ПРИАМУРЬЕ И ПРИМОРЬЕ

Н.С. Коваленко¹, Т.А. Фокина¹, Д.А. Сафонов^{1,2}

¹Сахалинский филиал ГС РАН, г. Южно-Сахалинск, kovalenko@seismo.sakhalin.ru, fokina@seismo.sakhalin.ru ²Институт морской геологии и геофизики ДВО РАН, г. Южно-Сахалинск, d.safonov@imgg.ru

Сеть станций. Условия для непрерывной регистрации землетрясений на территории Приамурья и Приморья в 2009 г., по сравнению с таковыми в 2008 г. [1], не изменились. Продолжили свою работу восемь аналоговых сейсмических станций («Николаевск-на-Амуре»– NKL, «Бомнак»–ВМКR, «Кировский»–КROS, «Ясный»–YASR, «Зея»–ZEA, «Горный»–GRNR, «Экимчан»–ЕКМR, «Терней»–ТЕҮ) и шесть цифровых («Хабаровск»–КНВR, «Горный»– GRNR, «Терней»–ТЕҮ, «Зея»–ZEA, «Горнотаежное»–GRTR, «Охотск»–ОКНТ) на базе регистраторов Datamark LS-7000XT с короткопериодными сейсмометрами L4C–3D и длиннопериодными – STS–2, установленными в период 2005–2007 гг. в рамках научного сотрудничества по проекту «Исследование сейсмотектоники Охотоморской плиты» между сообществом университетов Японии и ГС РАН. Данные о станциях и параметры аппаратуры приведены в [2], их положение показано на рис. 1.

К сожалению, не обошлось без простоев в работе некоторых сейсмических станций, что негативно повлияло на результаты обработки и представительность землетрясений в указанное время. Данные по длительности простоев приведены в табл. 1.

N⁰	Название	Название Тип комплекта		ельность п	ерерывов в р	зегистрации	(в часах)
	сейсмической станции	аппаратуры	I квартал	II квартал	III квартал	IV квартал	сумма за год
1	Зея	СКМ-3	2.6	6.5	6.7	1.5	17.3
		СКД	9.5	16.8	14.6	12.9	53.8
		LS7000XT					
2	Николаевск-на-Амуре	CKM-3	18.6	26.2	1.2	102.6	148.6
		СКД	5.6	12.0	31.1	354.0	402.7
3	Терней	CKM-3	12.0		0.9	1.5	14.4
		СКД	22.0	26.6	36.6		85.2
		LS7000XT		6.0			6.0
4	Горнотаежное	LS7000XT		680.4	1236.7	1568.6	3485.7
5	Охотск	LS7000XT		42.0			42.0
6	Хабаровск	LS7000XT			525.0		525.0
7	Горный	CKM-3	109.5	19.0	6.3	13.7	148.5
		LS7000XT				69.0	69.0
8	Кировский	CKM-3	406.6	1.6	87.4	13.5	509.1
9	Бомнак	CKM-3	90.7	47.0	445.5	102.4	685.6
10	Ясный	CKM-3	1656.0	1416.0	2208.0	2184.0	7464.0
11	Экимчан	СКМ-3	0.7	0.5	61.8	752.0	815.0

Таблица 1. Длительность простоев регистрирующих каналов на станциях Приамурья и Приморья [3]

Наиболее длительный перерыв в регистрации землетрясений произошел на сейсмической станции «Ясный», главным образом по причине вынужденного закрытия станции в апреле в связи с планируемым переводом ее в пос. Октябрьский. До конца 2009 г. станцию не удалось запустить. Большой простой в течение второго полугодия цифровой станции Datamark на сейсмической станции «Горнотаежное» вызван выходом из строя регистратора LS7000XT из-за удара молнии. В течение октября не работала станция «Экимчан». Менее длительные сбои в работе отмечены на станциях «Бомнак», «Хабаровск», «Кировский».

Карта представительности M_{min} в 2009 г. не претерпела изменений.

Действующая в 2009 г. сеть станций (рис. 1) обеспечила возле станций «Кировский», «Бомнак», «Зея», «Ясный», «Экимчан» представительный уровень магнитуды $M_{\min}=2.0$ ($K_{\min}\approx 8$). На значительной территории Приамурья и Приморья не должны быть пропущены землетрясения с $M_{\min}=3$ ($K_{\min}\approx 9$), но в южной части региона уверенно могут регистрироваться лишь события с $M_{\min}=3.5$ ($K_{\min}\approx 10$). Пересчет классов $K_{\rm P}$ в магнитуды для мелкофокусных землетрясений выполнен по формуле Т.Г. Раутиан из [4]: $M_{\rm pacy}=(K_{\rm P}-4)/1.8$.

Методика обработки. Для локации землетрясений региона привлекались данные всех сейсмических станций сети Сахалинского филиала ГС РАН: Приамурья и Приморья [2], Сахалина [5], Курил [6], сейсмической станции «Кульдур» (КLR) ГС РАН, станционные бюллетени Прибайкалья, Якутии, Сейсмологический бюллетень ГС РАН (MOS) [7], сведения агентств ЈМА, NEIC, ISC из бюллетеня ISC [8].

Методика обработки данных [9–14], границы региона и сейсмоактивных районов [15] не изменились, по сравнению с таковыми в 2008 г. [1].

В региональный каталог [16], схема содержания которого изображена на рис. 2, включены основные параметры 991 сейсмического события, из них – 563 коровых ($h=5-29 \ \kappa m$) землетрясений, 14 – глубокофокусных с $h=240-572 \ \kappa m$, а 414 событий отнесены к категории «возможно взрыв».

Рис. 1. Карта магнитудной представительности землетрясений *М*_{min}, Приамурья и Приморья в 2009 г.

1, 2 – цифровая и аналоговая сейсмические станции соответственно; 3 – аналоговая сейсмическая станция ГС РАН «Кульдур»; 4 – граница региона; 5 – изолиния *M*_{min}.

Рис. 2. Схема содержания каталога землетрясений Приамурья и Приморья в 2009 г.

Классификация коровых землетрясений и взрывов дана по энергетическим классам K_P шкалы Т.Г. Раутиан [17] и магнитуды – по поверхностным волнам (*MLH*) по среднепериодной аппаратуре и по объемным продольным волнам (*MPVA*) по короткопериодной аппаратуре. Все 414 взрывов имеют значения классов K_P и 372 взрыва (т.е. 90%) имеют дополнительно значение *MPVA*; все 563 землетрясения с очагом в земной коре имеют значения K_P и 468 землетрясений, т.е. 83%, – значения *MPVA*, четыре землетрясения – значения *MLH*.

Классификация глубокофокусных землетрясений (N=14) дана только по магнитудам: (MPV) – по объемным продольным волнам по среднепериодной и (MPVA) – короткопериодной аппаратуре; (MSH) – по объемным поперечным волнам по среднепериодной аппаратуре; (MLH) – по поверхностным волнам также по среднепериодной аппаратуре. Все 14 глубокофокусных землетрясения имеют значения MPVA, 11 землетрясений – MSHA, 7 – MSH, 5 – MPV, 1 – MLH [16].

Двадцать шесть из 563 коровых землетрясений и одиннадцать событий категории «возможно взрыв» из 414, помеченные в графе «район» каталога [16] буквами «Я» (Якутия) или «Б» (Байкал), находятся вне зоны ответственности сети региона и в обзоре не анализируются. На рис. 3 дано помесячное распределение взрывов, землетрясений и всех событий вместе. Как видим, наибольшее число землетрясений (*N*=74) зарегистрировано, как и в 2008 г. [1], в апреле, наименьшее (*N*=29) – в сентябре и октябре.

Методика обработки взрывов не изменилась: продолжалась работа по распознаванию записей промышленных взрывов в соответствии с рекомендациями в [18].

Местоположение площадок взрывных работ и карта эпицентров событий «возможно взрыв» представлены на рис. 4. В 2009 г. вблизи северо-восточной границы Приграничного района № 6 выявлена еще одна площадка взрывных работ на территории КНР вблизи г. Хэган, одного из центров угледобывающей промышленности северной провинции Китая. Новая площадка взрывных работ также появилась северо-восточнее станции «Бомнак»-BMKR.

При выявлении взрывов на территории Китая надо иметь в виду, что взрывные работы здесь могут производиться поздним вечером и даже в ночное время суток, поэтому метод распознавания взрывов по времени суток для этой территории не подходит.

Суммарное число взрывов (N=403 [16]), зарегистрированных на территории региона, сравнимо с показателем 2008 г. (N=434 [1]). Связано это главным образом с продолжением активного промышленного освоения территории Приамурья. Надо заметить, что в январе и октябре из общего числа событий N_{Σ} =90 и 60, соответственно, число техногенных событий ($N_{взр}$ =48 и 32) превосходило число зарегистрированных естественных зем-

Рис. 3. Распределение ежемесячных чисел взрывов, землетрясений и всех сейсмических событий Приамурья и Приморья в 2009 г.

Рис. 4. Карта эпицентров взрывов на территории Приамурья и Приморья в 2009 г.

 энергетический класс K_P; 2 – сейсмическая станция;
 площадка взрывных работ; 4 – граница условного района; 5 – государственная граница; 6 – трасса строящегося нефтепровода ВСТО.

летрясений ($N_{\text{зем}}$ =42 и 29) [16]. Повышенное число взрывов отмечается в январе ($N_{\text{взр}}$ =48) и марте ($N_{\text{взр}}$ =51) (рис. 3). Энергетический диапазон классов взрывов составил K_{P} =5.7–8.8, а величина суммарной сейсмической энергии равна $\Sigma E_{\text{взр}}$ =0.0117·10¹² Дж, что соизмеримо с энергией

Распределение взрывов по районам региона представлено в табл. 2. Более чем в два раза уменьшилось число взрывов в Становом районе ($\mathbb{N} \ 1$) (с N=213 в 2008 г. до N=82 в 2009 г.). Энергетический диапазон взрывов составил $K_P=5.9-8.3$. Почти в два раза увеличился объем взрывных работ в Янкан-Тукурингра-Джагдинском районе $\mathbb{N} \ 2$ (с N=122 в 2008 г. до N=209 в 2009 г.). На 20% больше зарегистрировано взрывов в Зейско-Селемджинском районе $\mathbb{N} \ 3$. Продолжает уменьшаться число взрывов в Турано-Буреинском районе (особенно в районе пос. Чегдомын) – лишь 13 взрывов зарегистрировано здесь в 2009 г., что в два раза меньше, по сравнению с таковым в 2008 г. [1]. В Приграничном районе $\mathbb{N} \ 6$ (на территории КНР) зарегистрировано 18 взрывов, которые производились в районе карьера «Гулянь» (западная граница района) и угольных карьеров в районе г. Хэган (ближе к восточной границе района), где 5 января в $06^{h}45^{m}$ был зарегистрирован самый сильный взрыв с $K_P=8.8$. В районе $\mathbb{N} \ 5$ существующей сетью станций взрывы не зарегистрированы.

N⁰	Район	N_{Σ}	K_{\min} – K_{\max}
1	Становой	82	5.9-8.3
2	Янкан-Тукурингра-Джагдинский	209	5.7-8.3
3	Зейско-Селемджинский	81	6.4-8.5
4	Турано-Буреинский	13	6.5-8.1
5	Сихотэ-Алиньский	0	
6	Приграничный	18	6.9–8.8
	Всего	403	

Таблица 2. Распределение числа взрывов по районам Приморья и Приамурья в 2009 г.

Карта эпицентров землетрясений представлена на рис. 5, где видно, что плотность эпицентров в северо-западной части региона заметно уменьшилась, по сравнению с таковой в 2008 г. [1]. Заметно возросла сейсмическая активность территории чуть восточнее Буреинского хребта, в разветвленной системе разломов Танлу, к которой и были приурочены эпицентры землетрясений, вытянувшиеся вдоль разлома в северо-восточном направлении. Активизировалась и южная часть Приморского края – здесь увеличилось число и коровых, и глубокофокусных землетрясений. Район хребта Сихотэ-Алинь (№ 5) остается почти асейсмичной территорией (N_{Σ} =4 [16]).

Среди коровых землетрясений наиболее значительными событиями 2009 г. оказались землетрясения (5) и (18) с h=12 и 13 км. Землетрясение (5) произошло 13 апреля в $15^{h}10^{m}$ с $K_{P}=12.1$, *MLH*=4.4 в Турано-Буреинском районе [16] в верховьях р. Селемджи, в ненаселенном районе. Сведений об ощутимости этого землетрясения не поступало. Второе землетрясение (18) произошло 19 декабря в $13^{h}26^{m}$ с $K_{P}=12.0$ и h=13 км в районе № 6 на территории пограничного Китая, западнее оз. Ханка. Оно ощущалось в пос. Камень-Рыболов ($\Delta=81$ км) с интенсивностью I=3-4 балла [19].

Самое сильное (*MPVA*=6.5) глубокофокусное (*h*=382±5 км) землетрясение (19) произошло 24 декабря в 00^h23^m. Эпицентр землетрясения находился в Японском море, юго-восточнее г. Владивосток. По данным Японского метеорологического агентства (JMA), оно ощущалось с интенсивностью сотрясений до I_{max} =3–4 балла (по шкале MSK-64) [20] на островах Хоккайдо и Хонсю. В его очаге выделилась энергия, равная ΣE =1.98·10¹⁴ Дж.

Кроме двух ощутимых землетрясений, упомянутых выше, имеются макросейсмические сведения еще по пяти землетрясениям (6, 8, 10, 12, 17). Наиболее значительное (K_P =11.1) из них произошло 21 апреля в 06^h15^m на глубине h=29 км. Интенсивность вызванных им сотрясений составила I_{max} =4 балла в пос. Хурмули (Δ =21 км) [16, 19].

Для восьми глубокофокусных землетрясений (1, 7, 11, 15, 16, 17, 19) определены механизмы очагов (рис. 5) [21].

Рис. 5. Карта эпицентров землетрясений Приамурья и Приморья в 2009 г.

1 – энергетический класс *K*_P; 2 – магнитуда *MPVA*; 3 – глубина *h* гипоцентра, *км*; 4 – стереограмма механизма очага, нижняя полусфера, зачернена область волн сжатия; 5, 6 – аналоговая и цифровая сейсмические станции соответственно; 7 – номер и граница условного района; 8, 9 – граница региона и государственная соответственно.

В табл. 3 приведено распределение числа коровых землетрясений, зарегистрированных внутри границ региона, по энергетическим классам K_P и их годовая суммарная сейсмическая энергия ΣE по данным каталогов Приморья и Приамурья за 2000–2009 гг. [16, 22–30], а на рис. 6 показаны годовые числа коровых землетрясений и суммарная сейсмическая энергия за этот период. Сравнение значений N_{Σ} и ΣE за 2000–2009 гг. проводится для землетрясений с $K_P \ge 7.6$. Здесь следует заметить, что, несмотря на проведенные работы по выявлению взрывов, в число естественных землетрясений могут входить и техногенные события, которые не удалось выявить при обработке. Энергетический класс промышленных взрывов на территории Приаму-

рья и Приморья в редких случаях превышает *К*_P=8.5, поэтому вклад нераспознанных событий в суммарную величину энергии незначителен.

Как следует из табл. 3, число коровых землетрясений (N=197) с $K_P \ge 7.6$, зарегистрированных в регионе в 2009 г., сравнимо со среднегодовым их числом (N=199.6) в период наблюдений 2000–2008 гг. Но суммарная сейсмическая энергия за 2009 г., равная $\Sigma E=3.5 \cdot 10^{12} \ Дж$, значительно, в 11.8 раз, понизилась, по сравнению с таковой в 2008 г. ($\Sigma E=41.4 \cdot 10^{12} \ Дж$), и почти в 5 раз снизилась, по средним показателем за последние девять лет наблюдений.

Год			N_{Σ}	ΣΕ,					
	8	9	10	11	12	13	14		10 ¹² Дж
2000	108	43	13	5	1			170	1.7
2001	131	35	10	3	2			181	2.8
2002	133	34	7	4	1			179	3.6
2003	193	44	17	1	6			261	9.1
2004	185	46	16	8	2	1		258	35.7
2005	138	52	15	5	5			215	8.9
2006	111	36	10	1	1			159	1.0
2007	100	50	7	3	4	2		166	46.2
2008	142	41	17	5	1		1	207	41.4
Сумма	1241	381	112	35	23	3	1	1796	150.4
Среднее	137.9	42.3	12.4	3.9	2.6	0.3	0.1	199.6	16.7
2009	121	46	19	9	2			197	3.5

Таблица 3. Распределение коровых землетрясений с *K*_P≥7.6 по энергетическим классам и суммарная сейсмическая энергия Σ*E* за 2000–2009 гг.

Графическое представление годовых оценок числа коровых землетрясений и суммарной энергии из табл. 3 дано на рис. 6.

Рис. 6. Изменение ежегодного числа коровых землетрясений Приамурья и Приморья и суммарной сейсмической энергии Σ*E* за 2000–2009 гг.

Число всех зарегистрированных коровых землетрясений в 2009 г. в регионе «Приамурье и Приморье» равно N=537, что лишь на 4.8% больше, чем соответствующее значение (N=511) для 2008 г. [1]. Несмотря на это, суммарная сейсмическая энергия коровых землетрясений (табл. 3 и 4, рис. 6) снизилась до величины $\Sigma E=3.5 \cdot 10^{12} \ \mbox{Дж}$, что в 11.8 раз ниже такового значения ($\Sigma E=41.4 \cdot 10^{12} \ \mbox{Дж}$) в 2008 г. [1].

В 2009 г. локализовано 14 глубокофокусных землетрясений (в районах № 5 и № 6), что на 43% больше, чем в 2008 г. Суммарная сейсмическая энергия всех глубокофокусных землетрясений 2009 г. составила $\Sigma E=265.7 \cdot 10^{12} Дж$ (табл. 4).

В табл. 4 дано распределение числа коровых землетрясений по энергетическому классу

 $K_{\rm P}$, а глубокофокусных – по магнитуде *MPVA*, а также рассчитана суммарная сейсмическая энергия по районам региона за 2009 г. Наибольшее число (*N*=243) землетрясений с очагами в земной коре, как и в 2008 г. [1], произошло в Янкан-Тукурингра-Джагдинском районе (№ 2). И лишь четыре коровых землетрясения зарегистрировано в Сихотэ-Алиньском районе (№ 5), а в 2008 г. – только одно. На рис. 7 приведены распределения числа коровых землетрясений и суммарной сейсмической энергии по районам региона, а на рис. 8 показано сравнительное распределение величины сейсмической энергии по районам за 2008–2009 гг. Максимальное количество (49%) высвобожденной сейсмической энергии коровых землетрясений отмечено в Турано-Буреинском районе (№ 4) (табл. 4, рис. 7 и 8).

Таблица 4. Распределение коровых землетрясений по энергетическому классу K_P, глубокофокусных – по магнитуде *MPVA* и суммарная сейсмическая энергия ΣE по районам Приамурья и Приморья в 2009 г.

	h≤30 км													
№	Районы						N_{Σ}	ΣΕ,						
			5	6	7	8	9	10	11	12		10 ¹² Дж		
1	Становой			20	62	28	9	5	2		126	0.254		
2	Янкан-Тукурингра-Джагдин	ский	3	69	120	31	14	4	2		243	0.211		
3	Зейско-Селемджинский			6	19	5	1	1			32	0.006		
4	Турано-Буреинский		1	7	25	32	16	7	4	1	93	1.712		
5	Сихотэ-Алиньский					2	1	1			4	0.006		
6	Приграничный				8	23	5	1	1	1	39	1.274		
	Всего			102	234	121	46	19	9	2	537	3.464		
	Вне зоны ответственности се	ти		1	16	5	2	2			26	0.021		
				$h \ge 2$	200 км									
№	Районы		MPVA									ΣE ,		
					5	5		6				10 ¹² Дж		
5	Сихотэ-Алиньский		3		4	5		3			11	260.3		
6	Приграничный	1	1		2						3	5.4		
	Всего	4	1		7	7		3			14	265.7		

Рис. 7. Распределение числа коровых землетрясений (1) и суммарной сейсмической энергии (2) Σ*E* по шести районам Приамурья и Приморья в 2009 г.

Рис. 8. Изменение суммарной сейсмической энергии Σ*E* коровых землетрясений по районам Приамурья и Приморья в 2008–2009 гг.

Далее приводится обзор сейсмичности в каждом из шести условно выделенных районов региона.

В Становом районе (\mathbb{N} 1) в 2009 г. зарегистрировано 126 коровых землетрясений, что сопоставимо с числом землетрясений в 2008 г. (N=127) [1]. Их суммарная сейсмическая энергия, равная ΣE =0.254·10¹² Дж, немного выше соответствующей величины (ΣE =0.170·10¹² Дж) в 2008 г., т.е. в 1.5 раза (табл. 4, рис. 7 и 8). В 2009 г. в районе сохранялся характер умеренной сейсмичности. Два наиболее сильных землетрясения (9) и (10) пришлись на весеннее время года и имели одинаковый энергетический класс K_P =11.0. Первое из них зарегистрировано 26 апреля в 10^h48^m с h=20±3 км в пределах Станового хребта, второе – 24 мая в 00^h30^m с h=10±3 км – у северной оконечности Зейского водохранилища и ощущалось в г. Зея (Δ =149 км) с интенсивностью *I*=2 балла. Оно сопровождалось слабо выраженной афтершоковой последовательностью. До конца 2009 г. здесь было зарегистрировано пять событий с K_P =6.0–9.9 и h=7–21 км (табл. 5).

N⁰	Дата,	<i>t</i> ₀ ,	Гипо	центр	h,	K _P	N	<u>[o</u>	Дата,	<i>t</i> ₀ ,	Гипс	центр	h,	K _P
	0 м	ч мин с	φ°, N	λ°, Ε	км				0 М	ч мин с	φ°, N	<i>λ</i> °, Ε	КМ	
Основной толчок							2	2	27.09	05 50 49.0	54.34	129.42	10	6.0
(10)	24.05	00 30 46 2	54 51	129.20	10	11.0	2	3	09.11	06 29 47.8	54.67	129.31	10	8.2
(10)	21.00	00.00 10.2	0 1.0 1	127.20	10	11.0	4	1	17.12	07 56 08.2	54.42	129.08	7	9.9
Афтершоки						4	5	24 12	12 33 22 7	54 42	129 13	10	88	
1	24.08	10 58 10.7	54.55	129.23	21	9.2		, 	21.12	12 55 22.7	51.12	127.13	10	0.0

Таблица 5. Основные параметры главного толчка и афтершоков землетрясения 24 мая 2009 г. в 00^h30^m с *K*_P=11.0

В конце сентября – начале октября на восточной окраине района зарегистрирован небольшой рой из шести землетрясений, эпицентры которых располагались в хребте Геран. Как следует из табл. 6, диапазон энергетических классов землетрясений роя составил $K_{\rm P}$ =7.7–10.1.

Таблица 6. Рой Геранских землетрясений в 2009 г.

N⁰	Дата, д м	t ₀ , ч мин с	Эпи ф°, N	центр λ°, Е	h, км	$K_{ m P}$	N⁰	Дата, дм	t ₀ , ч мин с	Эпи φ°, N	центр λ°, Е	h, км	K _P
1	26.09	20 33 21.5	55.78	134.41	7	10.0	4	02.10	14 57 18.4	55.86	134.49	10	10.1
2	27.09	13 11 45.6	55.77	134.37	10	7.7	5	02.10	15 12 24.6	55.81	134.35	10	8.7
3	02.10	02 48 54.4	55.89	134.40	10	9.8	6	02.10	16 51 44.3	55.88	134.42	10	9.9

Эпицентры остальных коровых землетрясений с *К*_P≤9.0 довольно равномерно распределились по всей площади района, исключая асейсмичную юго-восточную часть (рис. 5).

В Янкан-Тукурингра-Джагдинский районе (\mathbb{N} 2) в 2009 г., как и в 2008 г. [1], было зарегистрировано N=243 коровых землетрясения (табл. 4, рис. 7 и 8). Однако по количеству выделившейся суммарной сейсмической энергии данный район утратил свои лидирующие позиции ($\Sigma E=0.211\cdot10^{12}$ Дж вместо $\Sigma E=40.186\cdot10^{12}$ Дж [1]). К сожалению, в это число могут входить невыявленные взрывы. Особенно это касается запад-юго-западной части района. Как правило, взрывы имеют небольшой энергетический класс $K_P < 8.6$ и существенного влияния не оказывают на результат выделившейся суммарной энергии.

Наиболее активным на территории района остается Тукурингра-Джагдинский пояс, к которому приурочено наибольшее число эпицентров землетрясений. В отрогах хребта Джагды 15 апреля в $08^{h}17^{m}$ на глубине $h=11\pm1 \kappa M$ зарегистрировано наиболее сильное ($K_{\rm P}=11.1$) землетрясение (6), которое ощущалось жителями г. Зея ($\Delta=194 \kappa M$) с интенсивностью I=2 балла [19]. Еще одно ощутимое землетрясение (12) произошло 28 мая в $02^{h}21^{m}$ с $h=24\pm2 \kappa M$ и $K_{\rm P}=10.6$ в районе хребта Чернышова, на северо-западе района и вызвало в г. Тында ($\Delta=129 \kappa M$) колебания с интенсивностью I=2 балла [19].

В непосредственной близости к Зейской ГЭС регистрировались лишь слабые землетрясения с $K_P \leq 8.6$.

В Зейско-Селемджинском районе (\mathbb{N} 3) в 2009 г. число зарегистрированных землетрясений (N=32) осталось на уровне числа землетрясений в 2008 г. (N=33) [1], но количество суммарной сейсмической энергии района повысилось с ΣE =0.001·10¹² Дж в 2008 г. [1] до ΣE =0.006·10¹² Дж – в 2009 г. (табл. 4, рис. 7 и 8), т.е. в 6 раз. Наиболее сильное (K_P =9.7) землетрясение произошло 20 марта в 03^h28^m с h=7±1 км на восточной окраине Зейско-Буреинской равнины. Вся же центральная часть равнины остается асейсмичной. Большая часть слабых (K_P =6.2–8.2) землетрясений группируется в северо-западной части района (рис. 5). Здесь не исключается засорение каталога взрывами, поскольку, так же, как и в 2008 г., в этом месте проводились взрывные работы (рис. 4). Некоторое слабое проявление сейсмичности отмечено вдоль границы с КНР.

В Турано-Буреинском районе (\mathbb{N} 4) 13 апреля в 15^h10^m произошло самое сильное ($K_{\rm P}$ =12.1, *MLH*=4.4) коровое землетрясение региона в 2009 г. (5) на глубине *h*=12±4 км. Эпицентр землетрясения находился в верховьях р. Селемджа. В результате уровень сейсмической активности несколько повысился, по сравнению с таковым в 2008 г. [1], как по числу землетрясений (93 вместо 78), так и по выделившейся суммарной сейсмической энергии, величина которой ($\Sigma E=1.712 \cdot 10^{12} \ Дж$) стала самой высокой в регионе (табл. 4, рис. 7 и 8).

Вновь после значимых событий 2007 г. [29] активизировался участок в пространстве разветвленной системы разломов Танлу [32, 33], относительно спокойный в 2008 г. Два землетрясения с $K_p=11.1$ (8 и 14) произошли в центральной его части. Эпицентр землетрясения (8) от 21 апреля в 06^h15^m находился севернее Комсомольска-на-Амуре. Его гипоцентр локализован в нижней части земной коры на глубине $h=29\pm4 \ \kappa M$. Землетрясение ощущалось в пос. Хурмули ($\Delta=21 \ \kappa M$) с интенсивностью I=4 балла, в пос. Горный ($\Delta=58 \ \kappa M$) с интенсивностью I=2 балла [19]. Эпицентр землетрясения (14), которое произошло в пределах хребта Джаки-Унахта-Якбыяна 19 июня в 15^h24^m, находится юго-западнее землетрясения (8). Глубина его гипоцентра составила $h=21\pm1 \ \kappa M$. Макросейсмических данных по этому событию не получено.

Небольшой рой землетрясений в пределах разломной зоны, в южной ее части, зарегистрирован в окрестностях пос. Кульдур. Наиболее сильные события роя (2, 3) с K_P =10.7 и 10.9 произошли в 4 апреля в 01^h59^m и 5 апреля в 00^h30^m (табл. 7).

№	Дата, д м	t ₀ , ч мин с	Эпи φ°, N	центр λ°, Е	h, км	К _Р	N⁰	Дата, дм	t ₀ , ч мин с	Эпи ф°, N	центр λ°, Е	h, км	K _P
1	21.02	06 55 45.5	49.10	131.41	10	7.0	4	24.10	06 28 02.7	48.91	131.37	10	8.4
(2)	04.04	01 59 19.1	48.97	131.38	10	10.7	5	04.11	05 43 14.5	48.90	131.64	10	7.9
(3)	05.04	00 30 18.4	48.93	131.57	16	10.9	6	12.11	06 40 22.6	48.87	131.70	10	8.2

Таблица 7. Рой Кульдурских землетрясений в 2009 г.

Надо в очередной раз отметить, что в этой местности достаточно часто проводятся взрывные работы (рис. 4) и имеется некоторая вероятность попадания в каталог землетрясений техногенного происхождения. Энергетический класс остальных землетрясений не превышал $K_{\rm P}$ =10.1.

В Сихотэ-Алиньском районе (№ 5) в 2009 г. зарегистрировано четыре коровых землетрясения с K_P =9.6–8.1, суммарная сейсмическая энергия которых составила ΣE =0.006·10¹² Дж (табл. 4, рис. 7 и 8), превысив аналогичный показатель 2008 г. в 20 раз, когда на территории района возник лишь один очаг. Наиболее сильное событие с K_P =9.6 зарегистрировано на крайнем севере района, в пойме р. Амур. Два слабых землетрясения (K_P <9) произошли в районе Хабаровска (18 июня в 00^h03^m с K_P =8.5, 13 декабря в 13^h20^m с K_P =8.1) и одно с K_P =9.2 – южнее оз. Ханка (31 августа в 06^h53^m) [16].

Также в 2009 г. возросло число глубокофокусных землетрясений, с N=8 в 2008 г. до N=11 – в 2009 г. Их эпицентры обрамляют юг Приморского края (рис. 5). Суммарная сейсмическая энергия глубокофокусных землетрясений района составила $\Sigma E=260.3 \cdot 10^{12} \ Дж$.

Для семи глубокофокусных землетрясений (одно из них находится в районе № 6) удалось определить механизм очага [21], их стереограммы изображены на рис. 5. Большинство глубо-кофокусных землетрясений района характеризуются сдвиговыми подвижками в очаге.

Самое сильное (*MPVA*=6.5) землетрясение (19) произошло 24 декабря в $00^{h}23^{m}$ в Японском море. Глубина очага землетрясения составила $h=382\pm5 \ \kappa m$. Подвижка в его очаге реализовалась под воздействием близгоризонтального напряжения сжатия и чуть более крутого напряжения растяжения. Одна из возможных плоскостей разрыва близмеридиональна с крутым (*DP*=83°) падением на восток, вторая – близширотна с чуть менее крутым (*DP*=71°) падением на юг. Тип подвижки в очаге – сдвиг.

Еще одно ощутимое глубокофокусное ($h=306 \ \kappa m$) землетрясение (17) с *MPVA*=5.0 произошло 15 ноября в 20^h31^m на шельфе Японского моря, юго-восточнее Тернея. Очаг землетрясения находился под воздействием близгоризонтального напряжения сжатия и более крутого напряжения растяжения. Одна из нодальных плоскостей имеет северо-западное простирание и круто падает на северо-восток, альтернативная плоскостей юго-западного простирания еще более круто падает на северо-запад. Для обеих плоскостей тип подвижки – сдвиг (рис. 5, [21]). Землетрясение ощущалось в пос. Рудная Пристань ($\Delta=101 \ \kappa m$) с интенсивностью *I*=2–3 балла. Глубокофокусные землетрясения распределены во времени более-менее равномерно, что хорошо видно на рис. 9. Наибольшее их число, как и в 2008 г. [1], приходится на период с марта по июнь 2009 г., но в сентябре–октябре затишье.

Рис. 9. Развертка во времени глубокофокусных землетрясений районов № 5 (светлые кружки) и № 6 (темные кружки) в 2009 г.

В Приграничном районе ($\mathbb{N} \bullet 6$) в 2009 г. зарегистрировано 39 коровых землетрясений, что несколько больше, чем в 2008 г. [1]. Суммарная сейсмическая энергия района, равная $\Sigma E=1.27 \cdot 10^{12} \ \mathcal{Д} \mathcal{K}$ (табл. 4, рис. 7 и 8), в 13.8 раза выше таковой ($\Sigma E=0.092 \cdot 10^{12} \ \mathcal{Д} \mathcal{K}$ [1]) в 2008 г.

Самое сильное (K_P =12.0) в Приграничном районе коровое землетрясение (18) произошло 19 декабря в $13^h 26^m$ западнее оз. Ханка, на границе с Китаем. Очаг землетрясения был локализован на глубине $h=13 \pm 3 \ \kappa m$. Землетрясение ощущалось в пос. Камень-Рыболов (Δ =81 κm) с интенсивностью I=3-4 балла.

Наибольшее число эпицентров коровых землетрясений концентрируется вблизи разломной зоны Танлу. Наиболее сильное $(K_P=11.4)$ здесь землетрясение (13) произошло вблизи с государственной границей 14 июня в $09^{h}22^{m}$ на глубине $h=10 \ \kappa m$. Группа землетрясений с $K_P \leq 9.3$ зарегистрирована в окрестностях г. Хэган (КНР) – известного угледобывающего района. Предположение о техногенной природе многих происходящих здесь событий отчасти подтвердилось (рис. 4). К сожалению, существующая сеть станций не позволяет изучить детально проблему техногенной сейсмичности на данной территории.

Западная часть района характеризуется слабой сейсмичностью. Энергетический класс происходивших здесь немногочисленных землетрясений не превышал K_p =9.0. В районе западной границы района продолжают регистрироваться промышленные взрывы (рис. 4).

В районе № 6 в 2009 г. зарегистрировано три глубокофокусных землетрясения (7 июня в $16^{h}26^{m}$ с *MPVA*=5.0, *h*=566 км; 12 июля в $23^{h}31^{m}$ с *MPVA*=4.2, *h*=572 км; 10 августа в $12^{h}42^{m}$ с *MPVA*=5.5, *h*=567 км [16]) с суммарной сейсмической энергией ΣE =5.4·10¹² Дж. В 2008 г. не было зарегистрировано ни одного глубокого землетрясения [1]). Эпицентры этих землетрясений сконцентрировались в одном месте – северо-западнее Владивостока, равномерно распределившись по летним месяцам (рис. 9). Наиболее сильное (*MPVA*=5.5) глубокофокусное землетрясение (16) произошло 10 августа в $12^{h}42^{m}$ с *h*=567±5 км. Землетрясение также характеризуется сдвиговой подвижкой в очаге [21].

В заключение можно отметить, что сейсмический процесс 2009 г. был достаточно спокойным, с небольшим, но явным всплеском активности в апреле, очевидным ее снижением с июля по ноябрь и с заметным повышением на юге Приморья в декабре. Существенно снизилась сейсмическая активность в Янкан-Тукурингра-Джагдинском районе (№ 2). Несколько увеличилась активность в пределах разветвленной системы разломов Танлу в районах № 4 и № 6. Особенностью сейсмического режима в 2009 г. стало и возросшее число глубокофокусных землетрясений.

Литература

- 1. Коваленко Н.С., Фокина Т.А., Сафонов Д.А. Приамурье и Приморье // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 162–171.
- 2. Михайлов В.И. (сост.). Сейсмические станции Приамурья и Приморья в 2009 г. (См. Приложение к наст. сб. на CD).
- 3. Результаты комплексных сейсмологических наблюдений (отчет СФ ГС РАН за 2009 год): Отчет о НИР // СФ ГС РАН / Руководитель Ю.Н. Левин – Южно-Сахалинск: 2010, Фонды СФ ГС РАН. – 332 с.

- 4. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности. (Труды ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 5. Михайлов В.И. (сост.). Сейсмические станции Сахалина в 2009 г. (См. Приложение к наст. сб. на CD).
- 6. Михайлов В.И. (сост.). Сейсмические станции Курило-Охотского региона в 2009 г. (См. Приложение к наст. сб. на CD).
- 7. Сейсмологический бюллетень (ежедекадный) за 2009 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2009–2010. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2009/*.
- 8. Bulletin of the International Seismological Centre for 2009. Thatcham, United Kingdom: ISC, 2011.
- Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. Методические работы ЕССН. – М.: Наука, 1989. – С. 32–51.
- Оскорбин Л.С., Бобков А.О. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т.VI. (Проблемы сейсмической опасности Дальневосточного региона). – Южно-Сахалинск: ИМГиГ, 1997. – С. 179–197.
- 11. Шолохова А.А., Оскорбин Л.С., Рудик М.И. Землетрясения Приамурья и Приморья Землетрясения в СССР в 1985 году. М.: Наука, 1987. С. 135–139.
- 12. Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология. Вып. 12). – М.: Наука, 1979. – С. 45–58.
- Поплавская Л.Н., Нагорных Т.В., Рудик М.И. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока // Землетрясения Северной Евразии в 1995 году. – М.: ГС РАН, 2001. – С. 95–99.
- 14. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 192 с.
- 15. Габсатарова И.П. Границы сейсмоактивных регионов России с 2004 г. // Землетрясения России в 2004 году. Обнинск: ГС РАН, 2007. С. 139.
- 16. Коваленко Н.С. (отв. сост.), Федоркова Г.В., Донова Т.Я., Гладырь Ж.В. (сост.). Каталог землетрясений и взрывов Приамурья и Приморья за 2009 г. (См. Приложение к наст. сб. на CD).
- 17. **Раутиан Т.Г.** Об определении энергии землетрясений на расстоянии до 3000 *км* // Экспериментальная сейсмика. (Труды ИФЗ АН СССР; № 32(199)). М.: Наука, 1964. С. 88–93.
- 18. Годзиковская А.А. Местные взрывы и землетрясения. Личный архив, 2000. 108 с.
- 19. Коваленко Н.С. (отв. сост.). Макросейсмический эффект ощутимых землетрясений в населенных пунктах Приамурья и Приморья в 2009 г. (См. Приложение к наст. сб. на CD).
- 20. Медведев С.В. Международная шкала сейсмической интенсивности // Сейсмическое районирование СССР. – М.: Наука, 1968. – С. 151–162.
- 21. Сафонов Д.А. (отв. сост.). Гладырь Ж.В., Коваленко Н.С. (сост.). Каталог механизмов очагов землетрясений Приамурья и Приморья за 2009 г. (См. Приложение к наст. сб. на CD).
- 22. Коваленко Н.С., Поплавская Л.Н. (отв. сост.), Величко Л.Ф., Сычаева Н.А., Садчикова А.А. Приамурье и Приморье // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. (На СD).
- 23. Коваленко Н.С. (отв. сост.), Крючкова О.В., Величко Л.Ф. Приамурье и Приморье // Землетрясения Северной Евразии в 2001 году. – Обнинск: ГС РАН, 2007. – (На СD).
- Коваленко Н.С. (отв. сост.), Крючкова О.В., Величко Л.Ф. Каталог землетрясений Приамурья и Приморья за 2002 год // Землетрясения Северной Евразии, 2002 год. – Обнинск: ГС РАН, 2008. – (На CD).
- 25. Коваленко Н.С. (отв. сост.), Величко Л.Ф., Крючкова О.В. Каталог землетрясений Приамурья и Приморья за 2003 год // Землетрясения Северной Евразии, 2003 год. Обнинск: ГС РАН, 2009. (На CD).
- 26. Коваленко Н.С. (отв. сост.), Величко Л.Ф. Каталог землетрясений (*N*=729) Приамурья и Приморья за 2004 год // Землетрясения Северной Евразии, 2004 год. Обнинск: ГС РАН, 2010. (Ha CD).

- 27. Коваленко Н.С. (отв. сост.), Величко Л.Ф., Донова Т.Я. Каталог землетрясений (*N*=423) и взрывов (*N*=204) Приамурья и Приморья за 2005 год // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. (На СD).
- 28. Коваленко Н.С. (отв. сост.), Величко Л.Ф., Донова Т.Я. Каталог землетрясений (*N*=380) и взрывов (*N*=207) Приамурья и Приморья за 2006 год // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. (На СD).
- 29. Коваленко Н.С. (отв. сост.), Федоркова Г.В., Донова Т.Я. (сост.) Каталог землетрясений (*N*=462) и взрывов (*N*=316) Приамурья и Приморья за 2007 год // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2013. (На CD).
- Коваленко Н.С. (отв. сост.), Величко Л.Ф., Донова Т.Я., Федоркова Г.В. Каталог землетрясений (N=532) и взрывов (N=434) Приамурья и Приморья за 2008 год // Землетрясения Северной Евразии, 2008 год. – Обнинск: ГС РАН, 2014. – (На CD).
- 31. Каталоги землетрясений по различным регионам России // Землетрясения России в 2009 году. Обнинск: ГС РАН, 2011. С. 115–117.
- 32. Тектоника, глубинное строение и минерагения Приамурья и сопредельных территорий / Отв. ред. Г.А. Шатков, А.С. Вольский. – СПб.: ВСЕГЕИ, 2004. – 190 с.
- 33. Николаев В.В., Семенов Р.М., Оскорбин Л.С. и др. Сейсмотектоника и сейсмическое районирование Приамурья. – Новосибирск: СО РАН, 1989. – 128 с.