<u>II. СПЕКТРЫ И ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ</u>

УДК 550.348.436

ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ Л.С. Чепкунас, Л.С. Малянова

Геофизическая служба РАН, г. Обнинск, luba@gsras.ru

Для семнадцати наиболее сильных землетрясений Земли в 2008 г. из [1], приведенных в табл. 1, рассчитаны очаговые параметры по спектрам продольных волн, зарегистрированных на станциях «Обнинск» и «Талая». Все землетрясения, кроме события (2), расположены в Восточном сегменте земного шара с очагами в земной коре (рис. 1) на расстоянии Δ <100°. Землетрясение (2) расположено в западном сегменте. Десять землетрясений (2–4, 6–9, 11, 13, 17) имеют магнитуды $MS \ge 7.0$, остальные – менее 7.0, но они заметны на территории России и СНГ: (1) с M=6.4 – в Тибете; (5) и (16) с M=5.7 и 6.4 – в районе Курильских островов; (10) с M=5.7 – в Восточной Сибири; (12) с M=6.4 – на Байкале; (14) с M=6.9 – в Кыргызстане; (15) с M=5.6 – на Кавказе [1–3].

1 – магнитуда *MS* по [1]; 2 – сейсмическая станция ГС РАН.

На обеих станциях использовались записи вертикального канала цифрового широкополосного сейсмометра STS-1. Анализируемый интервал длительностью τ =120–150 *с* выбирался от вступления продольной волны *P* до вступления отраженной волны *PP*. В качестве примера на рис. 2 приведены записи *P*-волн для четырех землетрясений на станции «Обнинск».

			-	1	1	r	
N⁰	Дата,	$t_0,$	Гипоцентр			MS	Район
	д м	ч мин с	φ°	λ°	h, км		
1	2	3	4	5	6	7	8
1	09.01	08 26 47.7	32.38	85.19	33f	6.4	Тибет
2	08.02	09 38 12.5	10.72	-41.91	10f	7.0	Север Срединно-Атлантического хребта
3	20.02	08 08 29.4	2.77	95.99	33f	7.4	У западного побережья Северной Суматры
4	25.02	08 36 31.5	-2.41	100.02	26	7.2	Южная Суматра, Индонезия
5	03.03	09 31 04.5	46.47	153.08	40	6.6	Курильские острова
6	20.03	22 33 00.9	35.72	81.44	33f	7.4	Южный Синьцзян, Китай
7	07.05	16 45 18.4	36.17	141.49	33f	7.1	Восточное побережье Хонсю, Япония
8	12.05	06 27 58.4	30.93	103.38	16	8.1	Провинция Сычуань, Китай
9	13.06	23 43 48.1	39.13	140.69	33f	7.0	Восточный Хонсю, Япония
10	22.06	23 56 27.5	67.70	141.34	13	5.7	Восточная Сибирь, Россия
11	19.07	02 39 29.2	37.63	142.24	33f	7.3	У восточного побережья Хонсю, Япония
12	27.08	01 35 30.4	51.62	104.20	17	6.4	Район озера Байкал, Россия
13	11.09	00 20 51.0	41.92	143.81	42	7.2	Район Хоккайдо, Япония
14	05.10	15 52 50.2	39.52	73.83	52	6.9	Таджикистан-Синьцзян погран. область
15	11.10	09 06 09.0	43.46	46.34	14	5.6	Восточный Кавказ
16	30.10	01 55 15.5	46.43	153.16	57	5.4	Курильские острова
17	16.11	17 02 34.1	1.28	122.10	51	7.0	Полуостров Минахасса, Сулавеси

Таблица 1. Сведения о рассмотренных землетрясениях в 2008 г.

Примечание. В графе 6 буквой «f» индексирована фиксированная глубина гипоцентров; названия районов даны по [4].

Рис. 2. Сейсмограммы продольных волн на станции «Обнинск» для землетрясений: 3 марта в 09^h31^m с *MS*=6.6, Δ=65.52° (б); 20 февраля в 08^h08^m с *MS*=7.4, Δ=70.83° (а); 27 августа в 01^h35^m с *MS*=6.4, Δ=39.08° (в); на станции «Талая» 30 октября в 01^h55^m с *MS*=5.4, Δ=32.35° (г)

Амплитудные спектры, приведенные на рис. 3, рассчитаны по программе Access Service Controller (SAC) [5]. Это интерактивная программа общего назначения, снабженная модулями спектрального анализа, позволяющая выделять, рассчитывать и анализировать спектральные данные сигналов. Аппроксимация спектров и расчет очаговых параметров проводился по [6–8]. Станционные спектры исправлялись за влияние амплитудно-частотной характеристики аппаратуры и приводились к очагу с учетом геометрического расхождения $G(\Delta)$ фронта *P*-волн, направленности излучения из очага $R_{\theta\phi}$, неупругого затухания m(f), частотной характеристики земной коры под станцией c(f). Первые два фактора $G(\Delta)$ и $R_{\theta\phi}$ не зависят от частоты, они лишь корректируют уровень спектра, а два последних – m(f) и c(f) – приводят к изменению всей спектральной картины. В данной работе величина поправки за направленность излучения из очага $R_{\theta\phi}$ принималась средней и равной 0.4 для всех землетрясений.

Рис. 3. Спектры Р-волн землетрясений 2008 г. из табл. 1

Спектральные и очаговые параметры для всех 17 землетрясений даны в табл. 2. Определены следующие спектральные характеристики: уровень Ω_0 длиннопериодной ветви спектра, частота f_{π} точки перелома спектра, частота угловой точки f_0 . На их основе вычислялись динамические параметры: сейсмический момент M_0 , сброшенное $\Delta \sigma$ и кажущееся $\eta \sigma$ напряжения, а также длина L разрыва и подвижка \bar{u} в очагах по методике [6–8]. Для получения значений $L, \bar{u}, \Delta \sigma$ использовалась дислокационная модель Брюна [9], которая нашла широкое применение в сейсмологической практике.

Ma	Пото	4	Стан	MC	10	0	ſ	£	М	14	T		_	_
JNΩ	дага,	$\iota_0,$	Стан-	MS	Δ°	$\Omega_{0},$	\int_{n}	$J_0,$	$M_0,$	WW	L,	$\Delta \sigma$,	ησ,	и,
	0 м	ч мин сек	ция			10⁻⁴ м∙с	10 - <i>I ų</i>	10 - <i>I ų</i>	$10^{17}H\cdot M$		10 [°] м	10	10	м
												H/M^2	H/M^2	
1	09.01	08 26 47.7	OBN	6.4	40.75	0.251	15.8	25.1	0.82	6.6	20	36	11	0.75
2	08.02	09 38 12.5	OBN	7.0	74.69	0.316	14.8	25.1	1.8	6.8	20	79	39	1.64
3	20.02	08 08 29.4	OBN	7.4	70.83	3.16	4.6	18.2	7.0	7.2	27	124	40	3.49
4	25.02	08 36 31.5	OBN	7.2	77.15	0.977	6.3	22.9	4.5	7.1	22	148	31	3.38
5	03.03	09 31 04.5	OBN	6.6	65.52	0.316	6.8	17.4	1.3	6.7	28	21	14	0.60
6	20.03	22 33 00.9	OBN	7.4	36.19	0.912	5.5	15.1	2.8	6.9	32	30	99	1.00
7	07.05	16 45 18.4	OBN	7.1	68.82	0.794	4.0	10.7	3.5	7.0	46	13	28	0.60
8	12.05	06 27 58.4	OBN	8.1	52.19	7.24	5.0	12.6	33.0	7.6	39	195	94	7.90
9	13.06	23 43 48.1	OBN	7.0	66.08	0.55	5.0	20.8	2.3	6.9	24	58	30	1.45
10	22.06	23 56 27.5	OBN	5.7	45.52	0.083	11.0	29.5	0.28	6.2	16	24	3	0.40
11	19.07	02 39 29.2	OBN	7.3	68.01	1.58	4.8	12.6	6.7	7.2	39	40	29	1.60
12	27.08	01 35 30.4	OBN	6.4	39.08	0.076	5.6	27.5	0.33	6.3	18	20	927	0.37
13	11.09	00 20 51.0	OBN	7.2	65.31	1.26	4.0	14.1	5.1	7.1	34	45	27	1.61
14	05.10	15 52 50.2	OBN	6.9	29.26	0.316	25.1	34.7	1.1	6.7	21	42	103	0.40
15	11.10	09 06 09.0	TLY	5.6	38.62	0.020	11.2	31.6	0.08	5.9	16	7	6	0.12
16	30.10	01 55 15.5	TLY	5.4	32.35	0.014	8.1	22.4	0.06	5.8	26	1	10	0.02
17	16.11	17 02 34.1	OBN	7.0	86.39	0.562	11.0	19.0	6.0	7.1	30	78	27	1.06

Таблица 2. Характеристики спектров *P*-волн и динамические параметры очагов землетрясений 2008 г. по записям STS-1 на станциях «Обнинск», «Талая»

На основе значений M_0 , полученных по цифровым записям на станциях «Обнинск» и «Талая», вычислена моментная магнитуда Mw. Расчет Mw выполнен по формуле Х. Канамори [10]:

 $Mw = \frac{2}{3} \lg M_0 - 10.7$

$$Mw = \frac{2}{3}(\lg M_0 + 7) - 10.7,$$

где M_0 имеет размерность *дн см* и *Н*·*м* в системах СГС и СИ соответственно.

Литература

- 1. Сейсмологический бюллетень (ежедекадный) за 2008 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2008. URL: //ftp.gsras.ru/pub/Teleseismic_bulletin/2008/
- 2. Болдырева Н.В. (отв. сост.), Аторина М.А., Бабкина В.Ф., Малянова Л.С., Рыжикова М.И., Щербакова А.И. (сост.). Каталог землетрясений Земли (*N*=5612) и взрывов (*N*=1) за 2008 г. (См. Приложение к наст. сб. на CD).
- 3. Bulletin of the International Seismological Centre for 2008. Thatcham, United Kingdom: ISC, 2010. URL: *http://www.isc.ac.uk/iscbulletin/search/bulletin/*.
- 4. Young J.B., Presgrave B.W., Aichele H., Wiens D.A. and Flinn E.A. The Flinn-Engdahl Regionalisation Scheme: the 1995 revision // Physics of the Earth and Planetary Interiors. 1996. 96. P. 223–297.
- 5. Golstein P., Dodge D., Firpoand M. and Lee M. The IASPEI International Handbook of Earthquake and Engineering Seismology / Ed. by W.H.K. Lee, H. Kanamori, P.C. Jennings and C. Kisslinger. London: Academic Press, 2003.

- 6. Захарова А.И., Чепкунас Л.С. Динамические параметры очагов сильных землетрясений по спектрам продольных волн на станции «Обнинск» // Физика Земли. 1977. № 2. С. 9–17.
- 7. Аптекман Ж.Я., Дараган С.К., Долгополов Д.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – № 2. – С. 60–70.
- 8. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология – 1989. – № 2. – С. 66–79.
- 9. Brune I.N. Tectonic stress and the spectrum of seismic shear waves from earthquake // J. Geophys. Res. 1970. 75. N 26. P. 4997–5009.
- Hanks T.C., Kanamori H. A Moment Magnitude Scale // J. Geophys. Res. 1979. 84. N 135. P. 2348–2350.