ЯКУТИЯ

Б.М. Козьмин

Якутский филиал ГС СО РАН, г. Якутск, b.m.kozmin@diamond.ysn.ru

Мониторинг сейсмичности в Республике Саха (Якутия) в 2009 г. осуществляла сеть из 19 цифровых сейсмических станций Якутского филиала ГС СО РАН. Среди них станции «Якутск» и «Тикси» являлись опорными и задействованы в мировой системе наблюдений IRIS, остальные соответствовали региональным пунктам наблюдений. Список действующих станций и установленная на них аппаратура представлены в Приложении к наст. сб. [1]. Их аппаратурные параметры и расположение по районам такие же, как в 2008 г. [2].

Представительность землетрясений за 2009 г. в регионе сохранилась такой же, как и в 2008 г. [2]: в Южной Якутии без пропусков фиксируются события с $K_P \ge 7$ в междуречье Олёкмы и Алдана (западный фланг юга территории); с $K_P \ge 8$ – на Алданском нагорье и Становом хребте (между реками Алдан, Тимптон и Гонам); с $K_P \ge 9$ – в восточной части Алданского нагорья (бассейн р. Учур); с $K_P \ge 10$ – от р. Учур до Охотского моря. В Центральной Якутии на Ленском плато, между реками Лена и Алдан, надежно регистрировались подземные толчки с $K_P \ge 7$. На востоке Сибирской платформы, в среднем течении Лены и Вилюя, представительны события с $K_P \ge 10$. На северо-востоке региона, в системе хребтов Черского, полностью записывались местные землетрясения с $K_P \ge 8$. Система наблюдений в арктической части Якутии (низовья Лены и Индигирки) не пропускала события, начиная с $K_P \ge 11$. Для всей территории Республики Саха (Якутия) в 2009 г., как и раньше [2], были представительны близкие землетрясения с $K_P \ge 12$.

Параметры эпицентров землетрясений находились по данным наблюдений сети сейсмических станций ЯФ ГС СО РАН (Якутск), материалов сводной обработки, а также наблюдений отдельных станций Байкальского филиала ГС СО РАН (Иркутск), Магаданского филиала ГС РАН (Магадан) и сведений бюллетеней станций «Кировский» и «Бомнак» Сахалинского филиала ГС РАН (Южно-Сахалинск). Координаты эпицентров подземных толчков рассчитывались на основе специальной компьютерной программы НҮР2ОТ (версия 7), составленной в отделе геологии и геофизики Университета штата Мичиган США (разработчик – К.Д. Маккей) с использованием времен пробега продольных *Pg-* и *Pn-* и поперечных *Sg-* и *Sn-*волн, которые уверенно выявляются на записях близких землетрясений.

По данным обработки сводных инструментальных материалов были определены параметры эпицентров 1931 землетрясения, из которых 466 с K_P =7.6–13.7 приведены в каталоге [3] в наст. сб. на CD. Из них 33 землетрясения с K_P =7.6–10.7 с суммарной энергией 9.35·10¹⁰ Дж (табл. 1), локализованные вне зоны ответственности каталога землетрясений Якутии, в обзоре не анализируются. Ощутимыми были 10 землетрясений [4], сотрясения зафиксированы в 17 населенных пунктах [5], механизм очага [6] определен лишь для сильного Чароудинского-III землетрясения [7]. Кроме того, в каталог [3] включены три взрыва ВСТО. Распределение числа землетрясений по районам и энергетическим классам K_P показано в табл. 1.

N⁰	Район			N_{Σ}	ΣΕ,							
		7	8	9	10	11	12	13	14		Дж	
Внутри зоны ответственности												
1	Олекминский	554	505	150	66	16	4	3		1	1299	$5.43 \cdot 10^{13}$
2	2 Хребет Становой		83	40	8	2	1				235	$9.34 \cdot 10^{10}$

Таблица 1. Распределение числа землетрясений Якутии по энергетическим классам *К*_Р и суммарной сейсмической энергии по районам за 2009 г.

№	Район Кр										N_{Σ}	ΣΕ,
		6	7	8	9	10	11	12	13	14	_	Дж
3	Алданское нагорье	36	84	38	5	1					164	$2.01 \cdot 10^{10}$
4	Учурский	3	26	19	3	3	1				55	$1.09 \cdot 10^{11}$
5	Охотский		1								1	$3.98 \cdot 10^7$
6	Хребет Сетте-Дабан		3	1	4	1					9	$1.78 \cdot 10^{10}$
7	Верхоянский хребет	1	8	3	1						13	$1.10 \cdot 10^9$
8	Яно-Оймяконское нагорье	2	16	7	1		1				27	$4.10 \cdot 10^{10}$
9	Хребет Черского	27	36	20	11	1	1	1			97	$8.08 \cdot 10^{11}$
10	Приморская низменность	1	3	2	3						9	$4.85 \cdot 10^9$
11	Лаптевский		5	6	4	1		1			17	$6.50 \cdot 10^{11}$
12	Восточная часть Сибирской	1	1	1	1						4	$4.48 \cdot 10^8$
	платформы											
	Всего	726	771	287	107	25	8	5		1	1931	$5.60 \cdot 10^{13}$

Вне зоны ответственности

Прибайкалье		1	1				2	$5.41 \cdot 10^8$
Приамурье		16	4	3			23	$4.07 \cdot 10^{10}$
Северо-Восток России		6	1		1		8	$5.23 \cdot 10^{10}$
 Всего		23	6	3	1		33	$9.35 \cdot 10^{10}$

Анализ табл. 1 показывает, что почти вся (97%) сейсмическая энергия в 2009 г. выделилась в Южной Якутии (районы 1–5) в пределах Олёкмо-Становой сейсмотектонической зоны и только 3% приходится на территорию Арктико-Азиатского пояса.

Суммарная сейсмическая энергия ΣE , высвободившаяся в 2009 г., составила $5.60 \cdot 10^{13} \ Dmmode{Jmm}$, что почти на два порядка меньше ее величины в 2008 г. ($4.02 \cdot 10^{15} \ Dmmode{Jmm}$ [2]). Пространственное распределение эпицентров землетрясений не претерпело изменений. По-прежнему активны Олёкмо-Становая сейсмотектоническая зона на юге Якутии и континентальная часть Арктико-Азиатского сейсмического пояса на северо-востоке региона, которые разграничивают Евразийскую, Амурскую и Североамериканскую литосферные плиты, господствующие в Северо-Восточной Азии.

Карта эпицентров всех землетрясений изображена на рис. 1. С ее помощью и табл. 1 рассмотрим детально сейсмический процесс за 2009 г. во всех 12 районах Якутии.

Самым активным оказался Олёкминский район (№ 1), где на Олёкмо-Чарском нагорье наблюдалось оживление сейсмического процесса в Чаруодинском рое землетрясений, действующем с ноября 2005 г. [11].

На данном участке отмечено более 80% всех подземных толчков, произошедших в регионе за 2009 год. Характерной чертой сейсмических проявлений в этой части исследуемой территории является развитие долговременных (почти 12 лет) роевых последовательностей. Так, первый Олдонгсинский рой действовал в 1997–1999 гг. с годовыми числами роевых толчков N_{Σ} =597 [12], N_{Σ} =441 [13] и N_{Σ} =500 [14] соответственно. Затем после 4-летнего перерыва рядом с ним в 2005 г. возник новый Чаруодинский рой. В течение 2005-2007 гг. в последнем наблюдался спад сейсмической активности (N₂=2673 – в 2005 г. [15], N₂=1700 – в 2006 г. [16] и N₂=150 – в 2007 г. [17] соответственно). Но в 2008 г. здесь вновь возросла интенсивность сейсмотектонических движений, которая закончилось появлением достаточно сильного (*K*_P=13.7) землетрясения [7] с большой серией (*N*_{афт}=1102) афтершоков [18] (рис. 1). В течение «жизни» Чаруодинского роя (2005-2009 гг.) произошли три сильных землетрясения: 10.11.2005 г. с K_P=15.7, Mw=5.8; 11.12.2005 г. – с K_P=14.8, Mw=5.7 [11]; последнее – 26.01.2009 г. с $K_{\rm P}$ =13.7, Mw=5.4, которое получило название «Чаруодинское-III». Оно описано в отдельной статье наст. сб. [7]. В общей сложности за последние 12 лет на Олёкмо-Чарском нагорье произошло свыше 6 тыс. подземных толчков (рис. 2). При этом часто крупные события роя сопровождались своими сериями афтершоков.

Рис. 1. Карта эпицентров землетрясений Якутии с К_Р≥7.6 за 2009 г.

1 – энергетический класс землетрясений $K_{\rm P}$; 2, 3 – сейсмическая станция, опорная и региональная соответственно; 4 – сейсмическая станция соседних регионов; 5 – разлом по [8–10], установленный (сплошная линия) и предполагаемый (штриховая); 6, 7 – граница района и региона соответственно.

Рис. 2. Распределение роевых серий во времени на Олёкмо-Чарском нагорье в конце XX в. и начале XXI в.

Другой сейсмоактивный участок в Олёкминском районе расположен примерно в 100 км к югу от Чаруоды в среднем течение р. Олёкмы. В прошлом он характеризовался повышенной сейсмической активностью, где неоднократно возникали крупные 9-балльные сейсмические события: Нюкжинское землетрясение 18.01.1958 г. с MLH=6.5, Олёкминское землетрясение 14.09.1958 г. с MLH=6.4 и Тас-Юряхское землетрясение 18.01.1967 г. с MLH=7.0 [19]. Современная активность выразилась в возникновении землетрясения лишь K_P =12.1 1 октября в 07^h39^m [3]. Его очаг, отмеченный на глубине 28 км, тяготел к субширотному Тас-Юряхскому разлому, диагносцируемому по геолого- и морфоструктурным данным [9, 10]. Вслед за основным толчком последовала небольшая серия из 11афтершоков с K_P =7.5–10.1 (табл. 2), с энергетической ступенью между главным толчком и максимальным афтершоком:

$$\Delta K_{\rm a} = 12.1 - 10.1 = 2.0.$$

Основное событие ощущалось с интенсивностью *I*=4 балла на станции БАМ «Юктали» (Δ=35 км) и 3 балла – в пос. Усть-Нюкжа (Δ=40 км) [4].

Таблица 2. Основные параметры главного толчка и афтершоков землетрясения 1 октября в 07^h39^m с *K*_P=12.1, *MS*=4.3 [3]

N⁰	Дата,	$t_0,$	Ги	ипоцентр		$K_{ m P}$	N⁰	Дата,	$t_0,$	Гипоцентр			К _Р
	д м	ч мин с	φ°, N	λ°, Ε	һ, км			д м	ч мин с	φ°, N	λ° , Ε	һ, км	1
Основной толчок						5	01.10	08 33 26.6	56.60	121.00		8.4	
(5)	01 10	07 39 27 1	56 62	121.03	28	12.1	6	01.10	09 14 53.2	56.59	121.00		7.7
						7	01.10	09 32 28.7	56.60	120.97		10.1	
	-	Aψ	гершов	СИ			8	01.10	09 49 33.7	56.61	120.98		9.8
1	01.10	07 49 32.4	56.59	120.98		8.0	9	01.10	19 03 39.8	56.59	120.99		9.3
2	01.10	07 54 08.5	56.59	121.02		7.5	10	07.10	11 57 26.8	56.60	121.02		7.5
3	01.10	08 05 16.1	56.59	120.97		7.7	11	14 10	21 35 05 5	56 58	120.98		79
4	01.10	08 14 37.3	56.64	121.06		7.8		1	-1 00 00.0	00.00	120000		

Суммарная сейсмическая энергия в районе Станового хребта (\mathbb{N} 2), равная $\Sigma E=9.34\cdot10^{10}\mathcal{A}\mathcal{H}$, на два порядка меньше, чем в Олёкминском районе. Наибольшее число эпицентров фиксировалось на западном фланге территории, где 22 сентября в $06^{h}44^{m}$ произошел толчок с $K_{\rm P}=10.6$ ($\varphi=56.94^{\circ}$ N, $\lambda=123.12^{\circ}$ E). В целом очаги землетрясений наблюдались на всем протяжении Станового хребта, при этом плотность их эпицентров падала в направлении с запада на восток (рис. 1). Природа местной сейсмичности связывается с современными тектоническими движениями по Становому структурному шву, разделяющему Алданский щит Сибирской платформы и Становую складчатую область.

Меньшая активность фиксировалась на Алданском нагорье (\mathbb{N} 3). Большинство слабых землетрясений здесь отмечено на юге нагорья и соседних склонах Станового хребта. На севере данного района замечены лишь единичные сейсмические события. Энергетический диапазон местных землетрясений соответствовал K_P =6–10 (табл. 1). Максимальный (K_P =10.1) толчок возник 16 февраля в 13^h39^m.

Сопоставимый со Становым хребтом уровень сейсмической энергии ($\Sigma E=1.09 \cdot 10^{11} \ \mathcal{Д} \mathcal{ж}$) отмечен в **Учурском районе** (**№** 4). Основное скопление эпицентров сосредоточено в хребте Лурикан, который с востока и севера огибает р. Учур в ее верхнем и среднем течении. Самое интенсивное событие возникло здесь 26 декабря в 06^h11^m с $K_P=10.8$ на западном окончании названного хребта ($\varphi=56.65^{\circ}$ N, $\lambda=131.54^{\circ}$ E).

Большее оживление, нежели в 2006–2008 гг. [16, 17, 2], испытал район **Хребта Сетте**-Дабан (**№** 6). Здесь активизировался участок к востоку от трассы Нелькано-Кыллахского надвига, северо-восточнее сейсмической станции «Усть-Мая» (рис. 1). С января по ноябрь 2009 г. на этой площадке ($\Delta \phi$ =60.8°–61.3°N и $\Delta \lambda$ =136.5°–137.0°E) произошло 5 землетрясений с K_P =7.9–10.0 [3].

В арктической части региона активным в 2009 г. был **Лаптевский район** (\mathbb{N} 11). На шельфе моря Лаптевых в области влияния Лаптевоморской окраинно-континентальной рифтовой системы [9] 7 октября в $00^{h}29^{m}$ на глубине $h=13 \ \kappa m$ произошло землетрясение с $K_{P}=11.8$

(φ=73.31°N, λ=134.25 E). Несколько слабых толчков также отмечены в мелководной прибрежной окраине шельфа на о. Большой Ляховский, в губе Буор-Хая и дельте р. Лена.

В районе Хребет Черского (№ 9) выявлено несколько групп подземных толчков, отстоящих друг от друга на расстояниях 100-400 км. Прежде всего вблизи сейсмической станции «Артык» выделяется участок, который тяготеет к Верхненерской кайнозойской впадине [9]. Ее с северо-востока ограничивает Чай-Юреинский, а с юго-запада – Нерский активные разломы. Именно в зоне влияния последнего 27 июля в 00^h15^m отмечено событие умеренной энергии с *K*_P=11.8 (φ=63.99°N, λ=145.02°E). Этот мелкофокусный (*h*=11 *км*) толчок ощущался в пос. Артык на расстоянии 30 км от эпицентра с интенсивностью І=3 балла [4]. Небольшое скопление эпицентров зафиксировано в 60 км к северо-востоку от Усть-Неры вдоль трассы Иньяли-Дебинского дизьюнктива [8]. На северо-западном краю Момского хребта в среднем течении р. Индигирка продолжалась афтершоковая деятельность Андрей-Тасского землетрясения 22.06.2008 г. с K_P=15.6, Mw=6.1, I₀=7-8 баллов [20]. В 2009 г. в его эпицентральной области зарегистрировано более 40 слабых повторных толчков с $K_{\rm P}$ =6–8 [21]. Их появление подтверждает высокую мобильность крупного Илин-Тасского регионального разлома. Небольшая активизация сейсмического процесса выявлена на крайнем северо-западе района в кряже Полоусном и связана, возможно, с движениями по Депутатскому широтному разлому [8]. В его зоне влияния локализована небольшая группа толчков, где выделяется землетрясение с K_P=11.2, произошедшее 30 декабря в $22^{h}46^{m}$ (ϕ =69.85 N, λ =139.39 E).

В районе **Яно-Оймяконского нагорья** (**N** ${}^{\circ}$ **8**) отмечается низкая сейсмическая активность. Наиболее сильным ($K_{\rm P}$ =10.6) событием явилось землетрясение 10 сентября в 13^h04^m (ϕ =66.30°N, λ =132.59 E). Оно возникло в пределах Янского плоскогорья, которое в северовосточном направлении пересекает Верхоянская система разломов. Ближе всего данный толчок оказался расположенным к Халтысинскому локальному нарушению упомянутой системы. Рассеянная сейсмичность наблюдалась на крайнем севере района. Она сосредоточена внутри и по краям Омолойской впадины, где следится в виде линии эпицентров слабых толчков вплоть до устья р. Омолой и мыса Буор-Хая.

В районе **Приморской низменности** (№ 10) немногочисленная группа из девяти подземных толчков локализована главным образом в междуречье Яны и Индигирки (рис. 1).

Слабоактивными являлись районы Верхоянского хребта (№ 7) и востока Сибирской платформы (№ 12), где в каждом из них отмечено $N_{(Ne 7)}=13$ и $N_{(Ne 12)}=4$ слабых событий соответственно (табл. 1). И практически асейсмичным был Охотский район (№ 5).

В целом сейсмичность в регионе, как и раньше, проявлялась на границах известных литосферных плит в пределах Олёкмо-Становой зоны Байкало-Станового сейсмического пояса на юге и континентальной части Арктико-Азиатского пояса на северо-востоке региона. При этом на юге наблюдалось усиление активности, вызванной продолжением жизнедеятельности Чаруодинского роя 2005 г., в то время как за полярным кругом, напротив, отмечено затухание активности после крупного Андрей-Тасского события 22.06.2008 г.

Литература

- 1. Козьмин Б.М. Шибаев С.В. (отв. сост.). Сейсмические станции Якутии в 2009 г. (код сети YARS). (См. Приложение к наст. сб. на CD).
- 2. Козьмин Б.М. Якутия // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 216–223.
- 3. Козьмин Б.М., Шибаев С.В. (отв. сост.), Петрова В.Е., Захарова Ж.Г., Каратаева А.С., Москаленко Т.П. (сост.). Каталог землетрясений и взрывов Якутии за 2009 г. (См. Приложение к наст. сб. на CD).
- 4. Козьмин Б.М. (отв. сост.). Макросейсмический эффект ощутимых землетрясений в населенных пунктах Якутии в 2009 г. (См. Приложение к наст. сб. на CD).
- 5. Козьмин Б.М., Артёмова Е.В., Пойгина С.Г. (сост.). Сведения о пунктах, для которых имеется информация о макросейсмических проявлениях ощутимых землетрясений Якутии за 2009 г. (См. Приложение к наст. сб. на CD).

- 6. Козьмин Б.М. (сост.). Каталог механизмов очагов землетрясений Якутии за 2009 г. (См. Приложение к наст. сб. на CD).
- 7. Козьмин Б.М., Шибаев С.В., Петров А.Ф., Тимиршин К.В. Чаруодинское-III землетрясение 26 января 2009 г. с *K*_P=13.7, *Mw*=5.4, *I*₀^P=8 (Южная Якутия). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- Гусев Г.С., Веклич В.С., Третьяков Ф.Ф. Морфо-кинематическая характеристика разломов Верхояно-Чукотской складчатой области // Разломная тектоника территории Якутской АССР.– Якутск: ЯФ СО АН СССР, 1976. – С. 150–159.
- 9. Имаев В.С., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. М.: ГЕОС, 2000. 201 с.
- 10. Парфенов Л.М., Козьмин Б.М., Гриненко О.В., Имаев В.С., Имаева Л.П., Болдырев М.В., Дудко Е.А. Геодинамика Олёкмо-Становой сейсмической зоны. – Якутск: ЯФ СО АН СССР, 1985. – 135 с.
- Шибаев С.В., Петров А.Ф., Козьмин Б.М., Имаева Л.П., Мельникова В.И., Радзиминович Н.А., Тимиршин К.В., Петрова В.Е., Гилёва Н.А., Пересыпкин Д.М. Чаруодинский рой землетрясений 2005 г. и его ощутимые землетрясения: Чаруодинское-I 10 ноября с K_P=15.7, Mw=5.8, I₀=8 и 11 декабря с K_P=14.8, Mw=5.7, I₀=7 (Южная Якутия) // Землетрясения Северной Евразии, 2005 год. – Обнинск: ГС РАН, 2011. – С. 404–419.
- Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 1997 году. Обнинск: ГС РАН, 2003. С. 151–155.
- 13. Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 1998 году. Обнинск: ГС РАН, 2004. С. 173–177.
- Козьмин Б.М. Якутия // Землетрясения Северной Евразии в 1999 году. Обнинск: ГС РАН, 2005. С. 181–189.
- Козьмин Б.М. Якутия // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 234–240.
- Козьмин Б.М. Якутия // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. С. 220–227.
- 17. Козьмин Б.М. Якутия // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2013. С. 225–230.
- Козьмин Б.М., Старкова Н.Н. (сост.). Афтершоки Чароудинского землетрясения 26 января 2009 г. с K_P=13.7, *MS*=5.0. (См. Приложение к наст. сб. на CD).
- 19. **Козьмин Б.М.** Сейсмические пояса Якутии и механизмы очагов их землетрясений. М.: Наука, 1984. 125 с.
- Шибаев С.В., Козьмин Б.М., Петров А.Ф., Имаева Л.П., Тимиршин К.В. Андрей-Тасское землетрясение 22 июня 2008 г. с К_Р=15.6, Мw=6.1, I₀=7–8 (Северо-Восток Якутии) // Землетрясения Северной Евразии, 2008 год. – Обнинск: ГС РАН, 2014. – С. 352–358.
- 21. Козьмин Б.М. (сост.). Афтершоки (продолжение в 2009 г.) Андрей-Тасского землетрясения 22 июня 2008 г. с *К*_P=15.6, *Мw*=6.1, *I*₀=7–8 (Якутия). (См. Приложение к наст. сб. на CD).