта	N	72	0.56	1.6	12.2	0.84	9.1	3.02	0.18	3.4		
S					11.1	0.85	7.9	2.62	0.16	3.35		
δS					0.04	0.005	0.063	0.062	0.055	0.05		
	№ 7 – 12	апреля	: $t_0 = 16^{h}31^{n}$	ⁿ 40.2 ^s , ¢	=44.06°, λ	=34.14°, 1	h=32 км, К	_π =11.2				
Сулак	Ζ	115	1.0	2.0	253	1.16	70.2	23.4	1.98	4.2		
Судак	N	115	6.2	1.14	252	1.18	67.8	22.6	1.93	4.2		
Алушта	Ζ	73	2.4	2.0	481	1.16	134.0	44.5	3.77	4.4		
Алушта	N+E	73	15	1.2	280	1.12	87.9	29.5	2.38	4.3		
Симферополь	Ζ	99	0.9	2	284	1.16	78.8	26.3	2.22	4.3		
Симферополь	N+E	99	9.2	1.15	240	1.17	66.3	22.1	1.88	4.2		
Севастополь	Ν	66	8.4	1.15	237	1.17	65.5	21.8	1.85	4.2		
S					281	1.16	79.0	26.3	2.22	4.25		
δS					0.04	0.003	0.042	0.042	0.041	0.05		
№ 8 – 12 апреля: <i>t</i> ₀ =19 ^h 01 ^m 55.2 ^s , φ=44.02°, λ = 34.09°, <i>h</i> =28 км, <i>K</i> _П =9.5												
Судак	Ν	120	0.3	1.6	14.1	0.84	10.6	3.53	0.21	3.4		
Алушта	Ν	78	0.7	1.62	14.4	0.83	11.1	3.71	0.22	3.4		
Севастополь	Ν	67	0.51	1.58	13.5	0.85	9.7	3.23	0.20	3.4		
S					14.0	0.84	10.5	3.48	0.21	3.4		
δS					0.008	0.003	0.017	0.018	0.012	0		
	№ 9 – 15	апреля	я: <i>t</i> ₀ =07 ^h 48	^m 37.5 ^s , o	φ=44.09°, λ	.=34.09°,	h=35 км, Н	K _Π =8.7				
Севастополь	Ν	60	0.19	1.95	4.55	0.69	6.1	2.04	0.10	3.1		
Судак	N+E	114	0.13	1.9	5.89	0.71	7.3	2.44	0.12	3.1		
S					5.18	0.70	6.7	2.23	0.11	3.1		
δS					0.056	0.006	0.039	0.039	0.040	0		
	№ 10–18	8 апрел	ия; <i>t</i> ₀ =00 ^h 42	2 ^m 18 ^s , φ	=44.33°, λ=	=34.32°, <i>V</i>	h=22 км, К	_п =10.4				
Судак	N+E	84	0.72	1.54	23.8	0.87	15.3	5.26	0.33	3.5		
Севастополь	Ν	56	1.2	1.56	26.6	0.89	16.3	5.44	0.35	3.6		
Симферополь	N+E	71	1.2	1.48	22.6	0.91	13.3	4.44	0.29	3.5		
Симферополь	Ζ	71	0.12	2.5	27.3	0.93	14.8	4.94	0.33	3.6		
S					25.0	0.90	14.9	5.01	0.32	3.55		
δS					0.02	0.006	0.019	0.019	0.017	0.05		
	№ 11 –	20 мая	я: <i>t</i> ₀ =07 ^h 36	^m 14 ^s , φ=	=42.89°, λ=	36.54°, <i>h</i> =	=25 км, К _П	=8.6				
Судак	Ν	254	0.0295	1.95	2.9	0.69	3.9	1.3	0.065	2.9		
Севастополь	Ν	294	0.027	1.9	3.14	0.71	3.9	1.3	0.067	3.0		
S					3.02	0.70	3.9	1.3	0.066	2.95		
δS					0.017	0.006	0	0	0.007	0.05		

	1						1				
Станция	Состав- ляющая	Δ, км	$\Sigma \Omega_0,$ $10^{-6} M \cdot c$	f ₀ , Гц	$M_0,$ $10^{13} H \cdot M$	$r_0, 10^3 M$	$\Delta \sigma,$ $10^5 H \cdot M^2$	ε· 10 ⁻⁶	$\bar{u},$ $10^{-2}\cdot M$	Mw	
№ 12 – 21 мая: <i>t</i> ₀ =19 ^h 36 ^m 54.1 ^s , φ=44.00°, λ=34.11°, <i>h</i> =28 км, <i>K</i> _П =10.2											
Алушта	N	79	1.12	1.28	23.4	1.05	8.9	2.97	0.23	3.5	
Судак	N	121	0.59	1.31	25.9	1.02	10.6	3.53	0.26	3.6	
Симферополь	N	106	0.75	1.26	15.7	1.06	5.7	1.9	0.15	3.4	
S				21.2	1.04	8.1	2.71	0.21	3.5		
δS					0.066	0.005	0.080	0.08	0.072	0.1	
№ 13 – 20 ноября: <i>t</i> ₀ =06 ^h 43 ^m 32.0 ^s , φ=44.66°, λ=31.02°, <i>h</i> =35 км, <i>K</i> _П =8.7											
Севастополь	Ν	211	0.044	2.0	3.68	0.67	5.3	1.78	0.09	3.0	

Примечание. Жирным шрифтом выделены средние значения S.

Как видно из табл. 3, получено хорошее внутреннее согласие динамических параметров очагов землетрясений Крыма за 2009 г. по данным отдельных станций с малыми стандартными отклонениями δS . В связи с этим для всех изученных землетрясений восстановленные очаговые параметры можно отнести к категории очень надежных. Для большинства землетрясений индивидуальные значение моментных магнитуд Mw либо полностью совпали, либо их разброс не превысил погрешности ± 0.1 . Наибольшие значения M_0 , r_0 , $\Delta \sigma$, ε , \bar{u} получены для землетрясения 12 апреля с K_{Π} =11.2 и h=32 км. При этом дополнительно рассчитанные значения кажущегося напряжения и радиационного трения оказались соответственно в 3.7 и 8 раз ниже, чем для землетрясения 18 февраля близкого энергетического уровня с K_{Π} =11.1, произошедшего в западной части Крыма на глубине h=16 км [10].

С использованием данных о скалярном сейсмическом моменте $M_0=2.81\cdot10^{15}$ *H*·*м* параметры механизма очага землетрясения 12 апреля с $K_{\Pi}=11.2$ [12] пересчитаны в компоненты тензора сейсмического момента (рис. 5). Тензор сейсмического момента может быть использован для расчета параметров, характеризующих вид напряженного состояния в очаге.

Рис. 5. Компоненты тензора сейсмического момента (*H*·*м*)

Проведем сравнение динамических параметров очагов (сейсмического момента M_0 и радиуса круговой дислокации r_0) землетрясений 2009 г. с долговременными зависимостями от энергии землетрясений (рис. 6), установленными ранее [17] для аналоговых сейсмических станций:

> $lg M_0 = 0.645(\pm 0.027) \cdot K_{\Pi} + 15.142(\pm 0.271), \qquad \rho = 0.99,$ $lg r_0 = 0.112(\pm 0.011) \cdot K_{\Pi} - 1.293(\pm 0.107), \qquad \rho = 0.93.$

Рис. 6. Сравнение динамических параметров очагов землетрясений 2009 г: сейсмического момента (а) и радиуса круговой дислокации (б) с долговременными зависимостями $M_0(K_{\Pi})$ и $r_0(K_{\Pi})$ в [17] (пунктиром обозначены пределы погрешностей)

Можно отметить (рис. 6), что практически все средние значения M_0 и r_0 удовлетворяют долговременным зависимостям $M_0(K_{\Pi})$ и $r_0(K_{\Pi})$, находясь в пределах их доверительных областей (δM_0 и δr_0). При этом для большинства землетрясений 2009 г. значения отклонений δM_0 относительно зависимости $M_0(K_{\Pi})$ имеют отрицательные значения (рис. 6 а), а радиусы круговой дислокации δr_0 – положительные (рис. 6 б). Наибольшее положительное отклонение δr_0 получено для землетрясения № 5 11 апреля в 05^h18^m с глубиной очага $h=45 \ \kappa m$ на границе корамантия, где скорость сейсмических волн наибольшая.

Ранее [10] было высказано предположение о том, что завышенные значения r_0 для большинства землетрясений 2009 г. могут быть объяснены использованием более широкополосных цифровых сейсмических каналов (например «Судак»— ΔT =0.10–5 c [6]), по сравнению с прежними аналоговыми («Судак»— ΔT =0.15–0.55 c [18]). Это предположение должно быть проверено на более длительных рядах наблюдений для исключения возможных пространственновременных вариаций динамических параметров очагов местных землетрясений.

Литература

- 1. Свидлова В.А., Пасынков Г.Д. Крым. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 2. Пустовитенко Б.Г., Пантелеева Т.А. Спектральные и очаговые параметры землетрясений Крыма. Киев: Наукова думка, 1990. 249 с.
- 3. Сейсмологический бюллетень (ежедекадный) за 2009 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2009–2010. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2009/*.
- 4. Bulletin of the International Seismological Centre for 2009. Thatcham, United Kingdom: ISC, 2011.
- 5. Козиненко Н.М., Свидлова В.А., Сыкчина З.Н. (отв. сост.). Каталог землетрясений Крыма за 2009 г. (См. Приложение к наст. сб. на CD).
- 6. Свидлова В.А. (отв. сост.). Сейсмические станции Крыма в 2009 г. (См. Приложение к наст. сб. на CD).
- Пустовитенко Б.Г., Кульчицкий В.Е. Об энергетической оценке землетрясений Крымско-Черноморского региона // Магнитуда и энергетическая классификация землетрясений. – М.: ИФЗ АН СССР, 1974. – Т. 2. – С. 113–125.
- 8. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология 1989. № 2. С. 66–79.
- 9. Brune I.V. Tectonic stress and the spectra of seismic shear waves from earthquakes // J. Geophys. Res. 1970. 75. N 26. P. 4997–5009.
- Пустовитенко Б.Г., Калинюк И.В., Мержей Е.А. Спектральные и динамические параметры очагов землетрясений Крыма 2009 года // Сейсмологический бюллетень Украины за 2009 год. – Севастополь: НПЦ «ЭКОСИ-Гидрофизика», 2011. – С. 11–23.
- 11. Hanks T.C., Wyss M. The use of body-wave spectra in the determination of seismic-source parameters // Bull. Seism. Soc. Am. 1972. 62. N 2. P. 561–589.

- 12. Пустовитенко А.А. (отв. сост.). Каталог механизмов очагов землетрясений Крыма за 2009 г. (См. Приложение к наст. сб. на CD).
- 13. Кейлис-Борок В.И. Исследование источников, приближенно эквивалентных очагам землетрясений // Труды Геофизического института АН СССР. – 1959. – № 9(136). – С. 20–42.
- 14. Aki K. Estimation of earthquake moment released energy and stress-strain drop from G-wave spectrum // Bull. Earthquake Res. Inst. Tokyo Univ.- 1966. 44. N 1. P. 73-88.
- 15. Hanks T.C., Kanamori H. A moment magnitude scale // J. Geophys. Res. 1979. 84. N 35. P. 2348–2350.
- 16. Свидлова В.А., Сыкчина З.Н., Козиненко Н.М., Антонюк Г.П., Сухарина Л.И., Антонюк В.А., Курьянова И.В., Росляков А.В. Каталог и подробные данные о землетрясениях Крымско-Черноморского региона за 2009 г. // Сейсмологический бюллетень Украины за 2009 год. – Севастополь: НПЦ « Экоси-Гидрофизика», 2011. – С. 68–141.
- 17. Пустовитенко Б.Г., Пустовитенко А.А., Капитанова С.А., Поречнова Е.И. Пространственные особенности очаговых параметров землетрясений Крыма // Сейсмичность Северной Евразии. Обнинск: ГС РАН, 2008. С. 238–242.
- 18. Пустовитенко А.Н., Свидлова В.А., Пустовитенко А.А., Поречнова Е.И., Сыкчина З.Н. Крым // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 58–63.