САХАЛИН

Т.А. Фокина¹, Д.А. Сафонов^{1,2}, И.П. Кислицына¹, В.И. Михайлов¹

¹Сахалинский филиал Геофизической службы РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru ²Институт морской геологии и геофизики ДВО РАН, г. Южно-Сахалинск, d.safonov@imgg.ru

Региональная сеть. Сейсмические станции региона, включающего территорию о. Сахалин с шельфом и восточную часть Приамурья, представлены в Приложении [1] вместе с их параметрами. Существующая сеть станций Сахалина совместно со станциями Приамурья и Приморья [2] и Курило-Охотского региона [3] обеспечила на острове регистрацию без пропусков землетрясений с расчетной магнитудой $M^p>3.5$, а на большей части острова – с $M^p>3.0$ (рис. 1). В целом представительность землетрясений в регионе Сахалин, по сравнению с таковой в 2008 г. [4], не изменилась.

Рис. 1. Карта магнитудной представительности землетрясений *M*_{min} Caxaлина

 1 – опорная сейсмическая станция «Южно-Сахалинск»; 2, 3 – цифровая и аналоговая сейсмические станции соответственно; 4 – граница региона; 5 – изолиния M_{min}.

Параметры землетрясений определены на основе материалов наблюдений, полученных на четырех стационарных сейсмических станциях Сахалина: «Южно-Сахалинск» (YSS), «Тымовское» (TYV), «Углегорск» (UGL) и «Оха» (ОКН) [1]. Одновременно с регистрацией аналоговой аппаратурой на трех сейсмических станциях («Южно-Сахалинск», «Тымовское», «Оха») продолжалась цифровая регистрация сейсмических событий. Данные цифрового комплекса IRIS-2 (STS-1, GS-13, FBA-23), действующего на станции «Южно-Сахалинск» с 14.06.1992 г. [5], в полной мере использовались в сводной обработке; данные станций типа Datamark LS7000XT «Тымовское» и «Оха», оснащенных с 26.06.2005 г. аппаратурой L4C-3D, STS-2 [6], привлекались для определения координат гипоцентра при условии регистрации события хотя бы одной аналоговой станцией, запись которой необходима для энергетической оценки события. В конце ноября 2009 г. на станции «Оха» был запущен в работу выносной пункт в рамках мероприятия ФЦП «Снижение рисков и смягчение последствий чрезвычайных ситуаций природного и техногенного характера в РФ до 2010 года», оборудованный приборами СМG-3ESPC и CMG-5T.

Как отмечено выше, для определения параметров землетрясений региона Сахалин привлекались традиционно данные всех сейсмических станций Приамурья и Приморья [2], Курило-Охотского региона [3]. Обеспечиваемая этой сетью карта магнитудной представительности землетрясений дана на рис. 1. Привлекались также бюллетени ГС РАН [7], JMA, ISC [8].

При определении параметров сильных землетрясений использовались данные запущенного в эксплуатацию в октябре 2008 г. программнотехнического комплекса опорной широкополосной цифровой сейсмической станции для службы предупреждения о цунами (ПТК ОШЦСС «Южно-Сахалинск»). Комплекс состоит из пяти пунктов наблюдений: центрального, расположенного на сейсмической станции «Южно-Сахалинск», и четырех выносных пунктов, размещенных в городах Корсаков, Невельск, Холмск и Долинск. Сведения о пунктах наблюдения места положения регистратора DAT-2 и, соответственно, антенны GPS в пос. Колхозное: 4 августа 2009 г. регистратор был перенесен в павильон (на 120 *м* в северном направлении от предыдущего места) и установлен там непосредственно над датчиком. Осуществить перенос станции в павильон с условием непрерывного круглогодичного наблюдения стало возможным после того, как испытания станций с накопителями на CF в других местах подтвердили возможность их эксплуатации при отрицательных температурах в зимнее время (эксплуатация станций с накопителем на мобильном жестком диске HD при отрицательных температурах невозможна).

Станция «Белые скалы» из-за недоступности в зимнее время устанавливалась только на время отсутствия снега: установлена 15 мая – снята 17 ноября. По разным причинам, в основном из-за неудачного расположения контейнера с регистратором и сейсмоприемника, а также высо-кой влажности в контейнере регистратора были большие перерывы в регистрации на станции «Фирсово». Много времени в течение года было потрачено на поиски оптимального местоположения регистратора и сейсмоприемника. Те же причины перерывов в работе станции «Мальково». Здесь регистрация происходила на фоне большого уровня шумов, поэтому много времени было потрачено на поиски места расположения датчика с минимальным уровнем микросейсм. Станция «Ожидаево» простояла с конца января по начало марта из-за понижения температуры до отрицательных значений в помещении, где расположен контейнер с регистратором. Регистратор здесь с внешним накопителем на жестком мобильном диске.

Изолинии представительной регистрации локальных землетрясений на рис. 2 показаны именно в расчетных магнитудах M^{p} по формуле Т.Г. Раутиан [9]

$$M^{\rm p} = (K_{\rm P} - 4)/1.8 \tag{1}$$

с шагом $\Delta M^p = 0.5 \ (M_{min}=1.5, 2.0 \ u \ 2.5, что соответствует <math>K_p=6.7, 7.6 \ u \ 8.5$). В [10] опубликован каталог землетрясений по данным локальной сети юга о. Сахалин. Он содержит параметры 1150 землетрясений и 13 событий категории «возможно взрыв» с Ml = 0.5–4.4. Номограмма для определения Ml приведена в работе [11], карта их эпицентров – в [12].

Рис. 2. Карта магнитудной представительности землетрясений M_{\min} , временная сеть локальных сейсмических станций и программно-технический комплекс опорной широкополосной цифровой сейсмической станции для Службы предупреждения о цунами на юге о. Сахалин в 2009 г.

1 — сейсмическая станция локальной сети; 2 — изолиния M_{\min} ; 3 — сейсмическая станция программно-технического комплекса опорной широкополосной цифровой сейсмической станции Службы предупреждения о цунами (ПТК ОШЦСС).

Методы обработки сейсмологических данных описаны в [13–23]. Схема деления региона на отдельные сейсмоактивные районы не изменилась и осталась такой же, как в [24]. Классификация землетрясений по региональной сети проводится по

энергетическим классам $K_{\rm C}$ Соловьёва [13] и $K_{\rm P}$ Раутиан [9], а также магнитудам *MLH*, *MPV*, *MSH* по среднепериодной аппаратуре СКД [25]; *MPVA*, *MSHA* – по короткопериодной аппаратуре СКМ-3 [14, 25].

Для единой классификации всех землетрясений в региональном каталоге внедрена графа расчетных магнитуд M^p . Расчетная магнитуда M^p равнялась магнитуде *MLH* при наличии таковой в каталоге, а при ее отсутствии вычислялась по следующим формулам:

$$M^{p} = (K_{C} - 1.2)/2$$
 для землетрясений с $h \le 80 \ \kappa m$ [21], (1)

а при отсутствии $K_{\rm C}$, но наличии $K_{\rm P}$ –

$$M^{\rm p} = (K_{\rm P} - 4)/1.8$$
 [9], связанных между собой уравнением (2)

$$K_{\rm C} = K_{\rm P} - 1.7 [26]$$
 (3)

Пересчет магнитуд MPVA и MSH проводился по формулам:

$$M^{\rm p} = (MPVA - 2.5)/0.65 \ [13], \tag{4}$$

$$M^{p} = (MSH-1.71)/0.75 при h \ge 81 км [13],$$
(5)

последняя из которых экстраполируется на практике и на магнитуды MSHA

$$M^{p} = (MSHA - 1.71)/0.75$$
 при $h \ge 81 \kappa M$, (6)

исходя из наблюдаемого приближенного равенства значений MSHA и MSH.

При этом энергия землетрясений оценивалась уже из *М*^р по формуле Гуттенберга–Рихтера

$$lgE, \mathcal{I}\mathcal{H} = 4.8 + 1.5 \cdot M^{p} [23].$$
(7)

В региональный каталог Сахалина за 2009 г. [27] включены параметры 180 сейсмических событий: из них 167 – мелкофокусных ($h \le 33 \ \kappa m$), 13 – глубокофокусных ($h = 273 - 530 \ \kappa m$). Карта эпицентров всех сейсмических событий приведена на рис. 3. Самое сильное ($MSH = 5.6, M^p = 5.2$) в 2009 г. землетрясение (15) зафиксировано 21 ноября в 04^h16^m на глубине $h = 321 \pm 18 \ \kappa m$.

Для семи землетрясений – одного корового и шести глубоких – определены механизмы очагов [28].

Для 17 землетрясений имеются сведения о макросейсмических данных [27, 29], из которых 15 проявились на территории Сахалина, а 2 – только в Японии. Максимальный макросейсмический эффект I=6 баллов по шкале MSK-64 [30] наблюдался в пос. Чапланово ($\Delta = 13 \kappa M$) на юге острова при землетрясении 13 сентября в $00^{h}13^{m}$ с *MLH*=4.4, *h*=10 км [29]. Это землетрясение проявило неожиданно высокий для такой магнитуды макросейсмический эффект, по нему представлена отдельная статья в этом сборнике [31]. Два землетрясения ощущались на территории японских островов с интенсивностью I = I балл по шкале ЈМА [32], что, согласно [33], соответствует I=1-2 балла по шкале MSK-64 [30]). Они возникли 11 марта в 18^h50^m с *M*^p=4.1, *h*=29 км и 29 мая в 16^h03^m с *М*^р=4.9, *h*=339 км [27].

Распределение мелкофокусных землетрясений Сахалина по часам суток местного времени представлено на рис. 4.

Диаграмма, построенная для всех сейсмических событий с глубиной $h \le 15 \ \kappa m$, демонстрирует максимум (12–14 событий в час) в диапазоне 15–16 часов местного времени. Среднее число составило: $\overline{N}=7\pm4$ событий в час.

Рис. 3. Карта эпицентров землетрясений Сахалина в 2009 г.

1 – магнитуда M^p ; 2 – глубина *h* гипоцентра, *км*; 3 – диаграмма механизма очага, нижняя полусфера, зачернена область сжатия; 4 – сейсмическая станция; 5 – граница и номер района.

В 2008 г. максимум событий с пометкой «возможно взрыв» пришелся на 16–17 часов местного времени [4]. В каталог 2009 г. такие события не включались.

Таким образом, рис. 4 показывает, что, возможно, несколько взрывов, по форме записи неотличимых от местных землетрясений, попали в региональный каталог под видом естественных землетрясений.

Сейсмическая активность мелкофокусных землетрясений Сахалина в 2009 г., по сравнению с таковой в 2008 г. [4], несколько снизилась по числу зарегистрированных землетрясений, но повысилась в 2.3 раза по уровню суммарной сейсмической энергии, высвобожденной в очагах землетрясений (табл. 1, рис. 5). При сравнении со средними за 2001–2008 гг. показателями в табл. 1 видно, что число (N=167) землетрясений в 2009 г. в 1.6 раза ниже среднего (\overline{N} =265), а выделившаяся сейсмическая энергия более чем в 20 раз ниже среднего значения.

Рис. 4. Распределение числа мелкофокусных (*h* ≤ 15 *км*, *N* = 164) сейсмических событий Сахалина по часам суток местного времени по [27]

Таблица 1. Распределение мелкофокусных (h≤33 км) землетрясений по энергетическому классу K_C и суммарная сейсмическая энергия ΣE в регионе Сахалина в 2001–2009 гг.

Год	Kc									N_{Σ}	ΣE ,
	≤6.5	7	8	9	10	11	12	13	14	_	10 ¹² Дж
2001	57	198	103	21	10	1				390	9.61
2002	32	95	77	15	1					220	1.73
2003	37	67	57	13	4		1			179	4.74
2004	35	60	36	10	3					144	2.89
2005	37	63	47	8	5	4				164	17.28
2006	95	63	44	14	2	2	1			221	48.38
2007	105	189	221	71	22	4	2	2	1	617	301.33
2008	69	66	36	9	2					182	1.04
Всего	467	801	621	161	49	11	4	2	1	2117	387.00
Среднее	58	100	78	20	6	1.4	0.5	0.25	0.1	265	48.38
2009	60	55	39	9	4					167	2.39

Примечание. Для построения распределения землетрясений по классам *K*_C в случае его отсутствия применялся пересчет из класса *K*_P по формуле: *K*_C=*K*_P-1.7 [26].

Рис. 5. Изменение ежегодного числа N и величины суммарной сейсмической энергии ΣE, высвобожденной в регионе Сахалина поверхностными землетрясениями за период 2001–2009 гг.

1, 3 – N и ΣE за 2009 г.; 2, 4 – среднегодовое число землетрясений и высвобожденной энергии за 2001–2008 гг.

Сейсмическая активность глубокофокусных землетрясений в 2009 г. проявилась только в районе № 5 и представлена, как отмечено выше, совокупностью из 13 землетрясений. Суммарная сейсмическая их энергия в 2009 г., равная $\Sigma E=6.453 \cdot 10^{12} \ \square \mathcal{D} \mathcal{K}$ (табл. 3), в 2.5 раза ниже таковой ($\Sigma E=15.849 \cdot 10^{12} \ \square \mathcal{D} \mathcal{K}$) в 2008 г., и в 12.5 раз ниже ее среднего значения за 2001–2008 гг. [4].

Сейсмичность по семи районам представлена в табл. 2 ежегодным числом мелкофокусных землетрясений и суммарной сейсмической энергией, высвобожденной в их очагах в 2001–2009 гг.

Год	Район													
		1		2		3	4		5		6		7	
	N	ΣΕ,	N	ΣΕ,	N	ΣΕ,	N	ΣΕ,	N	ΣΕ,	N	ΣΕ,	N	ΣΕ,
		10 ¹² Дж		10 ¹² Дж		10 ¹² Дж		10 ¹² Дж		10 ¹² Дж		10 ¹² Дж		10 ¹² Дж
2001	96	0.51	2	0.17	1	0.002	220	6.52	1	0.008	60	2.39	10	0.01
2002	65	0.38	6	0.06	1	0.0007	130	0.92	4	0.06	8	0.15	6	0.15
2003	82	0.86	2	0.1	2	0.003	86	3.74	3	0.03			4	
2004	56	0.37	3	0.01	6	0.01	67	2.48	4	0.01			8	0.01
2005	82	4.1	12	11.39	3	0.01	53	1.76	2	0.003	3	0.0004	9	0.02
2006	45	2.04	1	0.004	1	0.001	142	46.3	10	0.0006	19	0.045	3	0.01
2007	18	0.33	6	3.38			550	279.04	17	0.11	23	0.03	3	0.02
2008	20	0.28	3	0.07	2	0.004	125	0.59	5	0.003	23	0.007	4	0.09
Всего	464	8.87	35	15.18	16	0.031	1373	341.35	46	0.22	136	2.62	47	0.31
Среднее	58	1.11	4.4	1.9	2	0.004	171.6	42.67	5.75	0.028	17	0.33	5.9	0.038
2009	40	0.66	4	1.01	1	0.002	89	0.60	6	0.10	25	0.005	2	0.003

Таблица 2. Ежегодное число *N* мелкофокусных землетрясений и суммарной сейсмической энергии Σ*E* в 2001–2009 гг. по районам Сахалина

В табл. 3 дано распределение в 2009 г. землетрясений по энергетическому классу и по магнитуде M^p , а на рис. 6 – графики изменения числа землетрясений и их суммарной энергии по районам Сахалина. Из табл. 2, 3 и рис. 6 видно, что закономерности сейсмического процесса, наблюдающиеся в земной коре по районам региона в течение 2001–2008 гг., сохранились и в 2009 г., а именно, сейсмическая активность Западно-Сахалинского района (№ 4) оставалась самой высокой в регионе.

1 – N (2009 г.); 2 – \overline{N} за 2001–2008 гг. (а); 3 – ΣE (2009 г.); 4 – среднегодовое значение высвобожденной энергии по районам Сахалина за 2001–2008 гг. (б).

Таблица 3.	Распределение	коровых	землетрясений	по	энергетическому	классу	К _С ,	а
	глубокофокусны	их – по ма	гнитуде <i>М</i> ^р , и с	суми	ларная сейсмическ	ая энері	гия Σ	E
	по районам Саха	лина						

	һ≤33 км										
N⁰	Районы			ΣN	ΣΕ,						
		≤6.5	7	8	9	10		10 ¹² Дж			
1	Северный	3	15	17	3	2	40	0.660			
2	Охотоморский шельф		1	2		1	4	1.011			
3	Восточно-Сахалинский		1				1	0.002			
4	Западно-Сахалинский	34	30	19	5	1	89	0.604			
5	Юго-Восточный	1	3	1	1		6	0.103			

	һ≤33 км										
№	Районы			ΣN	ΣΕ,						
		≤6.5	7	8	9	10		10 ¹² Дж			
6	Восточная часть южного Сахалина	21	4				25	0.005			
7	Хабаровский приграничный	1	1				2	0.003			
	Всего	60	55	39	9	4	167	2.388			
	<i>h</i> ≥294 км										
№	Районы	M^{p}						ΣΕ,			
		3		4		5		10 ¹² Дж			
5	Юго-Восточный	3		7		3	13	6.453			

Распределение ощутимых землетрясений по районам региона представлено в табл. 4. Общее их число в 2009 г. составило 15, что меньше, чем в 2008 г., когда их было 27 [4]. Как видно, в районе \mathbb{N} 4 зафиксировано девять ощутимых в населенных пунктах острова землетрясений. Здесь же 13 сентября в $00^{h}13^{m}$ произошло 6-балльное Чаплановское землетрясение с *MLH*=4.4. Макросейсмический эффект остальных землетрясений не превышал 4–5 баллов.

Таблица 4. Распределение ощутимых землетрясений по районам Сахалина, максимальная величина класса $K_{\text{Стах}}$, магнитуд $MLH_{\text{тах}}$ и $MSH_{\text{тах}}$ и максимальная интенсивность сотрясений $I_{\text{тах}}$

N⁰	Район	Число ощутимых землетрясений	<i>K</i> _{Cmax}	<i>MLH</i> _{max}	MSH _{max}	I _{max} , балл
1	Северный	5	9.9	4.3	4.6	4-5
2	Охотоморский шельф	1	10.3	4.8	5.6	3
3	Восточно-Сахалинский		7.2			
4	Западно-Сахалинский	9	9.8	4.4	4.7	6
5	Юго-Восточный		9.4	4.8	5.6	
6	Восточная часть Южного Сахалина		7.3			
7	Хабаровский приграничный		7.2			
	Bcero	15				

Рассмотрим сейсмичность каждого из семи районов более детально.

В Северном районе (№ 1) зарегистрировано 40 коровых землетрясений, что в 2 раза больше, чем в 2008 г., но почти в 1.5 раза меньше среднего значения (N=58) за период 2001–2008 гг. (табл. 3). Суммарная сейсмическая энергия в 2.4 больше, чем в 2008 г. ($\Sigma E=0.66\cdot10^{12} \ \square \varkappa \kappa$ вместо $\Sigma E=0.28\cdot10^{12} \ \square \varkappa \kappa$), но в 1.7 раза меньше среднегодового (табл. 3 и 4, рис. 6). Ощутимыми были пять землетрясений с $K_C=8.1-9.9$. Наибольший макросейсмический эффект проявило землетрясение (5) 24 мая в 04^h45^m с $K_C=9.9$ (4–5 баллов в пос. Сабо ($\Delta=5 \ \kappa m$), интенсивность остальных землетрясений не превышала 3 баллов [27, 29].

На Охотоморском шельфе (№ 2) произошло четыре толчка, что практически равно среднему числу за период 2001–2008 гг. Самый сильный (K_C =10.3, *MLH*=4.8) из них (7 на рис. 3), зарегистрированный 22 августа в 10^h26^m [27], ощущался с интенсивностью 3 балла в пос. Тунгор (Δ =93 км) и 2 балла в пос. Восточное (Δ =101 км) и г. Оха (114 км) [29]. Суммарная энергия четырех толчков, равная 1.01·10¹² Дж, в 1.9 раза меньше среднегодового значения за указанный период (табл. 3, рис. 6).

В Восточно-Сахалинском районе (\mathbb{N} 3) зарегистрирован 18 ноября в $01^{h}49^{m}$ один толчок с K_{C} =7.2 [27]. Как следует из табл. 3, в этом районе и число землетрясений, и суммарная сейсмическая энергия в 2 раза меньше среднегодовых значений этих величин.

Западно-Сахалинский район (\mathbb{N} 4) оставался самым сейсмически активным районом Сахалина и по числу (N=89) землетрясений, и по их суммарной энергии (ΣE =0.60·10¹² Дж), хотя относительно других лет число землетрясений меньше среднего значения за период 2000–2008 гг. в 1.9 раза, энергия – в 71.1 раза (табл. 3). В этом районе в 2000–2007 гг. происходили наиболее сильные землетрясения региона, такие как Углегорско-Айнское 4(5) августа 2000 г. с $Mw_{\rm HRVD}$ =6.8 [34], Такойское 1 сентября 2001 г. с $Mw_{\rm HRVD}$ =5.2 [35], Горнозаводское 17 августа 2006 г. с $Mw_{\rm HRVD}$ =5.7 [36], Невельские 2 августа 2007 г. с $Mw_{\rm GCMT}$ =6.2 и 5.8 [15, 37]. В 2008 г. сейсмическая активность района снизилась. В 2009 г. снижение активности по числу зарегистрированных землетрясений продолжилось, но по суммарной сейсмической энергии осталось практически на прежнем уровне (табл. 3).

В 2009 г. самым сильным (K_c =9.8, MLH=4.4) явилось, как указано выше, землетрясение 13 сентября в 00^h13^m, вызвавшее сотрясения с интенсивностью *I*=6 баллов в пос. Чапланово (Δ =15 км) и описанное в [31]. Согласно [28], землетрясение произошло в условиях субширостного сжатия. Тип сейсмодислокации – взбрососдвиг.

Всего в районе произошло девять ощутимых землетрясения [29] (табл. 4). Ни одного глубокофокусного землетрясения в 2009 г. зафиксировано не было.

Юго-Восточный район (\mathbb{N} 5) представлен шестью мелкофокусными и 13 глубокофокусными землетрясениями, суммарная сейсмическая энергия первых, равная $\Sigma E=0.103 \cdot 10^{12} \ \mathcal{A} \infty$, в 3.7 раза больше среднегодового значения ($\Sigma E_{cp}=0.028 \cdot 10^{12} \ \mathcal{A} \infty$) за период 2001–2008 гг. (табл. 3). Для шести глубокофокусных землетрясений определены механизмы очагов [28].

Глубокофокусные землетрясения зарегистрированы в диапазоне глубин $h=273-530 \ \kappa m$ [27] в акватории залива Анива (рис. 3). Число глубоких (N=13) землетрясений практически равно среднегодовому (N=12.75) значению за период 2001–2008 гг., но суммарная сейсмическая энергия в 12.7 раза меньше среднегодового значения (табл. 3). Самое сильное (MSH=5.6) из них (15 на рис. 3) произошло 21 ноября в 04^h16^m на глубине $h=321\pm18 \ \kappa m$.

В Восточной части Южного Сахалина (\mathbb{N} 6) в 2009 г. было зарегистрировано 25 мелкофокусных землетрясений, что в 1.5 раза больше среднегодового значения за период 2001–2008 гг. (табл. 3), однако суммарная сейсмическая энергия в 66 раз меньше среднегодового значения. Все землетрясения слабые – K_P =5.9–8.5, самое сильное (K_C =7.3) произошло 26 ноября в 04^h12^m с *h*=10 *км* [27]. Ощутимых землетрясений не было (табл. 4).

В Хабаровском приграничном районе (\mathbb{N} 7) зарегистрировано два мелкофокусных землетрясения, из которых одно произошло 28 июля в $07^{h}28^{m}$ с K_{C} =7.2, второе – 1 августа в $08^{h}09^{m}$ с K_{C} =6.5 [27]. Из табл. 3 следует, что число землетрясений (N=2) почти в 3 раза меньше среднего значения за период 2001–2008 гг., а их суммарная сейсмическая энергия в 12.7 раза меньше среднегодового значения.

В целом в 2009 г. сейсмическая активность Сахалина продолжала снижаться (начиная с 2008 г.) после нескольких сейсмически высокоактивных лет.

Литература

- 1. Михайлов В.И. (сост.). Сейсмические станции Сахалина в 2009 г. (См. Приложение к наст. сб. на CD).
- 2. Михайлов В.И. (сост.). Сейсмические станции Приамурья и Приморья в 2009 г. (См. Приложение к наст. сб. на CD).
- 3. Михайлов В.И. (сост.). Сейсмические станции Курило-Охотского региона в 2009 г. (См. Приложение к наст. сб. на CD).
- 4. Фокина Т.А., Кислицына И.П., Сафонов Д.А., Михайлов В.И. Сахалин // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 172–182.
- 5. Старовойт О.Е., Мишаткин В.Н. Сейсмические станции Российской академии наук. Москва-Обнинск: ГС РАН, 2001. – 88 с.
- 6. Фокина Т.А., Кислицына И.П., Сафонов Д.А., Михайлов В.И. Сахалин // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. С. 175–184.
- 7. Сейсмологический бюллетень (ежедекадный) за 2009 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2009–2010. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2009/*.
- 8. International Seismological Centre. On-Line Bulletin // International Seismological Centre [сайт]. [2012]. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/.

- 9. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности (Труды ИФЗ АН СССР; № 9 (176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 10. **Паршина И.А.** Каталог юга о. Сахалин // Землетрясения России в 2009 году. Обнинск: ГС РАН, 2011. На СD.
- 11. **Михайлов В.И.** Юг о. Сахалин // Землетрясения России в 2009 году. Обнинск: ГС РАН, 2011. С. 76–78.
- 12. Ким Ч.У., Михайлов В.И., Сен Р.С., Семенова Е.П. Невельское землетрясение 02.08.2007: анализ инструментальных данных // Тихоокеанская геология. 2009. 28. № 5. С. 4–15.
- 13. Соловьёв С.Л., Соловьёва О.Н. Скорость колебания земной поверхности в объемных волнах неглубокофокусных Курило-Камчатских землетрясений на расстояниях до 17° // Физика Земли. – 1967. – № 1. – С. 37–60.
- Волкова Л.Ф., Поплавская Л.Н., Соловьёва О.Н. Шкалы MPVA, MSHA для определения магнитуд близких глубокофокусных землетрясений Дальнего Востока // Сейсмологические наблюдения на Дальнем Востоке СССР. Методические работы ЕССН. – М.: Наука, 1989. – С. 81–85.
- 15. Невельское землетрясение и цунами 2 августа 2007 года, о. Сахалин / Ред. Б.В. Левин, И.Н. Тихонов. М.: Янус-К, 2009. 204 с.
- 16. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. Методические работы ЕССН. М.: Наука, 1989. С. 32–51.
- Оскорбин Л.С., Бобков А.О. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т. VI. (Проблемы сейсмической опасности Дальневосточного региона). – Южно-Сахалинск: ИМГиГ, 1997. – С. 179–197.
- 18. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 192 с.
- Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.
- Поплавская Л.Н., Нагорных Т.В., Рудик М.И. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока // Землетрясения Северной Евразии в 1995 году. М.: ОИФЗ РАН, 2001. С. 95–99.
- 21. Соловьёв С.Л., Соловьёва О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. 1967. № 2. С. 13–23.
- 22. Соловьёва О.Н., Соловьёв С.Л. Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. М.: Наука, 1968. С. 75–97.
- 23. Касахара К. Механика землетрясений (с. 25). М.: Мир, 1985. 262 с.
- 24. Габсатарова И.П. Границы сейсмоактивных регионов России с 2004 г. // Землетрясения России в 2004 году. Обнинск: ГС РАН, 2007. С. 139.
- 25. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 272 с.
- 26. Оскорбин Л.С., Волкова Л.Ф. Землетрясения Сахалина и Приморья (в 1972 г.) // Землетрясения в СССР в 1972 г. М.: Наука, 1976. С. 146–152.
- 27. Кислицына И.П. (отв. сост.), Децик И.В. (сост.). Каталог землетрясений Сахалина за 2009 г. (См. Приложение к наст. сб. на CD).
- 28. Гладырь Ж.В. (отв. сост.), Сафонов Д.А. (сост.). Каталог механизмов очагов землетрясений Сахалина за 2009 г. (См. Приложение к наст. сб. на CD).
- 29. Фокина Т.А., Кислицына И.П., Величко Л.Ф. (сост.). Макросейсмический эффект ощутимых землетрясений Сахалина в 2009 г. (См. Приложение к наст. сб. на CD).
- 30. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.

- 31. Сафонов Д.А., Фокина Т.А. Чаплановское землетрясение 13 сентября 2009 г. с *MLH*=4.4, *I*₀=6 (Сахалин). (См. раздел (Сильные и ощутимые землетрясения) в наст. сб.).
- 32. Hisada T., Nakagawa K. Present Japanese Development in Engincering Seismology and their Application to Buildinge. Japan, 1958.
- Миталёва Н.А. (отв. сост.), Брагина Г.И., Пиневич М.И., Шолохова А.А., Садсикова А.А., Левит Е.В. Курило-Охотский регион // Землетрясения Северной Евразии в 1993 году. М.: ГС РАН, 1999. С. 195–211.
- 34. Поплавская Л.Н., Нагорных Т.В., Фокина Т.А., Поплавский А.А., Пермикин Ю.Ю., Стрельцов М.И., Ким Чун Ун, Сафонов Д.А., Мельников О.А., Рудик М.И., Оскорбин Л.С. Углегорско-Айнское землетрясение 4(5) августа 2000 года на Сахалине // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 265–284.
- 35. Поплавская Л.Н., Фокина Т.А., Сафонов Д.А., Нагорных Т.В., Ким Чун Ун, Сен Рак Се, Урбан Н.А. Такойское землетрясение 1 сентября 2001 года с *M*=5.2, *I*₀=7 (Сахалин) // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 331–344.
- 36. Фокина Т.А., Сафонов Д.А. Горнозаводское землетрясение 17 августа 2006 г. с *MLH*=5.9, *K*_C=12.0, *I*₀=7 (Сахалин) // Землетрясения Северной Евразии в 2006 году. – Обнинск: ГС РАН, 2012. – С. 367–374.
- 37. Сафонов Д.А., Нагорных Т.В., Фокина Т.А. Невельские землетрясения 2 августа 2007 года с MLH=6.3 и MLH=6.0, I₀=8 (о. Сахалин) // Землетрясения Северной Евразии в 2007 году. – Обнинск: ГС РАН, 2013. – С. 396–407.