АЛТАЙ И САЯНЫ

А.Ф. Еманов^{1,2,3}, Е.В. Лескова^{1,2}, А.А. Еманов^{1,2}, А.В. Фатеев^{1,2}, А.Г. Филина¹

¹Алтае-Саянский филиал Геофизической службы СО РАН, г. Новосибирск, **етапоу@gs.nsc.ru** ²Институт нефтегазовой геологии и геофизики СО РАН им. А.А. Трофимука, г. Новосибирск ³Новосибирский государственный университет, г. Новосибирск

Сеть станций. В 2009 г., как и в 2008 г., в Алтае-Саянской горной области региональная сейсмологическая сеть состояла из 30 сейсмических станций Алтае-Саянского филиала ГС СО РАН, сведения о которых даны в Приложении к наст. сб. [1] на CD. Кроме стационарной сети станций в регионе действовали локальные временные сети цифровых станций. Основных площадок размещения временных станций две.

Первая группа из 27 станций в период с 1 июня по 15 сентября 2009 г. находилась в эпицентральной зоне Чуйского землетрясения 27.09.2003 г. с $K_P=17$, MS=7.3. Станции были равномерно распределены вдоль всей зоны основных проявлений афтершоковой активизации в предыдущие годы: это границы Чуйской впадины с Южно-Чуйским хребтом и Курайской впадины с Северо-Чуйским хребтом, а также Чаган-Узунский блок и юго-восточное окончание Айгулакского хребта [2].

Вторая группа из 34 станций была установлена с 29 октября 2009 г. до 12 мая 2010 г. в районе г. Полысаево на Кузбассе, на той же территории, что и в предыдущих экспериментах [3, 4]. Из них 22 станции типа «Байкал АС-75» были размещены на дневной поверхности, а 12 станций типа «Байкал АС-65» – в угледобывающих шахтах. Подробно эти наблюдения описаны в [5].

Карта K_{min} . Региональная сеть стационарных сейсмических станций [1] обеспечила, как и в 2008 г. [6], представительность на уровне $K_{min}=5$ на трех площадках разного размера в центральной части региона, в пределах Российской Федерации, а на всей территории, в пределах границ ответственности составления каталога, с включением частей территории трех государств – Казахстана, Китая и Монголии, не могут быть пропущены землетрясения, начиная с восьмого энергетического класса, т.е. $K_{min}=8$ (рис. 1).

1 – стационарная сейсмическая станция; 2 – изолиния K_{\min} ; 3 – государственная граница; 4 – граница каталога АСФ ГС СО РАН; 5 – высоты рельефа h_{yy} *м*.

Методика и точность наблюдений. Обработка землетрясений, зарегистрированных сетью стационарных станций региона, велась, как и в предыдущие годы, с применением двухслойной региональной скоростной модели с постоянными скоростями $\upsilon_P=6.1 \ \kappa m/c$, $\upsilon_S=3.5 \ \kappa m/c$ в земной коре и $\upsilon_P=8.1 \ \kappa m/c$, $\upsilon_S=4.6 \ \kappa m/c$ – в мантии [7] с заданной средней глубиной очагов $\overline{h}=15 \ \kappa m$ [8].

Координаты и глубины землетрясений в Чуйско-Курайской зоне и техногенных событий в Кузбассе (район г. Полысаево) определялись в рамках уточненных для этих областей скоростных моделей [9, 10] с использованием пакета программ HYPOINVERSE-2000 [11]. Глубина очага определялась для каждого события, если позволяли возможности конкретного набора станций. Землетрясения, зарегистрированные в указанных зонах, в том числе в период работы временной сети, представлены в каталоге с повышенной точностью: координаты φ , λ до 0.001°, глубины *h* до 0.3–4.2 *км* [12]. Таких землетрясений в каталоге всего *N*=89 с диапазоном глубин от h_{\min} =0.5±0.3 *км* до h_{\max} =19.6±1.5 *км*, причем 35 из них имеют глубины до *h*=0.5–5.0 *км*, 31 – с *h*=5.1–10.0 *км* и 23 – с *h*=10.1–19.6 *км*, и средняя глубина этой совокупности гипоцентров составила h_{cp} =7.06 *км*. Все фиксированные глубины равны *h*=15 *км*, в каталоге [12] они отмечены символом «f» (фиксирована). Общее их число равно *N*(*h*=15)=856.

Погрешность δ локации землетрясений для большей части региона менее 10 км (рис. 2), при этом наибольшая точность достигается в центре Алтайского сейсмологического полигона в пределах координат φ =49–52°N, λ =84–90.5°E, где повышенная плотность станций части региональной сети. В центральной части полигона погрешность δ локации эпицентров землетрясений менее 3 км [6].

Рис. 2. Карта погрешности локализации эпицентров в Алтае-Саянском регионе в 2009 г. на примере землетрясений с *К*_P=9 (обозначения см. на рис. 1)

Каталоги землетрясений, механизмов очагов и других данных. Общее число землетрясений, включенных в каталог [12] в 2009 г., составило N_{Σ} =945. Диапазон энергетических классов в каталоге равен $K_{\rm P}$ =5.2–13.6.

Максимальное землетрясение с K_P =13.6, Mc=5.1, MS=Ms=5.0, Mw=5.3 зарегистрировано 4 августа в 16^b20^m со следующими координатами: φ =(50.540±0.014)°, λ = (96.897±0.021)° h=(17.4±2.8) κM [12].

Для четырех землетрясений определены механизмы очагов [13], региональные решения (ARSR) которых даны в табл. 1.

№	Дата,	<i>t</i> ₀ ,	h,	Мс	K _P	0	си гла	вных напряжений				Нодальные плоскости						Источ-
	д м	ч мин с	км			Т		N		Р		NP1		NP2		ник		
						PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
6	04.08	16 20 36.9	17.4	5.1	13.6	24	305	44	189	36	54	85	45	10	182	83	135	[13]
7	20.08	10 05 20.5	10.6	4.0	11.7	14	284	76	105	0	14	60	80	10	328	80	170	-
8	18.09	00 09 44.1	8.8	3.5	10.7	50	252	34	108	18	5	55	40	30	301	71	126	-
13	27.12	10 42 14.5	8.0	3.5	10.7	41	123	39	78	24	10	250	80	50	148	41	165	-

Таблица 1. Параметры механизмов очагов землетрясений региона в 2009 г.

Следует отметить, что для первого из них в [14] представлено дополнительное решение агентства GCMT.

Для восьми землетрясений имеются сведения о макросейсмических данных [12, 15], из которых для трех толчков (2 сентября в $09^{h}32^{m}$ с $K_{P}=10.5$, 9 сентября в $20^{h}29^{m}$ с $K_{P}=8.0$, 23 ноября в $22^{h}52^{m}$ с $K_{P}=8.6$) лишь констатируется ощутимость в селе Акташ Республики Алтай, в пос. Арадан Красноярского края и в г. Карасук Новосибирской области, соответственно, без указания интенсивности сотрясений в баллах. Максимальный в 2009 г. макросейсмический эффект I=3-4 балла по шкале MSK-64 [16] зафиксирован в г. Красноярске от землетрясения 24 марта в $11^{h}08^{m}$ с $K_{P}=11.6$ и в г. Закаменск от землетрясения 4 августа в $16^{h}20^{m}$ с $K_{P}=13.6$. Суммарное число населенных пунктов, испытавших воздействия землетрясений, равно девяти [17].

Суммарная энергия и график повторяемости. В табл. 2 приведено распределение землетрясений по энергетическим классам K_P . Суммарная сейсмическая энергия, высвобожденная в очагах землетрясений в 2009 г., равна $\Sigma E=4.32 \ 10^{13} \ Дж$, что почти на два порядка ниже, чем в 2008 г. ($\Sigma E=1.08 \ 10^{15} \ Дж$ [6]).

Таблица 2. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* в регионе Алтай и Саяны в 2009 г.

K _P	5	6	7	8	9	10	11	12	13	14	N_{Σ}	ΣЕ, Дж
N	14	312	375	173	38	20	7	5		1	945	$4.32 \cdot 10^{13}$

График повторяемости землетрясений по данным табл. 2 приведен на рис. 3.

Параметры графика повторяемости, рассчитанные для его линейной части (*К*_P=7–11), имеют вид:

$$lgN(K_{\rm P})=5.663-0.439 \cdot K_{\rm P}$$
.

Наклон графика повторяемости землетрясений в 2009 г. составил по модулю $\gamma = |0.44|$, что ниже величины этого показателя в 2008 г. ($\gamma = 0.46$) [6] и ниже средней его величины ($\gamma = 0.49$) для региона.

Карта эпицентров всех 945 землетрясений представлена на рис. 4. Внутри границ РФ зарегистрировано 765 землетрясений, вне границ – около 180. Разумеется, приоритет при анализе годовой сейсмичности имеют события, зарегистрированные в пределах России.

Как видим, наибольшая плотность эпицентров наблюдается в пределах очаговых зон двух крупнейших землетрясений прошлых лет: Бусингольского 27.12.1991 г. с K_P =16.2, MS=6.5 [18, 19] на востоке региона и Чуйского землетрясения 27.03.2003 г. с K_P =17.1, MS=7.3 [20, 21] в Горном Алтае. Рассмотрим особенности сейсмичности в этих зонах в направлении с запада на восток.

Рис. 4. Эпицентры землетрясений в Алтае-Саянском регионе в 2009 г.

1 – энергетический класс; 2 – неотектонический разлом (по ГИН РАН, под ред. Ю.Г. Леонова); 3 – государственная граница; пронумерованы землетрясения с *К*_Р>10.5; двумя звездами отмечены Чуйское и Бусингольское землетрясения.

Чуйско-Курайская зона и западный фланг Западного Саяна (рис. 5 а). В Чуйско-Курайской зоне в 2009 г. сейсмическая активность оставалась примерно на том же уровне, что и 2008 г. [6]. Согласно [12], суммарное число землетрясений здесь N_{4-K} =104. Они расположены полосой, параллельной Северо- и Южно-Чуйским хребтам. Максимальными в этой группе являются землетрясения (8) и (13) равной энергии K_P =10.7, с почти равными глубинами (*h*=8.8 и 8.0 км) и с близкими координатами. Они были зарегистрированы 18 сентября в $00^{h}09^{m}$ и 27 декабря в $10^{h}42^{m}$ и расположены ближе к северо-западному окончанию облака эпицентров (рис. 5 а).

Для обоих толчков в табл. 1 даны региональные решения механизмов их очагов. Землетрясения возникли в условиях некоторого превалирования напряжений сжатия, т.к. $PL_P=18$ и 24° меньше $PL_T=50$ и 41°. Их стереограммы изображены на рис. 5 а. Для землетрясения (8) по пологой ($DP_1=40^\circ$) плоскости NP1 северо-восточного ($STK_1=55^\circ$) простирания подвижка – левосторонний сдвиг с компонентами взброса, по крутой ($DP_2=71^\circ$) плоскости NP2 северозападного ($STK_2=301^\circ$) простирания – взброс с элементами правостороннего сдвига. Сходные наклоны нодальных плоскостей и типа подвижек по ним и в очаге землетрясения (13), только со сменой направления сдвигов.

В целом, как и в 2008 г., сейсмичность главным образом охватывает область распространения афтершоков Чуйского землетрясения 2003 г. в зонах Северо-Чуйского и Южно-Чуйского хребтов, предгорных областей Курайской и Чуйской впадин и Чаган-Узунского блока [21], что может свидетельствовать о продолжающемся афтершоковом процессе. Одиночные события зарегистрированы также в Айгуласком и Курайском хребтах.

Обычно сейсмически активный Шапшальский хребет в 2009 г. характеризуется относительным затишьем – 20 августа в $10^{h}05^{m}$ зарегистрировано лишь одно сравнительно сильное (K_{P} =11.7) землетрясение (7), не сопровождавшееся афтершоками. Согласно табл. 1, в его очаге напряжения сжатия горизонтальны (PL_{P} =0°), хотя и ось растяжения также достаточно близка к горизонту (PL_{T} =14). В результате по обеим нодальным плоскостям практически чистый сдвиг, левосторонний по плоскости *NP1* и правосторонний – по *NP2*, с очень незначительными компонентами взброса (рис. 5 а).

Рис. 5. Эпицентры землетрясений в Чуйско-Курайской зоне и на западном фланге Западного Саяна (а), а также в Белино-Бусингольской зоне (б) в 2009 г.

1 – энергетический класс K_P ; 2 – неотектонический разлом; 3 – государственная граница. Сокращениями представлены: БВ – Белинская впадина, ТВ – Терехольская впадина; ШН – Шишхидское нагорье; СР – Сангиленский разлом. Разломы на рис. 5 а нанесены по [22]; на рис. 5 б – по ГИН РАН (под ред. Ю.Г. Леонова); стереограммы механизмов сильных землетрясений из [13] даны в проекции нижней полусферы.

Белино-Бусингольская зона. Здесь зарегистрировано 440 землетрясений, или 46% от общего их числа. Из них 190 толчков с $K_P \le 6.5$. Самым значимым из них является упомянутое выше самое сильное ($K_P = 13.6$) в 2009 г. землетрясение (6) (рис. 5 б), произошедшее на востоке региона 4 августа в $16^h 20^m$ на глубине $h=17.4 \ \kappa m$, которое, согласно [23], записали 695 сейсмических станций мировой сети. Землетрясение приурочено к широтному участку Сангиленского разлома (рис. 5 б).

По региональным данным (табл. 1, [13]), в его очаге превалировали напряжения растяжения ($PL_T=24^{\circ} < PL_P=54^{\circ}$), ориентированные в северо-западном ($AZM_T=305^{\circ}$) направлении. Движение по близширотной ($STK_1=85^{\circ}$) пологой ($DP_1=45^{\circ}$) нодальной плоскости NP1 – левосторонний сдвиг с компонентами взброса; по меридиональной ($STK_2=182^{\circ}$) крутой ($DP_2=83^{\circ}$) плоскости NP2 – взброс, с незначительным правосторонним сдвигом (рис. 6).

Но в решении GCMT [24] не взброс, а сброс, хотя оба решения схожи (рис. 6). Обе нодальные плоскости – крутые (60 и 87°). Движение по близвертикальной плоскости *NP1* – нормальный сброс с элементами правостороннего сдвига, по второй – левосторонний сдвиг с компонентами сброса.

Афтершоки землетрясения 4 августа с *К*_P=13.6. Землетрясение сопровождалось небольшой серией «вялых» афтершоков, т.е. растянутых во времени. Их список дан в табл. 3.

N⁰	Дата,	$t_0,$	Эпицентр		h,	$K_{ m P}$	№	Дата,	<i>t</i> ₀ ,	Эпиі	центр	h,	$K_{\rm P}$
	дм	ч мин с	φ°, N	λ°, Ε	КМ			дм	ч мин с	φ°, Ν	λ°, Ε	КМ	
		Основн	юй тол	чок		11	23.09	18 33 28.1	50.43	96.23		7.2	
	04.08 16 20 36.94 50.540 96.897 17.4						12	24.09	04 20 24.3	50.40	96.36		8.0
		۸dr	enmori	7		13	14.10	16 23 13.4	50.71	96.83		6.1	
		Αψι	сршоки	1	1		14	22.10	02 12 51.4	50.57	96.87		8.6
1	04.08	16 55 18.7	50.62	96.85		7.0	15	24.10	03 47 04.4	50.57	96.84		7.4
2	05.08	23 26 55.4	50.64	96.90		8.2	16	28.10	01 40 38.6	50.67	96.67		8.0
3	11.08	20 54 01.5	50.55	96.83		7.1	17	29 10	16 24 08 4	50.96	96 20		6.5
4	19.08	05 38 26.1	50.61	96.83		8.3	18	04.11	06 34 17.2	50.60	96.88		7.2
5	22.08	22 08 37.7	50.72	96.83		6.5	19	18.11	04 07 28.8	50.59	96.89		8.5
6	24.08	09 03 57.4	50.63	96.82		6.6	20	25.11	03 52 20.2	50.82	96.29		7.9
7	25.08	14 11 03.2	50.47	96.73		6.6	21	04.12	20 45 06.4	50.59	96.84		6.5
8	04.09	11 59 47.1	50.70	96.36		8.4	22	06.12	08 56 07.5	50.54	96.28		7.1
9	13.09	22 02 06.8	50.53	96.44		7.9	23	06.12	11 28 23.4	50.67	96.35		7.4
10	21.09	19 12 38.1	50.50	96.60		7.9	24	14.12	07 35 29.9	50.73	96.40		8.3

Таблица 3. Основные параметры главного толчка и афтершоков землетрясения 4 августа в 16^h20^m с *K*_P=13.6, *MS*=5.0, *Mw*=5.3

Максимальный афтершок зарегистрирован 22 октября (K_P =8.6), т.е. спустя два с половиной месяца после главного толчка. Наблюдается некоторая миграция афтершоков со временем в западном направлении. Учитывая широтную ориентацию Сангиленского разлома, направление миграции афтершоков и наличие широтной нодальной плоскости в решении механизма очага, можно предположить, что именно широтная плоскость была действующей в этом очаге.

За предыдущий период инструментальных наблюдений в регионе вблизи эпицентра землетрясения 4 августа в зоне Сангиленского разлома зарегистрированы два землетрясения в 1972 и 1981 гг. с близкими к нему классами: K_P =14 и K_P =13.7, соответственно (табл. 4).

Таблица 4.	Сильные ($K_{\rm P}$ ÷14) землет	рясения в	зоне ши	ротной	части	Сангиленского	разлома
------------	-----------	-----------------	----------	-----------	---------	--------	-------	---------------	---------

Дата,	$t_0,$	Эпиц	центр	K _P	MLH	Источник
д м год	ч мин с	φ°, N	λ°.Τ			
26.02.1972	23 31 07.6	50.55	96.83	14	5.7	[25]
16.08.1981	17 54 09.9	50.55	96.83	13.7		[26]

Механизмы очагов этих двух землетрясений определены в разное время разными авторами, некоторые из них по одним и тем же наборам данных [25, 27, 28] свидетельствуют о чисто взбросовых подвижках в их очагах. Сравнивая их с фокальным механизмом описываемого землетрясения 4 августа 2009 г. можно видеть, что механизмы трех близких по положению эпицентра событий несколько отличаются друг от друга по типу подвижки в очаге, но при этом во всех трех случаях имеется субширотная нодальная плоскость, по простиранию совпадающая с направлением широтного участка Сангиленского разлома (рис. 7).

Рис. 7. Стереограммы механизма очагов трех сильных землетрясений Сангиленского разлома 26 февраля 1972 г., 16 августа 1981 г. и 4 августа 2009 г. (в проекции нижней полусферы)

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Для всех трех сильных землетрясений, приуроченных к Сангиленскому разлому, характерно малое количество афтершоков и быстрое затухание афтершокового процесса, тогда как расположенная поблизости Бусингольская активизация, напротив, характеризуется длительным, даже затяжным афтершоковым процессом, близким уже к рою, и продолжающимся высоким уровнем высвобождающейся энергии [29]. В 2009 г. здесь 5 июля в $20^{h}36^{m}$ произошло землетрясение (5) с $K_{\rm P}$ =11.4, Ms=3.3 с эпицентром внутри Бусингольской впадины. Сейсмическая активность наблюдается как во впадине, так и в Шишхидском нагорье (рис. 5 б).

Другие серии афтершоков в 2009 г. На севере Белино-Бусингольской зоны отмечается продолжение афтершокового процесса Белин-Бий-Хемского землетрясения 16 августа 2008 г. с $K_{\rm P}$ =15 [30]. Энергия афтершоков Белин-Бий-Хемского землетрясения в 2009 г. не превысила по совокупности значения $K_{\rm P}$ =9.2 (табл. 5).

Таблица 5. Основные параметры главного толчка Белин-Бий-Хемского землетрясения 16 августа 2008 г. в $04^{h}01^{m}$ с K_{p} =15.0, M_{ca} =5.4, MS=Ms=5.5, Mw=5.7 и его афтершоков (продолжение) в 2009 г. в пределах координат φ =51.91–52.25°N, λ =97.14–98.31°E

N⁰	Дата,	$t_0,$	Эпиц	ентр	h,	K _P	N⁰	Дата,	$t_0,$	Эпиц	ентр	h,	K _P
	дм	ч мин с	φ°, Ν	λ°, E	КМ			дм	ч мин с	φ°, N	λ°, Ε	КМ	
		Основной	толчо	к			36	21.04	23 34 08.2	52.11	98.25	15	6.3
	16.08.2008	04 01 06.4	52.12	98.21	15f		37	22.04	19 47 43.7	52.12	98.23	15	7.8
	1000012000	Афтери	шоки	20121	101		38	29.04	15 59 32.0	52.14	98.22	15	6.4
1	11 01 2009	17 15 49 7	52.18	08 17	15	65	39	06.05	03 43 51.7	52.17	98.23	15	6.8
2	12.01	04 59 27 8	51.07	98.17	15	57	40	19.05	19 52 50.1	52.15	98.17	15	6.3
3	12.01	13 40 50 7	52 10	98.10	15	6.5	41	03.06	11 25 44.5	52.12	98.18	15	6.6
4	17.01	23 54 55 2	52.10	98 30	15	5.6	42	21.06	21 32 18.0	51.90	98.21	15	0.2
5	20.01	00 34 44 8	52.23	98 31	15	8.6	43	20.07	11 11 34.9	52.10	98.15	15	/.9 6.4
6	20.01	15 47 14 8	52.08	98 19	15	6.4	44	25.07	08 01 40.0	52.12 52.21	98.20	15	0.4 6.9
7	21.01	03 36 06.9	52.14	98.29	15	6.2	43	20.07	09 33 17.3	52.21	90.29	15	0.0
8	04.02	12 15 32.3	52.15	98.19	15	6.0	40	03.08	21 15 21.5	52.18	98.19	15	6.0
9	08.02	01 46 34.2	52.16	98.26	15	5.5	47	07.08	20 44 56 3	52.25	98.18	15	6.6
10	10.02	21 22 17.1	52.08	98.24	15	6.0	49	10.08	16 40 47 4	52.04	98.18	15	74
11	12.02	07 13 44.9	52.12	98.19	15	7.2	50	15.08	07 46 08 2	52.14	98.23	15	6.0
12	13.02	03 25 41.7	51.97	98.22	15	6.7	51	17.08	20 40 28 1	52 19	98.19	15	61
13	16.02	01 01 28.9	52.00	98.26	15	6.6	52	18.08	21 06 55.8	52.09	98.25	15	6.6
14	19.02	16 41 21.7	52.16	98.29	15	6.4	53	25.08	23 55 34.9	52.07	98.21	15	6.2
15	20.02	02 07 23.0	52.16	98.25	15	8.6		31.08	20 45 58.5	52.19	98.24	15	5.4
16	22.02	17 03 02.3	52.09	98.21	15	6.5	54	13.09	22 45 21.0	52.18	98.22	15	6.3
17	28.02	13 44 36.6	52.12	98.20	15	6.1	55	16.09	12 14 38.3	52.15	98.16	15	6.6
18	03.03	14 39 32.2	52.13	98.22	15	6.3	56	12.10	20 10 11.5	52.01	98.21	15	5.6
19	08.03	23 32 52.9	52.23	98.19	15	6.0	57	13.10	12 46 04.7	51.96	98.22	15	5.7
20	09.03	01 13 57.8	52.12	98.22	15	7.5	58	20.10	01 55 05.9	52.05	98.21	15	6.3
21	14.03	12 26 58.7	52.24	98.17	15	7.0	59	21.10	14 29 22.8	52.15	98.20	15	6.6
22	16.03	22 04 45.8	52.14	98.16	15	7.5	60	29.10	00 00 18.3	52.06	98.19	15	6.8
23	17.03	22 12 55.2	52.11	98.19	15	5.6	61	29.10	04 22 17.8	52.19	98.22	15	6.5
24	18.03	01 43 50.4	52.19	98.23	15	7.2	62	01.11	15 29 44.0	52.21	98.23	15	6.7
25	25.03	11 01 12.4	52.20	98.21	15	6.0	63	05.11	02 16 15.0	51.99	98.14	15	6.7
26	26.03	05 30 51.4	52.22	98.19	15	6.3	64	11.11	00 09 33.7	52.06	98.18	15	5.8
27	26.03	21 50 23.0	52.07	98.14	15	7.8	65	11.11	17 55 06.9	52.10	98.28	15	6.7
28	30.03	04 18 58.8	52.10	98.19	15	6.3	66	19.11	06 55 06.1	51.92	98.14	15	6.8
29	01.04	00 14 31.2	52.08	98.22	15	6.3	67	20.11	11 30 08.7	51.97	98.13	15	7.3
30	01.04	08 02 16.2	52.05	98.18	15	6.2	68	20.11	12 39 57.0	51.96	98.14	15	6.3
31	04.04	20 17 09.6	52.25	98.25	15	8.2	69	04.12	18 33 05.5	52.06	98.20	15	6.7
32	06.04	05 53 20.5	52.13	98.17	15	7.2	70	05.12	18 33 03.6	52.06	98.28	15	6.3
33	07.04	01 04 43.1	52.18	98.24	15	7.0	71	11.12	21 22 06.7	52.11	98.13	15	7.7
34	16.04	20 37 01.8	52.12	98.18	15	5.8	72	23.12	19 08 41.4	52.10	98.18	15	6.7
35	21.04	08 00 02.9	52.10	98.20	15	1.1	73	31.12	14 20 44.0	51.99	98.14	15	6.4

Помимо этого, в 2009 г. на юге рассматриваемой зоны 9 января в $20^{h}36^{m}$ зарегистрировано землетрясение (1) с K_{P} =11.0, которое сопровождалось небольшой серией афтершоков (табл. 6). Максимальный афтершок 17 января имел K_{P} =10.5. Большинство афтершоков произошло в течение первого месяца после главного толчка (табл. 6).

№	Дата, ∂ м	t ₀ , ч мин с	Эпи ф°, N	центр λ°, Е	h, км	$K_{ m P}$	№	Дата, д м	t ₀ , ч мин с	Эпицентр φ°, N λ°, E		h, км	К _Р
	·	Основн	ой тол	чок			7	17.01	10 11 00.2	50.30	97.75		6.7
	09.01	13 50 48.2	50.34	97.741	15f	11.0	8	18.01	11 55 09.4	50.27	97.73		7.3
	07101	10 00 1012		,	101		9	20.01	06 20 46.3	50.25	97.76		7.2
		Αφτε	ершоки	I			10	23.01	16 40 06.9	50.25	97.74		8.2
1	09.01	15 44 48.2	50.16	97.66		7.3	11	01.02	09 29 58.7	50.29	97.70		7.7
2	09.01	20 13 07.1	50.28	97.78		6.4	12	23.02	21 44 40.0	50.26	97.66		6.5
3	10.01	17 47 26.7	50.25	97.73		7.5	13	23.03	18 07 40.9	50.29	97.70		8.3
4	14.01	11 43 56.7	50.21	97.68		7.7	14	31.05	01 54 20.7	50.31	98.00		7.1
5	14.01	16 46 01.6	50.21	97.79		6.4	15	22.06	17 59 22.1	50.18	98.11		6.9
6	17.01	09 06 26.7	50.27	97.71		10.5	16	17.07	18 42 47/8	50.22	98.15		7.7

Таблица 6. Основные параметры главного толчка землетрясения 9 января 2008 г. в $13^{h}50^{m}$ с K_{P} =11.0, M_{c} =3.5 в пределах координат ϕ =50.15–50.35°N, λ =97.65–98.17°E

Возвращаясь к карте эпицентров землетрясений региона (рис. 4), можно отметить, что сильное землетрясение (8) в Чуйско-Курайской зоне и три события (9–11) с K_P =11–12 в системе Монгольского Алтая образуют своеобразную цепочку событий, произошедших на временном интервале чуть более недели (18–26 сентября). Возможно, такая синхронность свидетельствует об активизации данной структуры в целом.

В заключение можно отметить, что интенсивность сейсмичности в Алтае-Саянском регионе в 2009 г. находилась на уровне среднего показателя для этого региона. По количеству зарегистрированных землетрясений с *К*_Р>8 наиболее сейсмически активными, как и в 2008 г., выглядят Чуйско-Курайская зона – эпицентральная область Чуйского землетрясения 2003 г. в Горном Алтае и Белино-Бусингольская зона – на востоке региона.

Литература

- 1. Еманов А.Ф., Еманов А.А., Фатеев А.В., Карабельщиков Д.Г., Дураченко А.В., Лескова Е.В. (сост.). Стационарные сейсмические станции Алтае-Саянского региона в 2009 г. (код сети ASRS). (См. Приложение к наст. сб. на CD).
- 2. Еманов А.А., Лескова Е.В., Еманов А.Ф., Фатеев А.В., Колесников Ю.И., Корабельщиков Д.Г., Демидова А.А., Ворона У.И. Наблюдения временными сетями: Эксперимент с временной сетью станций в эпицентральной зоне Чуйского землетрясения 27.09.2003 г., *MS*=7.3 (Алтай) // Землетрясения России в 2009 году. – Обнинск: ГС РАН, 2011. – С. 89–92.
- 3. Еманов А.Ф., Еманов А.А., Лескова Е.В., Фатеев А.В., Сёмин А.Ю. Сейсмические активизации при разработке угля в Кузбассе // Физическая мезомеханика. 2009. 12. № 1. С. 37–43.
- 4. Еманов А.Ф., Еманов А.А., Лескова Е.В., Фатеев А.В., Сёмин А.Ю., Демидова А.А., Янкайтис В.В. Наблюдения с временными сетями. Техногенная сейсмичность в Кузбассе // Землетрясения России в 2007 году. – Обнинск: ГС РАН, 2009. – С. 86–93.
- 5. Еманов А.Ф., Еманов А.А., Фатеев А.В., Лескова Е.В., Шевкунова Е.В., Манушина О.А., Демидова А.А., Ворона У.И., Смоглюк А.С. Наблюдения временными сетями: Экспериментальные исследования триггерных эффектов в развитии наведенной сейсмичности в Кузбассе // Землетрясения России в 2009 году. Обнинск: ГС РАН, 2011. С. 92–102.
- 6. Еманов А.Ф., Лескова Е.В., Филина А.Г., Еманов А.А., Фатеев А.В., Дураченко А.В. Алтай и Саяны // Землетрясения Северной Евразии, 2008 год. Обнинск: ГС РАН, 2014. С. 148–153.
- 7. Жалковский Н.Д., Цибульчик Г.М., Цибульчик И.Д. Годографы сейсмических волн и мощность земной коры Алтае-Саянской складчатой области по данным регистрации промышленных взрывов и местных землетрясений // Геология и геофизика. – 1965. – № 1. – С. 173–179.
- 8. Цибульчик И.Д. О глубинах очагов землетрясений Алтае-Саянской области // Геология и геофизика. 1966. № 5. С. 170–173.
- 9. Еманов А.А., Лескова Е.В. Структурные особенности афтершокового процесса Чуйского (Горный Алтай) землетрясения // Геология и геофизика. 2005. 46. № 10. С. 1065–1072.
- 10. Опарин В.Н., Еманов А.Ф., Еманов А.А., Лескова Е.В., Фатеев А.В., Колесников Ю.И. и др. Деструкция земной коры и процессы самоорганизации в областях сильного техногенного воздействия / Отв. ред. Н.Н. Мельников. – Новосибирск: СО РАН, 2012. – 632 с.

- Klein F.W. User's Guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes // U.S. Geological Survey, 2002. – Open-file report 02–171, 123 p. http://pubs.usgs.gov/of/2002/0171/.
- 12. Лескова Е.В., Филина А.Г., (отв. сост.), Денисенко Г.А., Манушина О.А., Подкорытова В.Г., Подлипская Л.А., Шевелёва С.С., Шевкунова Е.В., Шаталова А.О. (сост.). Каталог землетрясений Алтая и Саян за 2009 г. (См. Приложение к наст. сб. на CD).
- 13. Лескова Е.В. (отв. сост.). Каталог механизмов очагов землетрясений Алтая и Саян за 2009 г. (См. Приложение к наст. сб. на CD).
- 14. **Левина В.И.** Дополнительные решения механизма очагов землетрясений Алтае-Саянского региона за 2009 г. (См. Приложение в наст. сб. на CD).
- 15. **Филина А.Г., Артёмова Е.В. (сост.).** Макросейсмический эффект ощутимых землетрясений Алтае-Саянского региона в 2009 г. (Приложение к наст. сб. на CD).
- 16. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. М.: МГК АН СССР, 1965. 11 с.
- 17. **Филина А.Г., Лескова Е.В., Артёмова Е.В., Пойгина С.Г. (сост.).** Сведения о пунктах, для которых имеется информация о макросейсмических проявлениях ощутимых землетрясений Алтае-Саянского региона за 2009 г. (См. Приложение к наст. сб. на CD).
- Филина А.Г. (отв. сост.), Пугачёва В.Н., Манушина О.А., Слепенкова Э.А., Ибрагимова Г.Г. (сост.). Региональные каталоги: Алтай и Саяны // Землетрясения в СССР в 1991 году. – М.: ОИФЗ РАН, 1997. – С. 138–142.
- 19. **Филина А.Г.** Землетрясения Алтая и Саян // Землетрясения в СССР в 1991 году. М.: ОИФЗ РАН, 1997. С. 38–39.
- Филина А.Г., Подкорытова В.Г. (отв. сост.), Данциг Л.Г., Денисенко Г.А., Кузнецова Н.В., Манушина О.А., Подлипская Л.А., Щевелёва С.С., Шевкунова Е.В. Каталог землетрясений Алтая и Саян за 2003 год // Землетрясения Северной Евразии, 2003 год. – Обнинск: ГС РАН, 2009. – (На CD).
- Еманов А.Ф., Еманов А.А., Лескова Е.В., Колесников Ю.И., Фатеев А.В., Филина А.Г. Чуйское землетрясение 27 сентября 2003 г. с *M*=7.3, *K*_P=17 (Горный Алтай) // Землетрясения Северной Евразии, 2003 год. – Обнинск: ГС РАН, 2009. – С. 326–343.
- 22. Новиков И.С., Еманов А.А., Лескова Е.В., Баталев В.Ю., Рыбин А.К., Баталева Е.А. Система новейших разрывных нарушений Юго-Восточного Алтая: данные об их морфологии и кинематике // Геология и геофизика. 2008. **49**, № 11. С. 1139–1149.
- 23. International Seismological Centre. On-Line Bulletin // International Seismological Centre [сайт]. [2012]. URL: *http://www.isc.ac.uk/iscbulletin/search/bulletin/*.
- 24. Global CMT catalog, http://www.globalcmt.org.
- 25. Цибульчик И.Д., Филина А.Г. Землетрясения Алтая и Саян // Землетрясения в СССР в 1972 году. М.: Наука, 1976. С. 100–104.
- Филина А.Г. Землетрясения Алтая и Саян // Землетрясения в СССР в 1981 году. М.: Наука, 1984. С. 54–56.
- 27. Растворова В.А., Цибульчик И.Д. Механизмы очагов землетрясений и морфоструктура Алтае-Саянской области // Физика Земли. – 1983. – № 9. – С. 22–38.
- Солоненко А.В., Солоненко Н.В., Мельникова В.И., Козьмин Б.М., Кучай О.А., Суханова С.С. Напряжения и подвижки в очагах землетрясений Сибири и Монголии // Сейсмичность и сейсмическое районирование Северной Евразии: сборник научных трудов. Выпуск 1 / Отв. ред. В.И. Уломов. М.: ИФЗ РАН, 1993. С. 113–122.
- 29. Еманов А.Ф., Еманов А.А., Лескова Е.В. Сейсмические активизации в Белино-Бусингольской зоне // Физическая мезомеханика. – 2010. – 13. – С. 72–77.
- 30. Еманов А.Ф., Лескова Е.В., Еманов А.А., Радзиминович Я.Б., Гилёва Н.А., Артёмова А.И. Белин-Бий-Хемское землетрясение 16 августа 2008 г. с K_P=15, Mw=5.7, I₀=7 (Республика Тыва) // Землетрясения Северной Евразии в 2008 году. Обнинск: ГС РАН, 2014. С. 378–385.