ОПЕРАТИВНАЯ ОБРАБОТКА ЗЕМЛЕТРЯСЕНИЙ МИРА ПО ТЕЛЕСЕЙСМИЧЕСКИМ НАБЛЮДЕНИЯМ ГС РАН

Л.С. Чепкунас, Н.В. Болдырева, С.Г. Пойгина

Геофизическая служба РАН, г. Обнинск, luba@gsras.ru

Оперативный сейсмологический бюллетень в 2009 г. [1], так же как и ранее [2], составлялся на основе следующих потоков входной информации:

– ежедневных оперативных сводок со станций России и СНГ, поступавших по электронной почте (в коде МСК-85);

– сводок по конкретным землетрясениям (в коде MCK-85), формируемых в Службе срочных донесений (ССД) [3] по данным цифровых станций, участвовавших при сводной обработке по программе WSG [4] на основе волновых форм, поступивших в Обнинск в режиме, близком к реальному времени;

 – оперативных сводок, создаваемых в Информационно-обрабатывающем центре (ИОЦ)
ГС РАН для станций «Обнинск», «Билибино», «Кисловодск» и «Цей» по результатам обработки записей всех землетрясений;

– оперативных сводок, создаваемых в ИОЦ ГС РАН для десяти цифровых станций – «Абакан» (ABNR), «Красноярск» (KRAR), «Кызыл» (KZLR), «Большая речка» (BLRR), «Кутурчин» (KTRR), «Орье» (ORY), «Табат» (TBTR), «Тиберкуль» (TBRR), «Хову-Аксы» (HVS) – по результатам выборочной обработки волновых форм записей землетрясений из регионов Восточная Сибирь, Алтай, получаемых по NRTS, и «Владивосток» (VLA) – по результатам обработки волновых форм записей землетрясений из Монголии и приграничных районов с Россией, Дальний Восток, получаемых с дисков;

 – оперативных сводок из региональных сейсмологических центров России и СНГ по 11 станциям Камчатского филиала ГС РАН, семи – Сахалинского филиала ГС РАН и 13 – Казахстанского национального центра данных;

– оперативных сводок, создаваемых в ИОЦ ГС РАН из ежедекадных станционных бюллетеней на бумажных носителях по данным десяти телесейсмических и региональных станций, из которых девять («Бодайбо», «Гофицкое», «Закаменск», «Кульдур», «Монды», «Северо-Курильск» и «Чита») расположены в России и три («Львов», «Ужгород», «Делиси») – в ближнем зарубежье;

 – ежемесячных бюллетеней Алтае-Саянского (11 станций) и Байкальского (24 станции) филиалов ГС СО РАН со сводной обработкой землетрясений Алтая, Саян, пограничных областей России с Монголией и Китаем, Байкальской зоны;

 – ежемесячных бюллетеней Магаданского филиала ГС РАН (32 станции МФ ГС РАН и Ф ГС СО РАН) со сводной обработкой землетрясений Северо-Востока России;

– ежемесячных бюллетеней Дагестанского (16 станций), Северо-Осетинского (12 станций) филиалов ГС РАН и лаборатории сейсмического мониторинга КМВ ГС РАН со сводной обработкой землетрясений Восточного и Северного Кавказа;

– ежедневных оперативных сводок из 11 стран мира (Болгария, Германия, Голландия, Дания, Польша, Португалия, Румыния, Словакия, США, Финляндия, Чехия), поступавших по электронной почте;

– бюллетеней сводной обработки землетрясений со станционными данными сети сейсмических станций Крыма для землетрясений западной зоны Северного Кавказа, Турции и Румынии, поступавших из Симферополя согласно научно-техническому договору с отделом сейсмологии Института геофизики им. Субботина НАН Украины;

– сейсмологических каталогов и бюллетеней международных сейсмологических центров США (NEIC), Австрии (IDC) и Франции (CSEM), содержащих результаты сводной обработки землетрясений и станционные данные.

Всего в Оперативной службе ГС РАН в 2009 г. использовались данные 710 сейсмических станций ГС РАН, ГС СО РАН, других российских ведомств и мировой сети [5], изображенных на рис. 1. Как видно, подавляющее число используемых станций размещено в Северном полушарии, особенно в районах самой высокой плотности населения – в Европе. Список всех станций дан в Приложении к наст. сб. [5].

Рис. 1. Сейсмические станции мира из [5], данные которых использовались при составлении Сейсмологического бюллетеня [1] за 2009 г.

Проведено сравнение списка станций, участвовавших в Оперативной службе в 2008 [6] и 2009 гг. [5]. В 2009 г. при составлении Сейсмологического бюллетеня (СБ) использовались данные 710 станций [5], в 2008 г. – 728 станций [6]. Сравнение показало, что 58 станций (в т.ч. 23 российских, из них 16 («Авача», «Алдан», «Галичья Гора», «Ганалы», «Горный», «Зея», «Коряка», «Кумух», «Малокурильское», «Невинномысск», «Нейтрино», «Паужетка», «Сомма», «Став-Дурт», «Хабаз», «Экимчан») впервые участвуют в СБ, из них одна новая и одна перенесена на другое место) из списка 2009 г. не использовались в сводной обработке в 2008 г. В то же время 76 станций из списка 2008 г. (в т.ч. восемь российских) не участвовали в СБ за 2009 г.

Сеть станций ГС РАН на территории России, участвовавших в оперативной обработке в 2009 г., по сравнению с таковой в 2008 г. [6], увеличилась. В 2009 г. на Курильских островах открыта станция «Малокурильское» (SHO), в Северной Осетии аппаратура со станции «Комсомольская» перенесена в пос. Ставд-Дурта [7].

В оперативную службу в 2009 г. начали поступать данные станций «Нейтрино» (NEY), открытой в конце 2008 г., и станций «Галичья Гора» (LPSR) и «Невинномысск» (NVNR), открытых в 2007 г.

Описанная сеть станций обеспечила в 2009 г. уровень представительной магнитуды для всей Земли с *M*_{min}=5.0, как это следует из графика повторяемости для 3449 землетрясений с *h*≤70 *км* (рис. 2). Уравнение графика имеет вид:

$$\lg N = (6.9 \pm 0.8) - (0.8 \pm 0.11) \cdot MS. \tag{1}$$

Для его построения использованы наблюденные магнитуды землетрясений *MS* (N_{MS} =926) из [8] и магнитуды *MS*^{*} (N_{MS} =2523), пересчитанные из *MPSP* по формуле из [9]:

$$MS^* = 1.59 \cdot MPSP - 3.67, h \le 70 \ \kappa M.$$
 (2)

Выходные потоки информации Оперативной службы ГС РАН включали ежедекадные оперативные сейсмологические бюллетени и каталоги ГС РАН [1, 8], 36 выпусков за год. Их рассылка осуществлялась в основном по электронной почте в заинтересованные государственные учреждения и региональные сейсмологические центры России, сейсмологические центры СНГ, а также в международные сейсмологические центры: МЦД (Международный центр данных), ISC (Великобритания) и NEIC (США) (всего 100 адресов). Сейсмологические каталоги и бюллетени регулярно помещались на Web-страницу ГС РАН [1].

Методика расчета основных параметров землетрясений, по сравнению с таковой в [2], не изменилась. Координаты гипоцентра (φ , λ , h) и время t_0 возникновения землетрясения определялись по программе ЭПИ-74 [10] с использованием телесейсмических [11–13] и региональных [14, 15] годографов на основании данных о временах прихода продольных P(PKIKP)волн на сейсмические станции. Максимум поверхностных волн *LRM* выделялся в соответствии с годографами [16, 17], определение магнитуд *MS* и *MPSP* производилось по максимальной скорости смещения (A/T)_{тах} в поверхностных и объемных волнах и соответствующим калибровочным кривым [18–22].

Оперативный сейсмологический каталог за 2009 г. [8] включает параметры 4215 землетрясений с *MPSP*=3.4–7.0 (*MS/MS**=0.8–8.0).

Распределение землетрясений Земли с M (MS, MPLP, MPSP) \geq 6.0 в зависимости от магнитуды, но без дифференциации их по глубинам очагов, приведено в табл. 1 в сопоставлении с аналогичными данными за предыдущие 16 лет [2]. Как видим, в 2009 г. число землетрясений в интервале M=6.0–6.9 составило N=152, что близко к среднему \overline{N} =156.5±30 за 17 лет, в диапазоне M=7.0–7.9 оно равно N=18, что выше среднего значения \overline{N} =14.6±4.

Год	60-69	N(M)	80 89	N_{Σ}	Год	60-69	N_{Σ}		
	0.0-0.9	1.0-1.9	8.0-8.9		-	0.0-0.9	7.0-7.9	8.0-8.9	
1992	117	13		130	2003	138	14	2	154
1993	97	7		104	2004	153	14	3	170
1994	136	14	1	151	2005	190	13	1	204
1995	242	28		270	2006	154	15	2	171
1996	217	15		232	2007	185	20	3	208
1997	151	5		156	2008	174	14	1	189
1998	113	12		125	Сумма	2660	249	14	2923
1999	159	21		180	за 17 лет				
2000	169	17		186	Среднее	156.5	14.6	0.8	171.9
2001	126	16	1	143	за 17 лет				
2002	139	11		150	2009	152	18	1	171

Таблица 1. Распределение числа землетрясений Земли с *М*≥6.0 в различных интервалах магнитуд за 1992–2009 гг. по данным Сейсмологического бюллетеня ГС РАН

Распределение числа землетрясений Земли в каталоге [8] по интервалам глубин и магнитуд и суммарная сейсмическая энергия в 2009 г. показаны в табл. 2. При ее составлении использованы наблюденные магнитуды землетрясений *MS* по поверхностным волнам для тех землетрясений, для которых удалось их измерить, а для остальных выполнен пересчет магнитуд *MPSP* по объемным волнам в магнитуды (*MS**) по поверхностным волнам. *MS** расчетная найдена по формуле (2) для землетрясений с $h \le 70 \ \kappa m$, по формулам (3) и (4) из [9] – для промежуточных и глубокофокусных землетрясений соответственно:

$$MS^* = 1.77 MPSP - 5.2, h = 71 - 390 \kappa M, \tag{3}$$

$$MS^* = 1.85 MPSP - 4.9, h > 390 \kappa M.$$
(4)

Сейсмическая энергия рассчитывалась из MS или MS* по формуле К. Касахара [23]:

$$\lg E, \mathcal{J} \mathcal{H} = 4.8 + 1.5 \, M. \tag{5}$$

По данным каталога ГС РАН [8], общее количество выделившейся в 2009 г. энергии равно $\Sigma E=3.217 \cdot 10^{17} \ \square m$, что больше таковой в 2008 г. ($\Sigma E=2.225 \cdot 10^{17} \ \square m$ [2]), но меньше, чем в 2007 г. ($\Sigma E=6.446 \cdot 10^{17} \ \square m$ [24]).

h,				N_{Σ}	ΣE ,				
КМ	≤2.5	2.6-3.5	3.6-4.5	4.6-5.5	5.6-6.5	6.6-7.5	7.6-8.5		10 ¹⁵ Дж
≤70	71	1111	1194	919	131	19	4	3449	236.05
71–390	262	165	141	37	25	_	2	632	76.97
>390	26	35	47	17	5	4	_	134	8.68
N_{Σ}	359	1311	1382	973	161	23	6	4215	321.70

Таблица 2. Распределение суммарного числа землетрясений N_Σ и суммарной сейсмической энергии Σ*E* Земли из [8] по интервалам глубин и магнитуд в 2009 г.

Распределение суммарной сейсмической энергии, выделившейся в 2009 г. при землетрясениях с *M* (*MS*, *MPLP*, *MPSP*)≥6.0 в различных сейсмических поясах, приведено в табл. 3, из которой следует, что более 80% всей сейсмической энергии высвобождено в очагах землетрясений Тихоокеанского сейсмического пояса, более 17% – Индийского. Как и в 2005–2008 гг. [2], в табл. 3 включен сейсмический пояс Восточно-Африканские грабены [25]), связанный с внутренними разломами континентальных структур Африки.

Таблица 3. Распределение числа землетрясений с *M*≥6.0 и их суммарной сейсмической энергии Σ*E* по сейсмическим поясам в 2009 г.

Сейсмический пояс	Число земле	Число землетрясений с М						
	6.0-6.9	≥7.0	10 ¹⁵ Дж					
Тихоокеанский	111	16	256.97					
Трансазиатский	12	_	0.91					
Атлантический	11	1	4.39					
Индийский	16	2	55.64					
Восточно-Африканские грабены	2	_	0.33					
Сумма	152	19	318.24					

На рис. 3 показано распределение сейсмической энергии землетрясений за 1992–2009 гг. по данным [8, 26], рассчитанной единообразно из *MS* (*MS**) по формуле (5) из [9]. Как видим, уровень выделившейся в 2009 г. сейсмической энергии несколько выше среднего за 17 лет.

На рис. 4 представлено географическое распределение землетрясений Земли.

В табл. 4 приведен список наиболее сильных ($M \ge 7.0$) землетрясений из [8] и их механизмы из [8, 30], а затем дано их описание. Из 19 землетрясений 16 локализованы в Тихоокеанском сейсмическом поясе (1–6, 9–11, 13–15, 17–20), два – в Индийском (12, 16) и одно (8) – в Атлантическом. В табл. 4 также включено более слабое (MS=6.2), но разрушительное, с человеческими жертвами, землетрясение (7), произошедшее 6 апреля 2009 г. на территории Центральной Европы и относящееся к Трансазиатскому сейсмическому поясу.

N⁰	Дата,	<i>t</i> ₀ ,	Эпи	центр	h,	M_0 ,		Ma	гнитудь	I	Географический
	дм	ч мин с	φ°	λ°	КМ	Н∙м	Mw	MS/	MPLP/	MPSP/	регион [27]
			·				[28]	n	n	n	
1	2	3	4	5	6	7	8	9	10	11	13
1	03.01	19 43 52.5	-0.462	132.812	33f	$1.0 \cdot 10^{20}$	7.3	7.3/	7.5/	6.5/	Район Западного Ириана,
							TLY	84	11	43	Индонезия
2	03.01	22 33 39.7	-0.699	133.283	33f	$9.0 \cdot 10^{19}$	7.3	7.0/	7.4/	6.5/	Район Западного Ириана,
							TLY	78	10	72	Индонезия
3*	15.01	17 49 38.1	46.978	155.261	38		7.4	7.6/	7.5/	7.0/	Восточнее Курильских о-вов
							OBN	91	8	131	
4	11.02	17 34 50.6	3.874	126.470	33f	$8.1 \cdot 10^{19}$	7.2	7.2/	7.2/	6.8/	О-ва Талауд, Индонезия
							OBN	76	16	82	
5*	18.02	21 53 45.2	-27.320	-176.382	31			7.1/	7.2/	6.8/	Район о-вов Кермадек
								103	8	62	
6	19.03	18 17 39.4	-22.995	-174.695	33f			7.5/	7.8/	7.0/	Район о-вов Тонга
								86	5	59	
7	06.04	01 32 40.7	42.430	13.320	14	$3.4 \cdot 10^{18}$		6.2/	6.1/	6.0/	Центральная Италия
								79	5	98	
8	28.05	08 24 43.3	16.713	-86.298	10f			7.1/	6.7/	6.8/	Севернее Гондураса
								83	9	96	
9	15.07	09 22 30.8	-45.712	166.653	33f			7.5/	7.4/	6.9/	У западного побережья Юж-
								51	4	47	ного о-ва, Новая Зеландия
10	03.08	17 59 55.7	29.174	-112.824	16			7.2/	6.3/	6.2/	Калифорнийский залив
								42	10	61	

Таблица 4. Список сильных землетрясений мира с М≥7.0 в 2009 г. из [8]

N⁰	Дата,	<i>t</i> ₀ ,	Эпи	центр	h,	<i>M</i> ₀ ,		Ma	гнитудь	I	Географический
	д м	ч мин с	φ°	λ°	км	Н∙м	Mw	MS/	MPLP/	MPSP/	регион [27]
			•				[28]	n	n	n	
1	2	3	4	5	6	7	8	9	10	11	13
11	09.08	10 55 54.3	33.140	138.180	299			7.0/	6.5/	6.7/	Юго-восточнее Хонсю,
								20	4	125	Япония
12	10.08	19 55 37.7	14.036	92.984	33f	$1.3 \cdot 10^{20}$	7.4	7.5/	7.0/	6.7/	Район Андаманских о-вов,
							OBN	95	11	80	Индия
13	30.08	14 51 35.2	-15.099	-172.591	33f			6.4/	7.0/	6.5/	Район о-вов Самоа
								85	5	90	
14	02.09	07 54 57.8	-7.645	107.496	33f	$9.6 \cdot 10^{19}$	7.1	6.9/	7.5/	6.9/	Ява, Индонезия
							OBN	94	13	94	
15*	29.09	17 48 08.1	-15.570	-172.080	33f			8.0/	7.4/	6.7/	Район о-вов Самоа
								73	4	41	
16*	30.09	10 16 09.5	-0.652	99.899	92		7.5	7.1/	7.5/	6.9/	Южная Суматра, Индонезия
							OBN	35	9	62	
17*	07.10	22 03 12.3	-12.956	166.445	33f	$2.4 \cdot 10^{20}$	7.5	7.8/	7.3/	6.6/	О-ва Санта-Крус
							TLY	14	10	64	
18	07.10	22 18 50.1	-12.402	166.277	33f			7.9/		6.0/	О-ва Санта-Крус
								23		48	
19	07.10	23 13 47.2	-13.084	166.418	33f			7.1/		6.5/	О-ва Вануату
								20		53	
20*	30.10	07 03 37.0	29.121	129.938	33f	$4.3 \cdot 10^{19}$	7.0	7.0/	6.5/	6.3/	О-ва Рюкю, Япония
							OBN	98	8	132	

Примечание. В графе 1 знак «*» указывает на наличие в [8] параметров механизма очага по знакам первых вступлений *P*-волн; в графе 6 буквой «f» индексирована фиксированная глубина.

В табл. 5 и на рис. 5 представлены решения механизмов очагов всех землетрясений. Для пяти землетрясений (3, 5, 15–17) они получены в ГС РАН [8] по знакам первых вступлений продольных *P*-волн по программе А.В. Ландера [29], а для остальных – в Колумбийском университете США (код GCMT) [30] по методу тензора момента центроида (ТМЦ).

№	Дата, дм	t ₀ , ч мин с	h, км	Магнитуды				0	Оси главных напряже- ний							Нодальные плоскости						
				Mw	MS	MPLP	MPSP		Т	Ν		Р		NP1				NP	2			
								PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
1	03.01	19 43 52.5	33f	7.7	7.3	7.5	6.5	59	257	16	139	26	41	99	23	47	324	73	106	GCMT		
				7.3																		
2	03.01	22 33 39.7	33f	7.4	7.0	7.4	6.5	68	226	8	117	20	24	101	26	72	300	66	98	GCMT		
				7.3																		
3	15.01	17 49 38.1	38	7.4	7.6	7.5	7.0	63	173	24	22	12	286	349	39	50	216	61	118	MOS		
				7.4																		
4	11.02	17 34 50.6	33f	7.1	7.2	7.2	6.8	81	303	4	182	7	92	177	38	83	6	53	96	GCMT		
				7.2																		
5	18.02	21 53 45.2	31	7.0	7.1	7.2	6.8	14	234	67	360	18	139	277	67	-177	186	87	-23	MOS		
6	19.03	18 17 39.4	33f	7.6	7.5	7.8	7.0	85	208	5	19	1	109	205	44	98	14	46	82	GCMT		
7	06.04	01 32 40.7	14	6.3	6.2	6.1	6.0	6	226	18	134	70	334	336	42	-62	120	54	-113	GCMT		
8	28.05	08 24 43.3	10f	7.3	7.1	6.7	6.8	16	286	59	166	25	24	63	60	-7	156	84	-150	GCMT		
9	15.07	09 22 30.8	33f	7.8	7.5	7.4	6.9	58	37	19	160	25	259	25	26	138	154	73	70	GCMT		
10	03.08	17 59 55.7	16	6.9	7.2	6.3	6.2	3	86	86	248	1	356	131	87	178	221	88	2	GCMT		
11	09.08	10 55 54.3	299	7.1	7.0	6.5	6.7	46	80	17	188	39	293	86	17	168	187	86	73	GCMT		
12	10.08	19 55 37.7	33f	7.5	7.5	7.0	6.7	9	310	1	40	81	136	39	36	-92	220	54	-89	GCMT		
				7.4																		
13	30.08	14 51 35.2	33f	6.6	6.4	7.0	6.5	4	31	4	121	84	258	116	41	-97	305	49	-84	GCMT		

Таблица 5. Механизмы очагов сильных землетрясений мира в 2009 г.

N⁰	Дата, дм	t ₀ , ч мин с	h, км	Магнитуды				0	Оси главных напряже- ний							Нодальные плоскости						
				Mw	MS	MPLP	MPSP		Т	Ν		Р		NP1			NP2					
								PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
14	02.09	07 54 57.8	33f	7.0	6.9	7.5	6.9	71	41	19	214	2	305	54	46	117	198	50	65	GCMT		
				7.1																		
15	29.09	17 48 08.1	33f	9.1	8.0	7.4	6.7	25	236	9	141	63	33	138	71	-100	346	21	-63	MOS		
16	30.09	10 16 09.5	92	7.6	7.1	7.5	6.9	51	45	39	225	0	315	78	57	139	193	57	41	MOS		
				7.5																		
17	07.10	22 03 12.3	33f	7.6	7.8	7.3	6.6	62	169	28	349	0	259	324	51	53	194	51	127	MOS		
				7.5																		
18	07.10	22 18 50.1	33f	7.8	7.9		6.0	79	100	5	344	10	253	337	36	82	167	55	96	GCMT		
19	07.10	23 13 47.2	33f	7.4	7.1		6.5	84	140	5	346	2	256	341	43	83	171	48	97	GCMT		
20	30.10	07 03 37.0	33f	6.8	7.0	6.5	6.3	72	328	6	218	16	127	15	71	79	226	22	119	MOS		
				7.0																		

Примечание. Параметры землетрясений в графах 2–4, 6–8 соответствуют таковым в каталоге [8]; в графе 5 верхнее значение *Мw* приведено по данным GCMT из [30], нижнее – из [28].

Рис. 5. Стереограммы механизмов очагов сильных землетрясений из табл. 5 в проекции нижней полусферы

Ниже приводится описание приведенных в табл. 5 механизмов очагов 20 землетрясений по сейсмическим поясам. Их гипоцентры расположены в пределах земной коры, кроме землетрясений (11) и (16) с $h=299 \ \kappa m$ и $h=92 \ \kappa m$ соответственно.

В пределах Тихоокеанского пояса землетрясения (3, 11, 20) произошли в его северовосточной части: в районе Курильских островов, вблизи о. Хонсю и о. Рюкю.

Землетрясения (3) от 15 января в $17^{h}49^{m}$ с MS=7.6 и (20) от 30 октября в $07^{h}03^{m}$ с MS=7.0возникли под действием напряжений сжатия, ориентированных в западном ($AZM=287^{\circ}$) направлении для события (3) и юго-восточном ($AZM=127^{\circ}$) – для (20). Тип движения в их очагах представлен взбросом с компонентами сдвига. Ориентация нодальных плоскостей в (3) – близмеридиональная ($STK=349^{\circ}$) по плоскости NP1 и юго-западная ($STK=216^{\circ}$) – по NP2; в (20) – плоскость NP1 ориентирована на северо-восток ($STK_1=42^{\circ}$), NP2 – на юг-юго-запад ($STK_2=207^{\circ}$). Нодальные плоскости наклонены под близкими углами: в случае (3) DP=39, 61°, для (20) – DP=62, 29°. В очаге землетрясения (11) 9 августа в $10^{h}55^{m}$ с MS=7.0 движение вызвано действием близких по величине напряжений растяжения, ориентированных на восток ($AZM=80^{\circ}$), и сжатия – на запад ($AZM=293^{\circ}$). Плоскость NP1 – пологая ($DP=17^{\circ}$), ее простирание – близширотное ($STK=86^{\circ}$), тип движения – правосторонний сдвиг с компонентами надвига. Плоскость NP2 залегает круто ($DP=86^{\circ}$), ее простирание – близмеридиональное ($STK=187^{\circ}$), тип движения – взброс с компонентами левостороннего сдвига.

Четыре землетрясения (1, 2, 4, 14) зарегистрированы в Индонезии, в т.ч. землетрясения (1, 2) – в районе Западного Ириана (3 января в $19^{h}43^{m}$ с MS=7.3 и в $22^{h}33^{m}$ с MS=7.0); (4) – у о. Талауд 11 февраля в $17^{h}34^{m}$ с MS=7.2 [31–33]; (14) – у о. Ява 2 сентября в $07^{h}54^{m}$ с Mw=7.3 [34]. Все они возникли под действием напряжений сжатия, но ориентированных по-разному: в очагах (1, 2) – на северо-восток ($AZM=24-41^{\circ}$); в (4) – на восток ($AZM=92^{\circ}$); в (14) – на юго-запад ($AZM=305^{\circ}$). В очагах землетрясений (1) и (2) плоскости NP1 близширотны (STK=99 и 101^{\circ}), плоскости NP2 ориентированы на северо-запад (STK=324 и 300^{\circ}), тип движения – взброс по плоскостям NP2 крутого (DP=73 и 66^{\circ}) залегания с компонентами правостороннего сдвига и надвиг по пологим (DP=23 и 26^{\circ}) плоскостям NP1 с компонентами левостороннего сдвига. В (4) простирание плоскостей – близмеридиональное ($STK_{1}=6^{\circ}$, $STK_{2}=177^{\circ}$). Тип движения по обеим плоскостям – взброс с компонентой правостороннего сдвига по более крутой ($DP=53^{\circ}$) плоскости NP2 и с компонентой левостороннего сдвига – по более пологой ($DP=38^{\circ}$) плоскости NP1. В очаге (14) плоскость NP2 простирается на северо-восток ($STK=54^{\circ}$), NP1 – на юг-юго-запад ($STK=198^{\circ}$), Обе они наклонены к горизонту под близкими углами ($DP_{1}=46^{\circ}$, $DP_{2}=50^{\circ}$), тип движения – взброс с компонентами левостороннего – по NP1.

Землетрясения (1) и (2) произошли в малонаселенной местности в отдаленной восточной провинции Индонезии на западе Папуа–Новой Гвинеи: (1) – в предутренние часы, (2) – через три часа после него. Эпицентральные расстояния до Маноквари (административный центр провинции Ириан-Джая) – 145 и 85 км соответственно. Землетрясения сопровождались многочисленными афтершоками. Отмечено разжижение грунтов на побережье и на берегах рек, в Маноквари – некоторые разрушения (~250 домов в разной степени нарушений, один полностью разрушен), погибли два человека, ранено 74 человека. Была объявлена угроза цунами, в связи с чем проведена эвакуация. Волны высотой 40 м зафиксированы на побережье Японии. Землетрясения связаны с субдукцией Тихоокеанской плиты под Австралийскую.

В результате землетрясения (4) вблизи Кепулауана (о. Талауд) произошел взброс в системе плитовой границы, разделяющей бассейны морей Филиппинского и Целебесского (Сулавеси). Объявленная вначале Индонезийским геофизическим агентством тревога цунами была впоследствии отменена. Было ранено не менее 36 человек. Сотни зданий были разрушены.

Сильные землетрясения произошли на островах Кермадек (5), Тонга (6), близ Новой Зеландии (9) [34]. Землетрясение (5) от 18 февраля в 21^h53^m с *MS*=7.1 возникло под действием близких по величине сжимающих, ориентированных в юго-восточном направлении (AZM=139°), и растягивающих напряжений, ориентированных на юго-запад (AZM=234°). Тип движения по крутопадающей плоскости NP2 (DP=87°) близмеридионального направления (STK=186°) – левосторонний сдвиг с компонентами сброса. Вторая плоскость NP1 – менее крутая (DP=67°), ее простирание – близширотное (STK=277°), тип движения по ней – правосторонний сдвиг с компонентами сброса. Движение в очаге землетрясения (6), имевшего место 19 марта в $18^{h}17^{m}$ с MS=7.5, обусловлено действием сжимающих напряжений, ориентированных на юго-восток (AZM=109°). Тип движения по обеим плоскостям – взброс с компонентами сдвига, правостороннего по NP1 юг-юго-западного (STK=205°) простирания, левостороннего – по NP2 север-северо-восточного (STK=14) простирания. Углы наклона плоскостей к горизонту близки (DP1=44°, DP2=46°). Землетрясение (9) произошло 15 июля в $09^{h}22^{m}$ с MS=7.5 под действием превалирования напряжений сжатия, ориентированных на запад AZM=259°. Движение по крутой (DP₂=73°) плоскости NP2 юг-юго-восточного простирания (STK=154°) – взброс с компонентами левостороннего сдвига, по пологой (DP₁=26°) плоскости NP1 север-северо-восточного простирания (STK=25°) – правосторонний сдвиг.

В районе островного государства Самоа в Тихоокеанском сейсмическом поясе произошли два землетрясения – 30 августа в $14^{h}51^{m}$ (13) с MS=6.4 и 29 сентября в $14^{h}48^{m}$ (15) с MS=8.0. Их механизмы близки. Землетрясения (13) и (15) возникли под действием напряжений растяжения, направленных на северо-восток (13) и юго-запад (15). Обе нодальные плоскости ориентированы на юго-восток (STK=116, 138°) и северо-запад (STK=305, 346°). Тип движения в очагах обоих землетрясений по обеим плоскостям – сбросы с компонентами сдвига: правосто-роннего – по NP1, левостороннего – по NP2.

Согласно [35], землетрясение (15) породило разрушительные волны цунами. Список жертв достиг 170 человек (по состоянию на 2 октября 2009 г.). Эпицентр находился в 184 км к юг-юго-западу от Апиа, столицы Западного Самоа, в 200 км к юго-западу от Паго-Паго (Американское Самоа). Толчки ощущались в Западном Самоа и Американском Самоа (от 2 до 7 баллов). Достигавшие 5-метровой высоты волны смыли целые деревни. Тревога цунами была объявлена по всему Тихоокеанскому побережью. Обрушившаяся на о-ва Самоа волна цунами достигла берегов и другого тихоокеанского государства – Тонга. Там погибло не менее десяти человек. Остаточная высота волны цунами, докатившейся до берегов России, составила 25.5 см. По данным Сахалинского центра цунами волна достигла побережья Курильского о. Парамушир через 10 час после подземного удара. Организация Объединенных Наций (ООН) направила на о-ва Самоа команду специалистов для оказания помощи пострадавшим от землетрясения и цунами. США объявили Американское Самоа зоной стихийного бедствия и направили туда федеральную помощь для восстанования этой территории.

В [36] использована численная модель цунамигенного обводнения, представленная для цунами, вызванного землетрясением (15) 29 сентября 2009 г. в Тутуиле, Американское Самоа, с целью определения влияния коралловых рифов, расположенных вблизи побережья, на высоту волн, заплеск и скорости распространения. Показано, что эти рифы действуют как береговой буфер, смягчающий воздействия цунами. Анализируется зависимость параметров цунами от ширины, глубины и изрезанности рифов, а также влияние рифовых каналов и фокусирующий эффект набережной.

В Тихом океане, в районе о-вов Санта-Крус, 7 октября произошли два землетрясения: в $22^{h}03^{m}$ (17) с MS=7.8 и через 15 *мин* в $22^{h}18^{m}$ (18) с MS=7.9. В этот же день в $23^{h}13^{m}$ зарегистрировано землетрясение (19) с MS=7.1 в районе о. Вануату. Оно ощущалось на о-вах Вануату, Самоа и Фиджи [35, 37]. Механизмы очагов этих землетрясений (17–19) подобны. Движение в очагах возникло под действием близгоризонтальных (*PL=*0, 10 и 2°) сжимающих напряжений, ориентированных на запад-юго-запад (*AZM=259*, 253 и 256°). Тип движения в очагах всех землетрясений – взбросы с компонентами сдвига. Плоскости наклонены к горизонту под близкими углами (табл. 5). Простирание нодальных плоскостей *NP1* и *NP2* в очаге (17) – северо-западное (*STK*₁=324°) и близмеридиональное (*STK*₂=194°) соответственно; в очагах (18) и (19) для плоскостей *NP1* – северо-западное (*STK=337* и 341°), для *NP2* – юг–юго-восточное (*STK=167* и 171°).

Подвижка в очаге землетрясения (10) с MS=7.2, зарегистрированного в Калифорнийском заливе 3 августа в $17^{h}59^{m}$, произошла под действием близких по величине напряжений сжатия и растяжения, ориентированных в северном и восточном направлениях соответственно. Обе плоскости залегают очень круто (DP=87 и 88°), поэтому тип движения – чистый сдвиг по обеим плоскостям: левосторонний – по NP2 юго-западного простирания ($STK=221^{\circ}$), правосторонний – по NP1 юго-восточного простирания ($STK=131^{\circ}$).

В пределах Трансазиатского пояса в Центральной Италии 6 апреля 2009 г. в $01^{h}32^{m}$ произошло разрушительное землетрясение (7) с относительно небольшой магнитудой – MS=6.2. Оно сопровождалось разрушениями и многочисленными человеческими жертвами. Землетрясение возникло под действием почти горизонтальных (PL_{T} =6°) растягивающих напряжений юго-западной ориентации (AZM=226°). Обе нодальные плоскости не крутые (DP_{1} =42°, DP_{2} =54°), с северо-западным простиранием (STK=336°) для NP1 и юго-восточным (STK=120°) – для NP2. Тип движения по обеим нодальным плоскостям – сброс с компонентами левостороннего сдвига по плоскости NP1, правостороннего – по плоскости NP2. Значение сейсмического момента M_{0} , полученное в ИОЦ ГС РАН по спектрам P-волн на четырех станциях («Обнинск» (Δ =19.7°), «Кисловодск» (Δ =21.3°), «Арти» (Δ =31.9°) и «Талая» (Δ =58.4°)), составляет M_0 =4.3·10¹⁸ *H*·*м*, значение моментной магнитуды, рассчитанной по формуле Канамори, – Mw=6.4. Значение сейсмического момента M_0 землетрясения (7) по данным NEIC составляет 2.8·10¹⁸ *H*·*м*, значение моментной магнитуды Mw=6.2; по данным GCMT – M_0 =3.7·10¹⁸ *H*·*м*, Mw=6.3 [30].

Эпицентр землетрясения находился неподалеку от г. Аквилы. Перед сильным землетрясением был зафиксирован форшок – первый толчок с *M*=4.5. Он был отмечен в полночь 6 апреля. Это и послужило сигналом для многих жителей покинуть дома и выйти на улицу. Но наиболее сокрушительными оказались многочисленные последующие толчки [32]. В результате многие жилые дома были разрушены. В зоне бедствия – в окрестностях административного центра области Абруцци г. Аквила – разрушено или повреждено до 50% зданий, в их числе – студенческое общежитие и купол кафедрального собора. Среди пострадавших от землетрясения жители не только Аквилы, но и 26 находящихся рядом с ней населенных пунктов. Погибло 294 человека, 30 тыс. человек остались без крова. Разрушено от 10 до 15 тыс. строений. Население, покинувшее разрушенные дома, разместилось на стадионах и спортивных площадках.

Землетрясение (7) произошло в сейсмически активном регионе. История повторилась. Более 300 лет назад, а именно 2 февраля 1703 г., на это же место пришелся очаг катастрофического землетрясения, полностью разрушившего г. Аквила. В тот день Аквиланские церкви были полны верующих, только в церкви Святого Доменико под развалинами осталось более 600 человек. Во многих других церквях города также были многочисленные жертвы. Всего погибло от трех до шести тысяч человек. Подземные толчки ощущались в большинстве городов центральной части страны, включая Рим.

Предварительные оценки кинематики процесса вспарывания при землетрясении в Италии, распределения сдвигов и статических поверхностных деформаций приведены в [38]. В [39] получено значение скалярного сейсмического момента, эквивалентного магнитуде Mw=6.3. Предложен метод определения местоположения гипоцентра с помощью совместной инверсии процесса сейсмогенерирующего вспарывания. Очаговый процесс представлен двумя субземлетрясениями, общее время вспарывания – 7.7 с. Первое субземлетрясение (0–3 с) связано со смещениями вблизи гипоцентра, при втором (3–4.7 с) разрывообразование происходило на участке 4–16 км в направлении простирания разлома.

В пределах Атлантического пояса имело место одно сильное (MS=7.1) землетрясение (8), возникшее 28 мая в $08^{h}24^{m}$ в Карибском море, близ о. Руатан – одного из самых известных курортов Гондураса [34, 40]. Его эпицентр располагался у побережья о. Сисне (Лебединые о-ва, 156 км к северу от Гондураса), на продолжении Гватемальского разлома Мотагуа. Под завалами погибли шесть человек, среди них четверо детей, 13 человек получили ранения. Разрушено свыше 59 домов, временно был закрыт крупнейший порт страны на Карибском побережье – Пуэрто-Кортес. В этой же зоне в 1976 г. произошло разрушительное землетрясение с Mw=7.5 [34].

Для землетрясения (8) получены данные GPS о косейсмических смещениях во время землетрясения: от 308 *мм* на севере Гондураса до 6 *мм* на пяти участках в Сальвадоре. Подвижки на 250-км разломе к западу от эпицентра подтверждаются распределением афтершоков, зарегистрированных локальной сетью, и значительной концентрацией разрушений в северной области Гондураса, примыкающей к западной границе зоны вспарывания. В результате главного толчка были возны два сбросовых землетрясения с M>5 и множество более слабых толчков в северной части побережья Гондураса [40]. Движение в его очаге обусловлено действием близких по величине сжимающих и растягивающих напряжений, ориентированных на северовосток и запад–северо-запад соответственно. По плоскости крутого ($DP=84^\circ$) залегания и юговосточного простирания ($STK=156^\circ$) тип движения – правосторонний сдвиг с элементами сброса. По второй, более пологой ($DP=60^\circ$) плоскости восток–северо-восточного простирания ($STK=63^\circ$) наблюдается левосторонний сдвиг с компонентами сброса.

В пределах Индийского сейсмического пояса в районе Индонезии произошли землетрясения (12) и (16) [34, 41]. Движение в очаге землетрясения (12) 10 августа в 19^h55^m с MS=7.5 (Андаманское) возникло под действием близгоризонтальных (PL_{T} =9°) растягивающих напряжений, ориентированных на северо-запад (AZM=310°), в очаге (16) 30 сентября в 10^h16^m с MS=7.1 (Южная Суматра) – под действием горизонтальных (PL_{P} =0°) сжимающих напряжений также северо-западной (AZM=315°) ориентации. Тип движения в случае (12) – «чистый» сброс по обеим нодальным плоскостям, в случае (16) – сдвиги с компонентами взброса (левосторонний – по *NP2*, правосторонний – по *NP1*). Простирания нодальных плоскостей в очаге (12) северовосточное (*STK*=39°) для *NP1* и юго-западное (*STK*=220°) – для *NP2*; в (16) – восток–северовосточное (*STK*=78°) для *NP1* и близмеридиональное (*STK*=193°) – для *NP2*.

Эпицентр землетрясения 30 сентября оказался вблизи западного побережья о. Южная Суматра, в 55 км к запад-северо-западу от Паданга (Индонезия), в 488 км к юг-юго-западу от Куала-Лумпура, столицы Малайзии, и в 966 км к северо-западу от Джакарты, столицы Индонезии. Землетрясение разрушило десятки поселков и почти стерло с лица земли один из крупнейших индонезийских городов – Паданг. Больницы и полевые госпитали были переполнены. Тысячи жителей острова пропали без вести. Землетрясение вызвало серию оползней, которые перегородили дороги. Между населенными пунктами была нарушена телефонная связь. Сильные толчки ощущались даже за тысячу километров – в столице страны Джакарте, а также в соседних странах – в Малайзии и Сингапуре. Число жертв достигло 1100 человек [35].

В Танзании в декабре 2009 г. произошло ряд землетрясений, среди которых достаточно сильные: 8 декабря в $03^{h}08^{m}$ с *MPSP*=6.0, *MPLP*=6.1 и 19 декабря в $23^{h}1^{m}$ с *MPSP*=6.1 [8]. Их моментные магнитуды *Mw* по данным GCMT [30] равны 5.9 и 6.0 соответственно.

В заключение отметим, что в 2009 г. наблюдалась высокая сейсмическая активность в Юго-Восточной Азии. В пределах Тихоокеанского и Индийского сейсмических поясов произошло 18 землетрясений с магнитудой *MS*≥7, среди них два – цунамигенные. Уровень выделившейся в 2009 г. сейсмической энергии несколько выше среднего за 17 лет (1991–2009 гг.). Это, несомненно, явилось результатом аномального проявления тектонической активности в Тихоокеанском поясе, где выделилось более 80% всей энергии за 2009 г. Особое внимание заслуживает катастрофическое землетрясение в Центральной Италии с разрушениями и многочисленными жертвами.

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 2009 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2009–2010. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2009/*.
- 2. Чепкунас Л.С., Болдырева Н.В., Пойгина С.Г. Оперативная обработка землетрясений мира по телесейсмическим наблюдениям ГС РАН // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 275–286.
- 3. Старовойт О.Е., Чепкунас Л.С., Коломиец М.В., Рыжикова М.И. Служба срочных донесений ГС РАН. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- Красилов С.А., Коломиец М.В., Акимов А.П. Организация процесса обработки цифровых сейсмических данных с использованием программного комплекса WSG // Современные методы обработки и интерпретации сейсмологических данных. Материалы Международной сейсмологической школы, посвященной 100-летию открытия сейсмических станций «Пулково» и «Екатеринбург». Обнинск: ГС РАН, 2006. С. 77–83.
- 5. Болдырева Н.В., Пойгина С.Г. (сост.). Список сейсмических станций России и мира, использованных при создании Сейсмологического бюллетеня за 2009 г. (См. Приложение к наст. сб. на CD).
- 6. Болдырева Н.В., Пойгина С.Г. Список сейсмических станций России и мира (*n*=728), использованных при создании Сейсмологического бюллетеня за 2008 г. // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2013. (На СD).
- 7. Общие сведения о сейсмичности России. Результаты сейсмического мониторинга различных регионов России // Землетрясения России в 2009 году. – Обнинск: ГС РАН, 2011. – С. 9–14.
- 8. Болдырева Н.В. (отв. сост.), Аторина М.А., Бабкина В.Ф., Малянова Л.С., Рыжикова М.И., Щербакова А.И. (сост.). Каталог землетрясений Земли за 2009 г. (См. Приложение к наст. сб. на CD).
- Кондорская Н.В., Горбунова И.В., Киреев И.А., Вандышева Н.В. О составлении унифицированного каталога сильных землетрясений Северной Евразии по инструментальным данным (1901–1990 гг.) // Сейсмичность и сейсмическое районирование Северной Евразии. Вып. 1. М.: АН СССР, 1993. С. 70–79.
- Епифанский А.Г. Определение параметров гипоцентров и магнитуд землетрясений в телесейсмической зоне (ЭПИ-74) // Алгоритмы и практика определения параметров гипоцентров землетрясенийна ЭВМ. – М.: Наука, 1983. – С. 92–97.

- 11. Рихтер Ч. Элементарная сейсмология. М.: ИЛ, 1963. 670 с.
- 12. Jeffreys H., Bullen K.E. Seismological tables // Brit. Assoc. for the advancement of Sci. London: Gray-Milne Trust, 1958. – 65 p.
- 13. Bolt B.A. Estimation of PKP travel times // Bull. Seism. Soc. Am. 1968. 58. N 4. P. 1305-1324
- 14. Голенецкий С.И., Круглякова М.И., Перевалова Т.И. Годографы сейсмических волн землетрясений Прибайкалья // Сейсмичность и глубинное строение Прибайкалья. – Новосибирск: Наука (СО РАН), 1978. – С. 30–38.
- 15. Wadati K. Travel time P- and S-waves // Geophys. Mag. 1933. N 11.
- 16. Архангельская В.М. Использование записей поверхностных волн при интерпретации сейсмограмм // Бюллетень Совета по сейсмологии. – М.: АН СССР, 1957. – № 6. – С. 81–88.
- Горбунова И.В., Захарова А.И., Чепкунас Л.С. Максимальная фаза поверхностной волны Релея по наблюдениям различной аппаратурой в ЦСО «Обнинск» // Магнитуда и энергетическая классификация землетрясений. Т. II. – М.: ИФЗ АН СССР, 1974. – С. 19–25.
- 18. Gutenberg B., Richter C. Earthquake magnitude, intensity, energy and acceleration // Bull. Seism. Soc. Am. 1942. 32. N 3. P. 163–191.
- 19. Gutenberg B., Richter C. Earthquake magnitude, intensity, energy and acceleration // Bull. Seism. Soc. Am. 1956. 46. N 2. P. 105–145.
- 20. Ванек И., Затопек А., Карник В., Кондорская Н.В., Ризниченко Ю.В., Саваренский Е.Ф., Соловьёв С.Л., Шебалин Н.В. Стандартизация шкал магнитуд // Известия АН СССР. Серия геофизическая. – 1962. – № 2. – С. 153–158.
- 21. Горбунова И.В., Шаторная Н.В. О калибровочной кривой для определения магнитуды землетрясений по волнам *PKIKP* // Физика Земли. 1976. № 7. С. 77–81.
- 22. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 273 с.
- 23. Касахара К. Механика землетрясений. М.: Мир, 1985. С. 25.
- 24. Чепкунас Л.С., Болдырева Н.В., Пойгина С.Г. Оперативная обработка землетрясений мира по телесейсмическим наблюдениям ГС РАН // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2013. С. 275–286.
- 25. Гутенберг Б., Рихтер Ч. Сейсмичность Земли. М.: ИЛ, 1948. 160 с.
- 26. Оперативный сейсмологический каталог (ежедекадный) за 1992–2008 гг. / Отв. ред. О.Е. Старовойт. Обнинск: ЦОМЭ ИФЗ РАН, 1992–2004; ГС РАН, 2005–2009.
- 27. Young J.B., Presgrave B.W., Aichele H., Wiens D.A., Flinn E.A. The Flinn-Engdahl Regionalisation Scheme: the 1995 revision // Physics of the Earthand Planetary Interiors. 1996. N 96. P. 223–297.
- 28. Чепкунас Л.С., Малянова Л.С. Очаговые параметры сильных землетрясений Земли. (См. раздел II (Спектры и динамические параметры очагов землетрясений) в наст. сб.).
- Ландер А.В. Комплекс программ определения механизмов очагов землетрясений и их графического представления // Комплексные сейсмологические и геофизические исследования Камчатки и Командорских островов (01.01–31.12.2003 г.) // Отчет КОМСП ГС РАН. – Петропавловск-Камчатский: Фонды КОМСП ГС РАН, 2004. – С. 359–380.
- 30. Bulletin of the International Seismological Centre for 2009. Thatcham, United Kingdom: ISC, 2011. URL: *http://www.isc.ac.uk/iscbulletin/search/bulletin/*.
- 31. Merriam M. Землетрясения 3 января 2009 г. в Папуа (Индонезия) // EERI Newslett. 2009. **43**. N 2. Р. 6 // →РЖ «Физика Земли». 2009. № 10 (реф. 40).
- 32. Старовойт О.Е., Чепкунас Л.С., Коломиец М.В. Хроника сейсмичности Земли. Более четырех тысяч землетрясений за год (май 2008 г. май 2009 г.) // Земля и Вселенная. 2009. № 5. С. 97–102.
- 33. **Меггіат М.** Землетрясение 11 февраля 2009 г. с *M*=7.2 в Индонезии // EERI Newslett. 2009. **43**. N 4. – Р. 9 // →РЖ «Физика Земли». – 2009. – № 12 (реф. 47).
- 34. Старовойт О.Е., Чепкунас Л.С., Коломиец М.В. Хроника сейсмичности Земли. Сейсмическая обстановка летом 2009 г.: землетрясения и ядерный взрыв в КНДР // Земля и Вселенная. – 2010. – № 1. – С. 108–111.
- Старовойт О.Е., Чепкунас Л.С., Коломиец М.В. Хроника сейсмичности Земли. Буйство сейсмической стихии в Юго-Восточной Азии (сентябрь октябрь 2009 г.) // Земля и Вселенная. 2010. № 2. С. 105–107.

- 36. Gelfenbaum G., Apotsos A., Stevens A.W., Jaffe B. Влияние коралловых рифов, расположенных вблизи побережья, на цунамигенное обводнение: Американское Самоа // Earth-Sci. Rev. 2011. 107. N 1–2. Р. 12–22 // →РЖ «Физика Земли». 2011. № 12 (реф. 76).
- 37. Zhang Yong, Xu Lisheng, Chen Yun-tai. Быстрая инверсия процесса разрыва при землетрясении 7 октября 2009 г. в Вануату // Dizhen xuebao = Acta seismol. sin. 2010. 32. N 1. C. 121–123 // →РЖ «Физика Земли». 2010 № 11 (реф. 81).
- 38. Pino N.A., De Luccio F. Очаговая сложность землетрясения 6 апреля 2009 г. в Аквиле (Центральная Италия) и его сильнейшего афтершока, выявленная в процессе элементарного сейсмологического анализа. Source complexity of the 6 April 2009 L'Aquila (central Italy) earthquake and its strongest aftershock revealed by elementary seismological analysis / Pino Nicola Alessandro, De Luccio Francesca // Geophys. Res. Lett. 2009. 36. N 23. P. L23305/1–L23305/6 // →РЖ «Физика Земли». 2010. № 12 (реф. 75).
- 39. Zhang Y., Feng W., Chen Y., Xu L., Li Z., Forrest D. Землетрясение 2009 г. с *Mw*=6.3 в Л'Аквиле (Италия): новые методы определения местоположения гипоцентра с помощью совместной инверсии процесса сейсмогенерирующего вспарывания. The 2009 L'Aquila *Mw*=6.3 earthquake: a new technique to locate the hypocentre in the joint inversion of earthquake rupture process / Zhang Yong, Feng Wanpeng, Chen Yuntai, Xu Lisheng, Li Zhenhong, Forrest David // Geophys. J. Int. 2012. 191. N 3. P. 1417– 1426 // →РЖ «Физика Земли». 2013. № 6 (реф. 102).
- 40. Graham Sh.E., DeMets Ch., DeShon H.R., Rogers R., Rodriquez M.M., Strauch W., Wiese K., Hernandez D. Данные GPS и сейсмические представления о землетрясении с *M*=7.3 на островах Сисне (Гондурас): изменения напряжений на разломе Мотагуа и других соседних островах. GPS and seismic constraints on the *M*=7.3 2009 Swan Islands earthquake: implications for stress changes along the Motagua fault and other nearby faults // Geophys. J. Int. 2012. 190. N 3. P. 1625–1639 // →РЖ «Физика Земли». 2013. № 3 (реф. 113).
- 41. **Zhang Yong, Xu Lisheng, Chen Yun-tai.** Быстрая инверсия для процесса вспарывания Андаманского землетрясения (Индия, Индийский океан) 10 августа 2009 г. // Dizhen xuebao. Acta seismol. sin. 2009. **31**. N 6. P. 702–704 // →РЖ «Физика Земли». 2011. № 2 (реф. 60).