УРАЛ

А.А. Маловичко¹, Р.А. Дягилев², Т.В. Верхоланцева², Ф.Г. Верхоланцев¹, И.В. Голубева¹

¹Геофизическая служба РАН, г. Обнинск, **amal@gsras.ru** ²Горный институт УрО РАН, г. Пермь, **dr@mi-perm.ru**

Сеть сейсмических станций Урала в 2009 г. представлена 14 станциями. Сведения об аппаратуре 13 станций региона, действовавших до 2009 г., приведены в [1]. Во второй половине 2008 г. введена в эксплуатацию новая станция «Оренбург-3» (OR3), сведения о которой представлены в табл. 1. Сейсмические данные с части станций – «Свердловск» (SVE), «Арти» (ARU), «Соликамск» (SOKR), «Верхнечусовские городки» (PR0R), «Романово» (PR1R), «Добрянка» (PR2R), «Кунгур» (PR3R), «Власы» (PR4R), «Екимята» (PR6R) и «Североуральск» (SVUR) – передаются через сеть Интернет в режиме, близком к реальному времени, в региональный центр сбора и обработки данных, созданный на базе ГИ УрО РАН в г. Перми [2, 3], при этом данные станций SVE, ARU, SOKR, PR1R, SVUR находятся в прямом доступе из центра обработки в г. Обнинск. Доступ к данным станций «Оренбург» (ORR), «Оренбург-2» (OR2) и «Оренбург-3» (OR3) осуществляется по запросу в Отдел геоэкологии Оренбургского научного центра (ОНЦ) РАН (г. Оренбург), обслуживающим станции. Данные со станции «Каменск-Уральский» (КАUR) доставляются в ГИ УрО РАН по электронной почте с периодичностью один раз в месяц. Полная сводка данных о сейсмических станциях Урала в 2009 г. дана в Приложении к наст. сб. на CD [4].

Название	Код	Да открі	та ытия	φ	°, N	λ°, Ε	h _y , м	Ti yo	ип грунтов в месте тановки приборов
1	2	Ĵ	}		4	5	6		7
Оренбург-3	OR3	17.07	.2008	51	.9005	54.4098	198		Суглинок
Тип АЦП и сейсмометра	Пер кан	Перечень каналов		Частотный диапазон, Гц		Частота опроса данных, Гц		цность ЦП	Чувствительность, велосиграф – отсчет/(м/с)
8		9	10			11	1	2	13
SDAS+CM-3-KB	S+CM-3-KB SH (N, E, Z) v $0.5 - 3$		30		100	2	4	$(2.58, 2.37, 2.67) \cdot 10^8$	

Таблица 1. Сведения о новой сейсмической станции «Оренбург-3» (OR3)

Карта представительности M_{\min} , учитывающая обновленную конфигурацию сети и средний уровень шумов, действовавший на станциях в 2009 г., представлена на рис. 1. Методика расчета определения параметров сейсмических очагов не изменилась и изложена в [5]. Уверенно регистрируются сейсмические события на большей части Пермского края, начиная с $M_L=2.2$; в Свердловской области – с $M_L=2.6$; в Башкортостане – с $M_L=2.8$; в Челябинской и Оренбургской областях – с $M_L=3.0$. Компактное расположение станций в районе Оренбургского газоконденсатного месторождения обеспечивает локальное снижение порога представительности в центральной части Оренбургской области до $M_L=2.0$.

С 2009 г. в регионе используется шкала локальных магнитуд M_L [5], которая находится в полном соответствии с классическим определением Ч. Рихтера [6]:

$$M_{\rm L} = \log A + 3 + 0.920 \log(R/100) + 8.43 \cdot 10^{-4} (R - 100) + C_{\rm st}$$

где *А* – максимальная амплитуда синтезированной записи сейсмографа Вуда-Андерсона (в *мм*), *R* – эпицентральное расстояние (в *км*), *C*_{st} – станционная поправка.

Рис. 1. Карта магнитудной представительности *M*_{Lmin} сейсмических событий на территории Урала в 2009 г.

Результаты инструментальных наблюдений. При обработке сейсмических записей ведется определение типа сейсмических событий (взрыв или землетрясение). Землетрясения делятся по удаленности на телесейсмические и региональные. Последние могут быть как природными, так и связанными с ведением горных работ: горные (ГУ) и горно-тектонические удары (ГТУ). Распределение сейсмических событий по трем основным типам, начиная с 2000 г., представлено на рис. 2.

На гистограмме можно видеть, что представительные данные о числе сейсмических событий региона имеются примерно с конца 2002 г. Доля местных событий держится на уровне ~27%, при этом большая их часть (>80%) представлена взрывами, производимыми горнодобывающими предприятиями. Окончательная идентификация взрывов проводится после сопоставления с соответствующими сведениями о взрывных работах. Сопоставление ведется для всех карьеров, шахт и рудников, расположенных на территории Пермского края, и для некоторых объектов в Свердловской области. Аналогичные сведения с предприятий других регионов неполны, поэтому для них идентификация очагов проводится по ряду формальных признаков способом, описанным ранее [9], и по степени близости к известным горно-добывающим предприятиям. На рис. 3 представлено распределение взрывов, произведенных на территории Пермского края и Свердловской области.

Рис. 2. Изменение числа сейсмических событий разных типов, зарегистрированных станциями Урала в 2000–2009 гг.

Рис. 3. Диаграмма распределения взрывов на территории Пермского края и Свердловской области

Как видно из рисунка, на территории Пермского края зафиксировано 64% от общего числа взрывов, у которых наиболее точно удалось определить все необходимые параметры эпицентра, остальные 36% приходятся на долю Свердловской области.

В общей сложности сейсмическими станциями Уральского региона в 2009 г. были зарегистрированы и определены параметры для 14 событий (табл. 2), из них лишь одно, произошедшее в Кировской области, является тектоническим землетрясением, а остальные 13 – горнотектонические удары (ГТУ) в Свердловской области [10]. Кроме того, зарегистрировано 165 взрывов.

Дата,	$t_0,$	Гипо	центр	h,	$M_{\rm L}$	Природа	Дата,	<i>t</i> ₀ ,	Гипо	центр	h,	$M_{ m L}$	Природа
Ом	ч мин с	φ ⁻ , N	Λ ⁻ , Ε	кли			Ом	ч мин с	φ², N	Λ ⁻ , Ε	км		
26.01	23 45 49	58.00	59.80	1	1.7	ГТУ	10.09	02 11 54	60.20	60.05	1	3.3	ГТУ
26.01	02 29 35	60.20	60.04	1	2.7	ГТУ	01.10	16 21 46	58.00	59.90	1	2.0	ГТУ
14.03	19 46 21	60.10	59.95	1	2.7	ГТУ	20.10	04 45 50	57.83	50.64	10f	3.0	земле-
23.04	17 30 13	60.19	59.96	1	2.5	ГТУ							трясение
30.04	18 55 54	60.20	59.95	1	2.7	ГТУ	25.10	16 44 06	60.15	60.00	1	3.1	ГТУ
03.07	07 32 25	60.07	59.98	1	3.3	ГТУ	30.10	10 16 54	60.22	60.01	1	3.5	ГТУ
26.08	00 34 45	60.25	59.98	1	2.0	ГТУ	26.11	12 57 29	60.10	60.00	1	2.6	ГТУ
04.09	18 05 26	60.20	60.02	1	2.6	ГТУ							

Таблица 2. Землетрясение и горно-тектонические удары Урала в 2009 г.

Итоговое распределение событий разных типов по магнитудам M_L и суммарное распределение сейсмической энергии ΣE представлено в табл. 3. Энергия событий рассчитывалась по формуле Канамори из [11]:

lg*E*,
$$\Pi H = 1.96 M_L + 2.05$$
,

применимой для диапазона магнитуд 1.5< M_L <6.0. Их суммарная сейсмическая энергия составила ΣE =2.095·10⁹ Дж (табл. 3).

Таблица 3. Распределение числа сейсмических событий в различных интервалах магнитуд и суммарной выделившейся сейсмической энергии

Тип события		M_L	N_{Σ}	ΣE ,	
	1.1-2.0	2.1-3.0	3.1-4.5	_	10 ⁸ Дж
Землетрясение	-	1	_	1	0.85
ГТУ	3	6	4	13	17.1
Взрыв	103	62	_	165	3.0
Всего	106	69	4	179	20.95

Пространственное распределение очагов сейсмических событий отражено на карте эпицентров землетрясений (рис. 4).

Рис. 4. Карта эпицентров сейсмических событий Урала в 2009 г.

Как видим, локация событий реализована собственно в трех «точках»: на востоке Кировской области, в Свердловской области – на широте ~60°на севере СУБР и южнее, на широте ~58°. Сравнение карты с аналогичными картами за предыдущие годы [1, 5], показывает, что основная сейсмичность в виде горно-тектонических ударов проявляется в одних и тех же зонах, а их активность сохраняется примерно на одном уровне.

Единственное зарегистрированное тектоническое землетрясение имело эпицентр с φ =57.83°N, λ =50.64°E на территории Кировской области. Оно произошло 20 октября 2009 г. в 04^h45^m в районе пос. Богородское и имело локальную магнитуду M_L =3.0. Можно условно приписать этому землетрясению название Богородского. Данных о макросейсмических его проявлениях, к сожалению, нет. Событие зарегистрировано четырьмя станциями, записи волновых форм представлены на рис. 5.

Рис. 5. Сейсмограмма Богородского землетрясения 20 октября 2009 г. в 04^h45^m с *M*_L=3.0 в Кировской области

Интересно рассмотреть положение Богородского землетрясения с тектонических позиций. Известно [12], что для Западно-Уральского региона выделены геодинамически неустойчивые зоны по комплексу геолого-геофизических и сейсмологических данных. Они отличаются свойствами среды и динамикой процессов, которые стремятся к их дестабилизации под действием региональных и глобальных сил, и находят свое проявление в сейсмичности.

В частности, рассмотрим схему разломов консолидированной коры Западно-Уральского региона в редакции Т.С. Блиновой на рис. 6 из [13] и место эпицентра Богородского землетрясения в этой схеме.

Как видим, землетрясение ложится в зону влияния восточной ветви Вятских разломов, геодинамически неустойчивых зон второго порядка, в пересечении двух геодинамически неустойчивых зон, выделенных на основании анализа геолого-геофизических данных [1]. Учитывая, однако, невысокую точность его локации из-за одностороннего расположения сейсмических станций, можно сместить эпицентр Богоролдского землетрясения чуть севернее, к зоне сочленения глубинных региональных разломов Холунецкого (3) и Моломско-Чепецкого (4) с генеральными Вятскими разломами (1).

Остальные 13 событий 2009 г. имели место в Свердловской области, вблизи объектов, где ведется интенсивная добыча полезных ископаемых – район г. Североуральск и г. Нижний Тагил. Все очаги являются горно-тектоническими ударами. Самый сильный (M_L =3.5) среди ГТУ возник 30 октября в 10^h16^m на шахте «Кальинская» в Североуральских бокситовых месторождениях (СУБР) и сопровождался выбросом горной породы из стен выработки. Остальные ГТУ на шахтах СУБРа были слабее и имели магнитуду M_L от 1.7 до 3.3 (табл. 2).

ГТУ 30 октября был зафиксирован всеми сейсмическими станциями региона, записи волновых форм представлены на рис. 7.

Рис. 6. Разломы различных рангов консолидированной коры Западно-Уральского региона из [13]

1 – генеральные разломы; 2 – региональные разломы; 3 – локальные разломы; 4 – номера генеральных и региональных разломов; 5 – геодинамически неустойчивые зоны второго порядка; 6 – зоны сочленения глубинных разломов; 7 – эпицентры землетрясений; 8 – эпицентр Богородского землетрясения.

Номера и названия 15 генеральных и региональных разломов: 1 – Вятские разломы; 2 – Нагорненский разлом; 3 – Холунецкий разлом; 4 – Моломско-Чепецкий разлом; 5 – Кильмезский грабен; 6 – Кирсинский грабен; 7 – Афанасьевский грабен; 8 – Удмуртский разлом; 9 – Гайнско-Кудымкарская система разломов; 10 – Верещагинско-Куединская полоса разломов; 11 – Чермозский разлом; 12 – Красноуфимский разлом; 13 – Западно-Уральский разлом; 14 – Тиманская система разломов; 15 – Пермско-Ижевский разлом.

Рис. 7. Сейсмограммы восьми станций с записью горно-тектонического удара 30 октября 2009 г. на шахте «Кальинская» (СУБР)

Более того, по данным Международного сейсмологического центра [14], этот горнотектонический удар записан на 80 мировых станциях и обработан в ряде мировых агентств (табл. 4).

Агентство	<i>t</i> ₀ ,	δt_0 ,		Г	ипоцент	2	Магнитуда	Источник	
	ч мин с	С	φ°, N	δφ°	λ°, Ε	δλ°	h, км		
PERM	10 16 54		60.22		60.01		1	$M_L = 3.5$	[2, 15, 16]
OBN	10 16 50.8	1.2	60.227	0.10	59.878	0.10	10	MPSP=4.0/7	[17]
NNC	10 16 58.0	4.1	59.76		60.78		0	$m_{\rm b}$ =4.3, $m_{\rm pv}$ =4.5	[14]
CSEM	10 16 50.0	0.5	60.43		60.02		2	$m_{\rm b}$ =4.0	[14]
IDC	10 16 53.4	0.7	60.20		59.99		0	$m_{\rm b}$ =3.8/9, <i>ML</i> =3.8/8	[14]
ISC	10 16 53.2	0.6	60.12	0.05	60.06	0.05	10f	$m_{\rm b}=3.8/10$	[14]
ISCJB	10 16 51.5	0.4	60.07	0.05	60.05	0.07	10f	$m_{\rm b}=3.8/10$	[14]

Таблица 4. Разные решения параметров ГТУ 30 октября 2009 г. в Свердловской области по данным Уральской сети (PERM) в сопоставлении с определениями других агентств

Примечание. Расшифровка кодов агентств дана в условных обозначениях к наст. сб.

Карта эпицентров разных решений изображена на рис. 8.

Рис. 8. Региональное решение эпицентра горно-тектонического удара 30 октября 2009 г. на шахте «Кальинская» Североуральских бокситовых месторождений в сопоставлении с решениями других агентств

1 – инструментальный эпицентр PERM; 2 – другие решения из табл. 4; 3 – населенный пункт; 4 – граница Пермской области.

Из рис. 8 видна, прежде всего, высокая точность локации эпицентра Пермской сетью станций – имеет место совпадение с решениями OBN, ISC, IDC, несколько удалено решение CSEM и далеко решение NNC.

Из остальных 12 горно-тектонических ударов наиболее примечательным стало событие 1 октября 2009 г. в $16^{h}21^{m}$. Имея небольшую ($M_{L}=2.0$) локальную магнитуду, оно спровоцировало макросейсмические эффекты, наиболее значительные из которых – деформации земной поверхности над очагом. В результате были повреждены железнодорожные пути и автомобильная дорога, а также одно бесхозное здание на территории Высокогорского механического завода. Появление деформаций на поверхности было отмечено на площади с линейными размерами до 250 *м* и выразилось в образовании крупных трещин в центральной части с оседанием в пределах 1.5–2 *м*. Известно, что в самом Нижнем Тагиле оно ощущалось некоторыми людьми. Подробности о характере ощущений не известны, поэтому интенсивность сотрясений, вероятно, не превышала 3 баллов.

Литература

- 1. Маловичко А.А., Маловичко Д.А., Дягилев Р.А., Верхоланцев Ф.Г., Голубева И.В., Верхоланцев А.В. Урал // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2011. С. 248–253.
- 2. Дягилев Р.А., Маловичко А.А. Мониторинг природной и техногенной сейсмичности в пределах градопромышленных агломераций и выделение тектонически активных зон для территории Западного Урала в целях повышения геодинамической безопасности эксплуатации ответственных объектов (Отчет о научно-исследовательской работе за 2009 г.). – Пермь: Фонды ГИ УрО РАН, 2011. – 83 с.
- 3. Верхоланцев Ф.Г. Сейсмические станции Урала в 2008 г. // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. (На CD).
- 4. Верхоланцев Ф.Г. (сост.). Сейсмические станции Уральской сети в 2009 г. (См. Приложение к наст. сб. на CD).
- 5. Маловичко А.А., Маловичко Д.А., Дягилев Р.А., Верхоланцев Ф.Г., Голубева И.В., Верхоланцев А.В. Пермский край 2000–2005 гг. // Землетрясения Северной Евразии, 2005 год. – Обнинск: ГС РАН, 2011. – С. 269–289.
- 6. **Рихтер Ч.** Инструментальная шкала для магнитуд землетрясений // Слабые землетрясения. М.: ИЛ, 1961. С. 13–44.
- Дягилев Р.А., Голубева И.В. Оценка эффективности критерия распознавания сейсмических событий *As/Ap* для станций Уральского региона с применением статистических подходов // Сейсмичность Северной Евразии (Материалы международной конференции, посвященной 10-летию выпуска сборника научных трудов «Землетрясения Северной Евразии», Обнинск, 28–31 июля 2008 г.). Обнинск: ГС РАН, 2008. С. 78–80.
- 10. Голубева И.В., Дягилев Р.А. (отв. сост.), Верхоланцев Ф.Г., Верхоланцева Т.В., Старикович Е.Н., Варлашова Ю.В., Белевская М.А. (сост.). Каталог сейсмических событий на территории Пермского края и прилегающих районов за 2009 г. (См. Приложение к наст. сб. на CD).
- Kanamori H., Mori J., Hauksson E., Heaton T.H., Hutton L.K. and Jones L.M. Determination of earthquake energy release and M_L using TERRAscope // Bull. Seism. Soc. Am. – 1993. – 83. – N 2. – P. 330– 346.
- 12. Блинова Т.С. Прогноз геодинамически неустойчивых зон. Екатеринбург: УрО РАН, 2003. 163 с.
- 13. Блинова Т.С. Геодинамика и сейсмичность. Пермь: Пермский Государственный Университет., 2007. 160 с.
- 14. Bulletin of the International Seismological Centre for 2009. Thatcham, United Kingdom: ISC, 2011.
- 15. Габсатарова И.П., Голубева И.В., Дягилев Р.А., Карпинский В.В., Мехрюшев Д.Ю., Надёжка Л.И., Петров С.И., Пивоваров С.П., Пойгина С.Г., Санина И.А., Французова В.И. Восточно-Европейская платформа, Урал и Западная Сибирь // – Землетрясения России в 2009 году. Обнинск: ГС РАН, 2011. – С. 21–25.
- 16. Сейсмологический мониторинг территории Западного Урала Пермь: ГИ УрО РАН, 2009. URL: //http://pts.mi-perm.ru/region/index.htm.
- 17. Болдырева Н.В. (отв. сост.), Аторина М.А., Бабкина В.Ф., Малянова Л.С., Рыжикова М.И., Щербакова А.И. (сост.). Каталог землетрясений Земли за 2009 г. (См. Приложение к наст. сб. на CD).