ЗЕМЛЕТРЯСЕНИЕ НУРА¹ 5октября 2008 г. с К_Р=15.4, Мw=6.7, I₀=8 (Кыргызстан) К.Е. Абдрахматов, М. Омуралиев, Ч. Ормуков

Институт сейсмологии НАН Республики Кыргызстан, г. Бишкек, kis@mail.elkat.kg

Землетрясение произошло в 2008 г. 5 октября в $15^{h}52^{m}$ ($\phi=39^{\circ}31.8'$ N, $\lambda=73^{\circ}44.9'$ точностью ±4') $K_{P}=15.4$, Mw=6.7, Ms=6.9, $I_{0}=8$ баллов, глубина – 35–40 км. Основные параметры землетрясения были определены по данным станций Кыргызстана, ГС АН (Обнинск), IRIS, International Seismological Centre (табл. 1). Эпицентр находится в восточной части Заалайского хребта на территории Алайского района Кыргызстана вблизи границы Китая.

Таблица 1. Основные параметры землетрясения Нура 5 октября 2008 г. по данным ИС НАН РК в сопоставлении с определениями других агентств

Агентство	$t_0,$	δt_0 ,			Гипоц	ентр	Магнитуда		
	ч мин с	С	φ°, Ν	ϕ° , N $\delta\phi^{\circ}$ λ° , E $\delta\lambda^{\circ}$ h, δh ,				δh ,	
							км	км	
ИС НАН КР	15 52 43.7		39.53	0.07	73.75	0.07			$K_{\rm P}=15.4, MLH=6.8$
MOS	15 52 50.2	0.9	39.52		73.83		52		MS=6.9/81, MPSP=6.5/143
ISC	15 52 50.1	0.1	39.56	0.01	73.79	0.01	29	4	$Ms=6.9/272, m_b=6.2/517$
IRIS	15 52 50		39.54		73.77		35		<i>Mw</i> =6.3
NEIC (USGS)	15 52 49.4	0.1	39.53		73.82		10		$Ms=6.9/191, m_b=5.1/292,$
									<i>Mw</i> =6.5
NORSAR	15 52 49		39 52		73 77		27		<i>Mw</i> =6.6
GCMT	15 53 01.1	0.1	39.50		73.64		12		<i>Mw</i> =6.7

Примечание: В первой строке даны координаты, определенные повторно по данным 16 сейсмических станций (первоначальные координаты φ=38.6°, λ=73.5° – по данным группы Срочных донесений ИС НАН КР на основании информации станций «Бишкек», «Эркин-Сай», «Ош», а также станций «Ташкент», «Фергана» Узбекистана были ошибочными, предварительными).

Сотрясениями была охвачена обширная территория, включающая Ошскую, Баткенскую, Джалал-Абадскую, Нарынскую области Кыргызстана и приграничные районы Китая, Узбекистана. На рис. 1 приведена в качестве примера запись СМТР на аналоговой станции «Сопукурган». Сейсмические волны данного землетрясения зарегистрированы сетью аналоговых станций Кыргызстана (в количестве 24), сетью KNET (10) и сетью системы GURALP (7) (рис. 3).

В сейсмотектоническом плане оно приурочено к Дарваз-Каракульской сейсмоактивной зоне, а именно к зоне Предзаалайского разлома [1, 2]. Данный разлом ограничивается Северным Памиром, надвигающимся на Южный Тянь-Шань (рис. 2).

Рис. 1. Сейсмограмма землетрясения Нура на станции «Сопукурган» (прибор СМТР, компонента E-W)

¹ Этот текст по запросу редколлегии прислал член редколлегии К.Д. Джанузаков в соответствии с публикацией в: Известия НАН КР. – 2008. – № 4. – С. 19–29.

Рис. 2. Космоснимок, охватывающий Алайскую впадину и сопредельные территории: красными линиями обозначены основные разломы района: желтые линии – граница Киргизской Республики; звездочка – эпицентр землетрясения Нура, произошедшего 5 октября 2008 г.

Рис. 3. Велосиграммы землетрясения Нура (записи системой GURALP на цифровой станции «Бишкек»)

На спектрах сейсмических волн выделяются характерные частоты с пиковыми и сравнительно большими значениями спектральной плотности. Частота пиковых спектральных плотностей продольных волн по компоненте N-S составляет 3.8 Γu (рис. 4 а), поперечных волн – по компоненте N-S – 3.0 Γu (рис. 4 б). Этим частотам скорости колебаний грунта соответствуют частоты ускорений колебаний, равные около 23.8 и 18.8 Γu соответственно.

Рис. 4. Спектр землетрясения Нура, полученный по записям продольных волн (а) и поперечных волн (б) по компоненте N-S станции Бишкек

Оценка интенсивности землетрясения проводилась в соответствии с Международной шкалой балльности MSK-64 (рис. 5, табл. 2).

№	Населенный	Δ,	φ°, N	λ°, Ε	Ι,	
	пункт	КМ			балл	
1	Нура	15	39°38'	73°52'	8	
2	Иркештам	19	39°40'	73°53'	7	
3	Кек-Суу	17	39°40'	73°50'	6–7	
4	Бор-Дебе	41	39°31'	73°16'	6	
5	Сары-Таш	49	39°43'	73°14'	6	
6	Талды-Суу	69	39°41'	72°58'	6	
7	Сары-Могол	77	39°40'	72°52'	6	
8	Ак-Босого	52	39°47'	73°14'	6	
9	Чон-Каракол	51	39°51'	73°19'	6	
10	Кичи-Каракол	52	39°52'	73°20'	6	
11	Кара-Кабак	89	39°39'	72°43'	5.5	
12	Кашка-Суу	95	39°38'	72°39'	5.5	
13	Чий-Талаа	54	39,57'	73°26'	5.5	
14	Сопу-Коргон	59	40°01'	73°29'	5.5	

Таблица 2. Макросейсмические данные о землетрясении Нура

№	Населенный пункт	Δ, км	φ°, Ν	λ°, Ε	<i>I</i> , балл
15	Кун-Элек	70	40°08'	73°30'	5
16	Кызыл-Коргон	75	40°10'	73°29'	5
17	Гульча	90	40°18'	73°26'	5
18	Таш-Коро	83	40°14'	73°24'	5
19	Талдык	93	40°17'	73°16'	5
20	Ош	137	40°31'	72°47'	5
21	Кызыл-Эшме	127	39°33'	72°16'	4.5
22	Дароот-Коргон	134	39°32'	72°11'	4.5
23	Джар-Башы	140	39°30'	72°07'	4.5
24	Чак	141	39°32'	72°06'	4.5
25	Джаш-Тилек	144	39°33'	72°04'	4.5
26	Шибээ	157	39°27'	71°55'	4.5
27	Жекенди	159	39°24'	71°54'	4.5
28	Карамык	169	39°29'	71°47'	4.5

№	Населенный пункт	Δ, км	φ°, Ν	λ° , Ε	<i>I</i> , балл
29	Кара-Теит	172	39°29'	71°45'	4.5
30	Узген	143	40°46'	73°17'	4.5
31	Саламалик	149	40°52'	73°40'	4.5
32	Джалал-Абад	167	40°55'	72°59'	4.5
33	Баткен	274	40°03'	70°48'	4.5

№	Населенный пункт	Δ, км	φ°, Ν	λ°, Ε	<i>I</i> , балл
34	Нарын	280	41°25'	75°59'	3.5
35	Аркит	291	41°47'	71°57'	3
36	Бишкек	373	42°50'	74°37'	3
37	Тараз	419	42°52'	71°22'	3

Рис. 5. Карта изосейст землетрясения Нура

Свалки стен большинства зданий были направлены в северном направлении. Здесь остались мало поврежденными старые щитовые деревянные дома.

В результате землетрясения в селе Нура 5 октября 2008 г. дома, построенные из кирпичасырца, были полностью разрушены (рис. 6 и 7), старые щитовые деревянные дома повреждены незначительно (рис. 8), новая школа не имела повреждений.

Рис. 6. Населенный пункт Нура после землетрясения

Рис. 7. Дома, построенные из кирпича-сырца в селе Нура, практически полностью разрушены при первом же толчке землетрясения

Рис. 8. Щитовой дом, где разрушена только пристройка, построенная из кирпича-сырца

Повреждено здание больницы, построенное из жженого кирпича и направленное длинной стороной на северо-запад, образовались сквозные трещины в стенах. Железобетонный мост через р. Нура поврежден, северо-восточный его конец надвинут в северном направлении (рис. 9), а юго-восточный конец отодвинут от борта приблизительно на 10 см и сдвинут влево. На асфальтовой дороге южнее и севернее моста образовались серии трещин шириной до 5 см, сопровождающиеся образованием складок – «застывших волн деформации» с повторяемостью около 90 м, между которыми наблюдаются сравнительно мелкие трещины шириной до 1 см и повторяемостью около 30 м (рис. 10). Продолжения этих трещин наблюдаются и в грунтах по обеим сторонам дороги.

Железобетонный мост имеет легкое повреждение

Рис. 10. Трещина на асфальтной дороге села Нура глубиной 15 *см* заметно расширяется в юго-восточную сторону

Механизм очага землетрясения Нура приведен на рис. 11 а и в табл. 3 по данным службы USGS.

Таблица 3. Параметры механизма очага землетрясения Нура 5 октября 2008 г. и его афтершока 13 октября

Агент-ство	Дата,	<i>t</i> ₀ ,	h,	$K_{\rm P}$	Ср Оси главных напряже					ний	Нодальные плоскости					
	дм	ч мин с	км		Т		N P		NP1		NP2					
					PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP
GCMT	05.10	15 52 43.7	40	15.4	81	252	8	73	0	343	65	45	78	262	46	102
GCMT	13.10	09 23 31.7		12.6	37	233	50	77	11	332	278	74	143	20	55	20

Рис. 11. Графическое изображение механизма очага землетрясения (а) и его афтершока (б) *P* – ось напряжений сжатия, *T* – ось напряжения растяжения, знаком (+) отмечена проекция очага землетрясения; заштрихованы области сжатия.

По этим данным в очаге произошел взброс (рис. 11 а). Ось напряжений сжатия направлена горизонтально (0°) на север–северо-запад (343°), а ось напряжения растяжения – близвертикальна (81°) и направлена в запад–юго-западном направлении (252°). Плоскости разрыва в очаге падают под близкими углами 45–46°. Одна из них имеет широтное (262°) простирание и согласуется с простиранием Предзаалайского разлома, другая направлена на восток–северовосток (65°) и совпадает с простиранием структур Восточного Алая.

Один из сильных (Mw=5.1) афтершоков произошел 13 октября. В его очаге ось напряжений сжатия близгоризонтальна (11°) и направлена на северо-запад (332°), а ось растяжения наклонена к горизонту под углом 37° и направлена на юго-восток (37°). Плоскости разрыва более крутопадающие. Одна из них имеет близширотное (278°) простирание и угол падения, равный 74°, а другая – север–северо-восточное (20°) простирание и угол падения 55°. Тип подвижки в его очаге – взброс с компонентами сдвига (рис. 11 б).

Распределение всех сильных (М≥4) афтершоков во времени за 5-24 октября приведено на рис. 12.

Рис. 12. Проявление афтершоков с *М*≥4 во времени

Промежутки времени между этими афтершоками по 13 октября составляли от нескольких часов до 1.5 суток. Позже они проявлялись периодически через 5 суток. Наблюдалась миграция афтершоков в юго-западном-северо-восточном и северо-западном-юго-восточном направлениях (рис. 13).

Сравнительно сильные афтершоки проявлялись вблизи очага главного толчка (рис. 14). Область проявления этих афтершоков имеет протяженность в широтном направлении около 40 км, а в меридиональном – 20 км. Однако в северо-западной части области наблюдаются «рукава» северо-восточного направления, трассирующиеся периклинальной частью поднятия Восточного Алая (рис. 13).

Изменение кумулятивной магнитуды афтершоков с *Мw*≥4 приведено на рис. 15.

Рис. 15. Изменение кумулятивной магнитуды афтершоков с *Мw*≥4

Кривая линия, огибающая суммарную магнитуду, выражается уравнением Максвелла и Кельвина, которое найдено ими для описания релаксации напряжений и замедления со временем деформации упругого последействия:

$$\Sigma M w = a(1 - e^{-t/b}).$$

где *а* – предельная сумма; *t* –- время; *b* – характерное время, соответствующее

$$\Sigma M w = 0.63 a$$
, при $b = t$.

Данное выражение уточняет статистическую закономерность затухания числа афтершоков по закону Омори и позволяет определить вероятное время ожидаемого афтершока определенной магнитуды. В макросейсмических исследованиях с 6 по 14 октября 2008 г. участвовали М. Омуралиев, Ч. Ормуков, М.М. Сейталиев, К.А. Буланбеков, А. Камилов, З. Аржуманов, в обработке данных – Н. Соколова, Ы. Шукурова, А. Березина, С. Молдобекова, Т. Никитенко, Талант Алтынбек, а также сотрудники сейсмических станций и группы Срочных донесений ИС НАН КР. Результаты работ были обсуждены членами Ученого совета ИС НАН КР. Карта изосейст землетрясения Нура передана в МЧС Кыргызской Республики. Авторы искренне признательны всем коллегам.

Литература

- 1. Никонов А.А., Ваков А.В., Веселов И.А. Сейсмотектоника и землетрясения в конвергентной зоне между Памиром и Тянь-Шанем. М.: Наука, 1983. 240 с.
- 2. Coutand I, Strecker M. R., Arrowsmith, J. R., Hilley G., Thiede R. C., Korjenkov A. M. and Omuraliev M. Late Cenozoic tectonic development Alai valley, (Pamir-Tien-Shan region, central Asia): An example of intercontinental deformation due to the Indo-Eurasia collision. Tectonic. 2002. 21. N 6. P. 3–19.