ЯКУТИЯ

Б.М. Козьмин

Якутский филиал ГС СО РАН, г. Якутск, b.m.kozmin@diamond.ysn.ru

Система инструментальных наблюдений Якутского филиала ГС СО РАН в 2008 г., как и в 2007 г., состояла из 19 цифровых сейсмических станций. В их число входили две опорные станции «Якутск» и «Тикси», задействованные в мировой системе наблюдений IRIS, остальные являлись региональными. Аппаратурные параметры и расположение пунктов наблюдений по районам, в сравнении с таковыми в 2007 г. [1], не изменились. Перечень действующих станций и используемые приборы представлены в табл. 1 и 2.

N⁰	Стан	ция		Начало рабо	оты станции	Ко	оординать	Тип ЦСС		
	Название	Ко	д	аналоговой	цифровой	φ°, N	λ°, Ε	h,		
		межд.	рег.					\mathcal{M}		
1	Тикси	TIXI	Ткс	02.03.1956	13.08.1995	8.1995 71.65 12		100	IRIS	
2	Якутск	ҮАК Як		04.10.1957	01.09.1993	62.03	129.68 91		IRIS	
					01.09.1999				SDAS	
3	Чульман	CLNS	Члн	05.08.1962	25.03.2000	56.84	124.89	747	SDAS	
4	Усть-Нера	UNR	Унр	21.11.1962	20.04.2002	64.57	64.57 143.23 485		PAR-24B	
5	Чагда	CGD	Чгд	04.10.1968	25.07.2004	58.75	75 130.61 195		SDAS	
6	Батагай	BTGS	Бтг	12.03.1975	12.12.2002	67.65	134.63	127	SDAS	
7	Мома	MOMR Mom		05.03.1983	01.11.2002	66.47	143.22	192	PAR-4CH	
8	Артык	ATKR	Атк	04.07.1988	25.04.2002	25.04.2002 64.18		700	PAR-24B	
9	Алдан	ALDR	Алд		01.09.1999	58.61	125.41	658	SDAS	
10	Усть-Мая		Усм		01.09.2000	60.42	134.54	170	SDAS	
11	Тында	TNDR	Тыд		20.06.2001	55.15	124.72	530	SDAS	
12	Витим		Втм		25.06.2003	59.44	112.58	190	SDAS	
13	Табага		Тбг		26.06.2003	61.82	129.64	98	Байкал-11	
14	Кангалассы		Кнг		07.07.2003	62.21	129.58	100	Байкал-11	
15	Депутатский		Деп		01.09.2003	69.39	139.90	320	PAR-4CH	
16	Юктали		Юкл		04.07.2004	56.59	121.65	420	SDAS	
17	Иенгра		Иен		10.07.2004	56.22	124.86	860	Байкал-11	
18	Хани	Хн			11.12.2005	56.92	119.98	690	Байкал-11	
19	Нижний Бестях		Бест		01.07.2006	61.93	129.89	95	SMART-24	

Таблица 1. Сейсмические станции Якутии (в хронологии их открытия), работавшие в 2008 г.

Таблица 2. Данные об аппаратуре цифровых станций в 2008 г.

Название станции	Тип ЦСС и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Гц	Разряд- ность АЦП	Чувствительность, велосиграф – отсчет/(<i>м</i> / <i>c</i>), акселерограф – отсчет/(<i>м</i> / <i>c</i> ²)
Тикси	IRIS+STS-1	BH(N, Z, E)v	0.0028-5	20	24	$1.00 \cdot 10^9$
		LH (N, Z, E) v	0.0028-0.25	1	24	3.98·10 ⁹
		VH (N, Z, E) v	0.0028-0.025	0.1	24	$1.59 \cdot 10^{10}$
		VM (N, Z, E) a	0-0.0028	0.01	24	$1.21 \cdot 10^{10}$
	IRIS+GS-13	EH (N, Z, E) v	1–25	80	24	$4.08 \cdot 10^9$
		SH (N, Z, E) v	1-10	40	24	$4.08 \cdot 10^9$

Название станции	Тип ЦСС и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Гц	Разряд- ность АЦП	Чувствительность, велосиграф – отсчет/(<i>м/c</i>), акселерограф –
						отсчет/(<i>м/c</i> ²)
Якутск	IRIS+STS-1	BH (N, Z, E) v	0.0028-5	20	24	$1.00 \cdot 10^9$
		LH (N, Z, E) v	0.0028-0.25	1	24	$4.00 \cdot 10^9$
		VH (N, Z, E) v	0.0028-0.025	0.1	24	$1.60 \cdot 10^{10}$
		VM (N, Z, E) a	0-0.0028	0.01	24	$1.20 \cdot 10^{10}$
	IRIS+GS-13	EH (N, Z, E) v	1–25	80	24	$2.08 \cdot 10^{9}$
		SH (N, Z, E) v	1-10	40	24	$2.08 \cdot 10^{9}$
	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	16	$8.70 \cdot 10^8$
		BL (N, Z, E) v	0.02-6.7	20	16	$2.18 \cdot 10^8$
Чульман	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	16	5.29·10 ⁸
		BL (N, Z, E) v	0.02-6.7	20	16	$1.32 \cdot 10^8$
Усть-Нера	PAR-24B+CKM-3	SH (N, Z, E) v	0.8-5.0	30	24	$2.47 \cdot 10^{10}$
Чагда	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	24	3.83·10 ⁹⁸
		BL (N, Z, E) v	0.02-6.7	20	24	1.20.10
Батагай	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	24	$1.03 \cdot 10^{9}$
		BL (N, Z, E) v	0.02-6.7	20	24	$2.58 \cdot 10^8$
Мома	PAR-4CH+KS-2000	SH (N, Z, E) v	0.01-50	50	24	9.01·10 ⁸
Артык	PAR-24B+CM-3-KB	SH (N, Z, E) v	0.8-10	30	24	$4.03 \cdot 10^{10}$
Алдан	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	16	$5.32 \cdot 10^{8}$
		BL (N, Z, E) v	0.02-6.7	20	16	$1.36 \cdot 10^8$
Усть-Мая	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	16	5.26·10 ⁸
		BL (N, Z, E) v	0.02-6.7	20	16	$1.32 \cdot 10^8$
Тында	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	16	9.01·10 ⁸
		BL (N, Z, E) v	0.02-6.7	20	16	$2.25 \cdot 10^8$
Витим	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	24	7.35·10 ⁹
		BL (N, Z, E) v	0.02-6.7	20	24	$2.29 \cdot 10^8$
Табага	Байкал-11+СМ-3-КВ	SH (N, Z, E) v	0.5-2.0	100	20	$2.04 \cdot 10^{10}$
Кангалассы	Байкал-11+СМ-3-КВ	SH (N, Z, E) v	0.5-2.0	100	20	$2.04 \cdot 10^{10}$
Депутатский	PAR-4CH+KS-2000	SH (N, Z, E) v	0.01-50	20	24	8.93·10 ⁸
Юктали	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	24	3.65·10 ⁹
		BL (N, Z, E) v	0.02-6.7	20	24	$1.14 \cdot 10^8$
Иенгра	Байкал-11+СМ-3-КВ	SH (N, Z, E) v	0.05-2.0	50	20	$2.86 \cdot 10^9$
Хани	Байкал-11+СМ-3-КВ	SH (N, Z, E) v	0.5-2.0	100	20	$2.04 \cdot 10^{10}$
Нижний Бестях	SMART-24+KS-2000	SH (N, Z, E) v	0.02-100	100	24	$1.49 \cdot 10^{10}$

Примечание. Символами «v» и «а» обозначены велосиграф и акселерограф соответственно.

Согласно расположения сейсмических станций ЯФ ГС СО РАН в регионе с учетом чувствительности их приборов, частоты опроса данных (числа отсчетов/*c*) в системе регистрации, дальности фиксации землетрясений разных энергетических классов была построена карта энергетической представительности землетрясений K_{min} Якутского региона (рис. 1). Из рисунка изолиний видно, что наиболее надежная система локации землетрясений в 2008 г. действовала на юге региона, в районе станций «Хани», «Юктали», «Чульман», «Иенгра», «Чагда», «Алдан», «Витим» и «Тында». Здесь совместная обработка данных якутских станций и станций «Чара», «Средний Калар», «Тупик», «Бодайбо» из соседнего Прибайкалья, принадлежащих Байкальскому филиалу (БФ) ГС СО РАН, позволяла без пропусков записывать землетрясения с $K_P \ge 7$ в Южной Якутии (междуречье Олёкмы и Алдана), с $K_P \ge 9$ –10 – в восточной части Алданского нагорья (бассейн р. Учур). К востоку, от р. Учур до Охотского моря, где эпицентральные расстояния становятся больше 300 *км*, представительными были землетрясения с $K_P \ge 10-11$.

Рис. 1. Карта энергетической представительности землетрясений *K*_{min} и сеть сейсмических станций Якутии в 2008 г.

Вблизи Якутска, между реками Лена и Алдан, где действовала группа из четырех сейсмических станций («Якутск», «Табага», «Кангалассы», «Нижний Бестях»), также выделяется участок территории с уверенной регистрацией событий с $K_P \ge 7$, а при использовании данных наблюдений станций «Чагда» и «Усть-Мая» в полном объеме записывались землетрясения с $K_P \ge 8$.

На востоке Сибирской платформы в среднем течении Вилюя, Лены и Алдана регистрировались все события с $K_P \ge 9-10$. На северо-востоке Якутии в горной системе хр. Черского, где в верхнем и среднем течении р. Индигирки действовали станции «Усть-Нера», «Артык» и «Мома» и привлекались наблюдения цифровых станций из Магаданской зоны, не было пропусков местных землетрясении с $K_P \ge 8$.

В связи с редкой сетью сейсмических станций на крайнем севере региона («Тикси», «Батагай» и «Депутатский») и в арктической части Якутии, между реками Леной и Индигиркой, а также на побережье и шельфе моря Лаптевых имелись менее благоприятные условия для записи землетрясений, поэтому без пропусков здесь фиксировались сотрясения с $K_P \ge 8$ только на небольшой площадке в нижнем течении рек Лены и Яны. В районе Тикси и на шельфе моря Лаптевых от п-ва Таймыр до Новосибирских островов существующая система наблюдений могла регистрировать полностью землетрясения с $K_P \ge 10-12$. Для всей территории Республики Саха (Якутия) в 2008 г. без пропусков регистрировались местные землетрясения с $K_P \ge 12-13$.

Параметры эпицентров землетрясений определялись по совокупности данных наблюдений сети сейсмических станций ЯФ ГС СО РАН (Якутск), материалов сводной обработки и наблюдений отдельных станций БФ ГС СО РАН (Иркутск) и Магаданского филиала ГС РАН (Магадан), а также сведений из бюллетеней станций «Кировский» и «Бомнак», относящихся к Сахалинскому филиалу ГС РАН (Южно-Сахалинск). Координаты эпицентров подземных толчков рассчитывались на основе специальной компьютерной программы, составленной в отделе геологии и геофизики Университета штата Мичиган (США) (разработчик – К.Д. Маккей) с использованием времен пробега продольных *Pg*- и *Pn*- и поперечных *Sg*- и *Sn*-волн, которые уверенно прослеживаются на записях близких землетрясений.

По данным обработки совокупных инструментальных данных были определены параметры эпицентров 873 подземных толчков с $K_P \ge 6.6$ [2], 317 из которых с $K_P \ge 7.6$ приведены в каталоге [3] в наст. сб. на CD. Распределение числа землетрясений по районам и энергетическим классам K_P показано в табл. 3, карта эпицентров дана на рис. 2.

N⁰	Район			N_{Σ}	ΣE ,						
_		7	8	9	10	11	12	13	16		Дж
1	Олёкминский	249	58	13	3		1			324	$6.75 \cdot 10^{11}$
2	Становой хребет	101	34	9	1	1	1	1		148	$3.22 \cdot 10^{13}$
3	Алданское нагорье	62	25	6	2	1				96	$1.16 \cdot 10^{11}$
4	Учурский	13	12	13	1	1				40	$1.20 \cdot 10^{11}$
5	Охотский					1	1			2	$1.30 \cdot 10^{12}$
6	Хребет Сетте-Дабан		1							1	$3.16 \cdot 10^8$
7	Верхоянский хребет	4	1	1	1	2				9	$2.35 \cdot 10^{11}$
8	Яно-Оймяконское нагорье	25	8	5		2				40	$2.99 \cdot 10^{11}$
9	Хребет Черского	94	60	23	4	1	1		1	184	$3.98 \cdot 10^{15}$
10	Приморская низменность	6	1	1						8	$7.10 \cdot 10^8$
11	Лаптевский	1	8	2	1	3	1			16	$6.09 \cdot 10^{11}$
12	Восточная часть Сибирской	4	1							5	$2.51 \cdot 10^8$
	платформы										
	Всего	559	209	73	13	12	5	1	1	873	$4.02 \cdot 10^{15}$

Таблица 3. Распределение числа землетрясений по энергетическим классам *K*_P и суммарной сейсмической энергии Σ*E* по районам за 2008 г.

Примечание. Землетрясений с *К*_Р=14 и 15 в 2008 г. не было.

Суммарная сейсмическая энергия ΣE , высвободившаяся в 2008 г., более чем на два порядка выше ее величины в 2007 г. (ΣE =4.02·10¹⁵ Дж вместо ΣE =1.380·10¹³ Дж), но сопоставима с уровнем энергии в 2005 г. (ΣE =5.68·10¹⁵ Дж) [5]. При этом 99 % энергии выделилось в основном в районе хр. Черского на северо-востоке Якутии, 0.8 % пришлось на район Станового хребта в Южной Якутии и лишь 0.2 % энергии распределилось в остальных районах. В целом отчетливо выделяются две крупные эпицентральные полосы на юге и северо-востоке региона. Первая соответствует Олёкмо-Становой сейсмотектонической зоне, которая вместе с Байкальским рифтом составляет Байкало-Становой сейсмический пояс и маркирует границу Евразийской и Амурской литосферных плит, вторая принадлежит Арктико-Азиатскому сейсмическому поясу – границе Евразийской и Североамериканской плит.

Практически во всех районах, входящих в Олёкмо-Становую зону, наблюдалась активизация сейсмического процесса. Среди них наибольшая суммарная сейсмическая энергия ($\Sigma E=3.22 \cdot 10^{13} \ \square m$) выделилась в **районе Станового хребта** (**Ne 2**), где 8 ноября 2008 г. в 08^h45^m отмечено ощутимое Алданское землетрясение с $K_P=13.5$ [3], MS=4.6 [6], $h_{PP}=19 \ \kappa m$ [7]. Ему посвящена отдельная статья в наст. сб. [8].

Активным был также самый западный в рассматриваемой зоне Олёкминский район (\mathbb{N} 1), где в пределах Олёкмо-Черского плоскогорья продолжалась активность в очаговой зоне Чаруодинского роя 2005 г. [9]. На его долю пришлось 80 % от числа сейсмических событий, отмеченных здесь за год. Самым сильным (K_P =11.8 [3], *MPSP*=4.4 [6]) среди них был подземный толчок, возникший 1 декабря 2008 г. в 16^h24^m на глубине *h*=10 км [3]. Он ощущался к югу от эпицентра с интенсивностью сотрясений *I* до 3 баллов в п. Хани (железнодорожная станция БАМа) на расстоянии 64 км и Олёкма – 46 км.

В районе Алданского нагорья (№ 3) большая часть землетрясений зафиксирована в его южной части, прилегающей к Становому хребту. Несколько толчков умеренной энергии ощущалось в населенных пунктах по Федеральной автодороге «Лена».

Рис. 2. Карта эпицентров землетрясений Якутии за 2008 г.

1 – энергетический класс *K*_P; 2, 3 – сейсмические станции, опорная и региональная соответственно; 4 – сейсмическая станция соседних регионов; 5 – разлом по [4], установленный (сплошная линия) и предполагаемый (штриховая); 6, 7 – границы района и региона соответственно.

Так, в зоне влияния Чульмаканского разлома 24 апреля 2008 г. в $14^{h}14^{m}$ на глубине $h=10 \ \kappa m$ произошло землетрясение с $K_{P}=10.8$. Оно наблюдалось с интенсивностью I=5 баллов в пос. Хатыми, в 37 κm к северо-западу от эпицентра [10], где около 1 часа ночи местного времени были разбужены многие жители. Слышался сильный гул, подобный звуку близко проезжающей тяжелой техники. На 2-м этаже двухэтажного дома настольная лампа передвигалась по столу. Во всех строениях дребезжала посуда, тряслась мебель, скрипели полы, потолки, перекрытия. Такие же эффекты отмечены в пос. Чульман, в 38 κm к юго-западу. В пос. Большой Нимныр, в 105 κm к северу, интенсивность сотрясений достигала 4 баллов: многие очевидцы проснулись от сильного гула, подобного глухому грому; повсеместно отмечены сотрясения домов, колебания и дребезжание.

Другой ощутимый толчок с $K_P=11.7$ возник в пределах юго-западного окончания хр. Суннагин 19 июня 2008 г. в $15^{h}08^{m}$ на глубине $h=12 \ \kappa m$ [3]. Это событие проявилось в трех ближайших поселках вдоль Федеральной автодороги «Лена», расположенной к западу от эпи-

центра: Беркаките (Δ =110 км) *I*=3-4 балла; Чульмане (112 км), Нерюнгри (123 км) – *I*=3 балла [10]. В Беркаките жители заметили быстрое передвижение мебели, раскачивались люстры, беспокойно вели себя домашние птицы и животные. В г. Нерюнгри и пос. Чульман повторялись те же эффекты, но несколько слабее.

На карте эпицентров землетрясений (рис. 2) можно выделить еще несколько активных участков внутри Олёкмо-Становой сейсмотектонической зоны. На ее восточном фланге активнее других был **Учурский район** (№ 4), где в хр. Лурикан, который пересекает р. Учур в его среднем течении, наблюдалось «облако» из 40 подземных толчков с K_p =7–11 между 130°E и 134°E. Сейсмическая энергия одного из них, зарегистрированного 14 марта 2008 г. в 15^h15^m, составила $E=10^{11}$ Дж. На восточном фланге в **Охотском районе** (№ 5) были зарегистрированы два землетрясения, произошедшие 3 января в 10^h20^m с K_p =10.6 и 27 июня в 10^h05^m с K_p =12.1 [3]. Оба события тяготеют к Приморскому хребту, вытянутому вдоль побережья Охотского моря.

В полосе эпицентров землетрясений на северо-востоке региона, принадлежащей Арктико-Азиатскому поясу, максимальной сейсмической активностью в 2008 г. обладал район Хребта Черского (№ 9). Здесь 22 июня 2008 г. в 23^h56^m возникло Андрей-Тасское землетрясение с $K_{\rm P}$ =15.6, в очаге которого выделилась сейсмическая энергия, равная ΣE =3.98·10¹⁵ Дж, или 94 % от всей годовой энергии (Σ*E*=4.02·10¹⁵ Дж) в регионе. Оно детально рассмотрено в [11] наст. сб. Его координаты, равные ϕ =67.65°N, λ =140.93°E [3], указывают на приуроченность землетрясения к кряжу Андрей-Тас. Данное горное сооружение и соседний с ним Момский хребет обрамляют с северо-востока кайнозойскую Момо-Селенняхскую впадину. Эпицентр данного события локализован вблизи ее северо-восточного борта в северо-западных отрогах кряжа Андрей-Тас (рис. 2). Морфоструктура кряжа имеет компактное изометричное строение прямоугольной формы [12]. Это интенсивно развивающийся неотектонический блок с максимальной высотой 1426 м. На мелкомасштабных космоснимках его тектоническое ограничение представлено линиями надвигов по северной и южной границам. Толчок сопровождался серией повторных толчков (133 события). При этом самый сильный афтершок, зафиксированный через час после главного толчка (23 июня 2008 г. в 01^h02^m) имел в очаге сейсмическую энергию E=1.58·10¹² Дж. Из остальных участков этого района более активно было его юго-восточное окончание. Легко заметить, что развитая здесь Индигиро-Колымская система разломов северо-западного простирания [13] повсеместно сопровождается небольшими группами и цепочками эпицентров слабых (К_Р=7–10) землетрясений, что свидетельствует о ее современной подвижности.

Меньшая активность имела место в **районе Яно-Оймяконского нагорья** (**№** 8), где основные проявления сейсмичности пришлись на центральную и северную части района. В центре, в междуречье верхних притоков р. Яны (Дулгалах, Сартанг, Адыча), произошли два события умеренной интенсивности: 9 января 2008 г. в $16^{h}52^{m}$ с $K_{p}=11.4$ и 15 марта 2008 г. в $10^{h}54^{m}$ с $K_{p}=10.6$. На севере в основном слабые ($K_{p}=7-9$) землетрясения были сосредоточены в Омолойской впадине и ее горном обрамлении (хр. Кулар и др.), где эпицентры следились от верхнего течения р. Яны до побережья моря Лаптевых.

Сейсмичность района (\mathbb{N} 7) Верхоянский хребет представлена лишь девятью землетрясениями. Два редких события были зарегистрированы близ 66°N и 125°E на западном склоне Верхоянского хребта (рис. 2), которые случились 8 января 2008 г. один за другим в 13^h30^m19.1^s и в 13^h30^m30.9^s с энергетическими классами K_P , равными 10.8 и 10.1 соответственно. Оба подземных удара ощущались в единственном близком к этим землетрясениям пос. Бахынай, расположенном на левом берегу р. Лены в 50 км к западу от этих эпицентров. При первом толчке наблюдались 4-балльные эффекты: колебались висячие предметы (люстры, электролампочки), двигалась мебель, скрипели стены домов, полы и потолки. Был слышен отдаленный гул. Менее интенсивным (I=3-4 балла) был второй толчок. Еще одно сотрясение такой же интенсивности имело место на восточных склонах этого же хребта 6 июня 2008 г. в 15^h56^m с $K_P=11.2$ [3].

Как и в прошлые годы, наблюдались проявления арктических землетрясений в **Лаптев**ском районе (№ 11). Несколько эпицентров тяготели к Лено-Таймырской полосе землетрясений (от дельты р. Лены к Таймыру), в том числе одно сотрясение с интенсивностью *I*=3 балла отмечено от землетрясения 2 января в 05^h18^m с *К*_P=10.8 вблизи о. Большой Бегичев, севернее устья р. Анабар. В акватории моря Лаптевых подземные толчки были приурочены главным образом к впадинам Лаптевоморской окраинно-рифтовой системы, развитой на дне моря в восточной части его шельфа [4], три из которых, зарегистрированные 15 мая в $15^{h}29^{m}$ с $K_{p}=10.8$, 4 июля в $04^{h}55^{m}$ с $K_{p}=11.6$ и 29 июля в $19^{h}23^{m}$ с $K_{p}=10.8$, локализованы около о. Бельковский. Для второго из них, приуроченного к Бельковско-Святоносскому грабену на шельфе моря Лаптевых, имеется решение фокального механизма [14] по методу тензора момента центроида (табл. 4, рис. 3).

Таблица 4. Параметры механизма очага землетрясения 4 июля 2008 г. в 04^h55^m с *Mw*=5.0 по данным GCMT

Агент-	Дата,	t_0 ,		h,	Маг	ниту	итуды К _S			Оси главных напряжений					Нодальные плоскости						
ство	дм	ч мин	С	км	Mw	MS	Ms		Т			N P		Р	NP1		1	NP2		?	точ-
					[14]	[6]	[7]		PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	ник
GCMT	04.07	04 55 04	4.1	11	5.0	4.4	4.5	11.6	1	73	32	163	58	341	135	52	-132	10	54	-50	[14]

Рис. 3. Стереограмма механизма очага землетрясения 4 юля 2008 г. с *К*_P=11.6 [3], *Мw*=5.0 [14] в проекции нижней полусферы

 нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Главные тектонические напряжения, которые действовали в его очаге, соответствовали горизонтальному ($PL_{T}=1^{\circ}$) растяжению восток–северо-восточной ($AZM_{T}=73^{\circ}$) ориентации и близвертикальному ($PL_{P}=58^{\circ}$) сжатию север–северо-западной ($AZM_{P}=341^{\circ}$) ориентации. Обе нодальные плоскости наклонены к горизонту практически одинаково (52° и 54°). Подвижка по плоскости NP1 юго-восточного ($STK_{1}=135^{\circ}$) простирания типа сброс с компонентами правостороннего сдвига, по близмеридиональной ($STK_{2}=10^{\circ}$) плоскости NP2 – сброс с компонентами левостороннего сдвига.

Слабосейсмична была территория районов **хр. Сетте-Дабан** (\mathbb{N} 6), **Приморской низ**менности (\mathbb{N} 10) и восточной части Сибирской платформы (\mathbb{N} 12). Действительно, в каталоге [3] для района \mathbb{N} 6 есть сведения лишь об одном землетрясении (10 апреля в $23^{h}26^{m}$ с K_{P} =8.5), для района \mathbb{N} 10 – для двух (25 июня в $14^{h}37^{m}$ с K_{P} =7.9; 13 ноября в $04^{h}17^{m}$ с K_{P} =8.8) и для района \mathbb{N} 12 – одного землетрясения с K_{P} =8.4, зарегистрированного 17 августа в $12^{h}30^{m}$.

В итоге пространственное распределение эпицентров землетрясений в 2008 г. вновь подтвердило наличие двух активных сейсмических зон (Черского на северо-востоке) и (Олёкмо-Становой на юге), являющихся составными частями более крупных образований – Арктико-Азиатского и Байкало-Станового сейсмических поясов. Последние в свою очередь представляют границы литосферных плит (Североамериканской, Евразийской, Охотоморской и Амурской), взаимодействующих на северо-востоке Азиатского континента.

Литература

- 1. Козьмин Б.М. Якутия // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2013. С. 225–230.
- 2. Козьмин Б.М., Шибаев С.В., Тимиршин К.В. (отв. сост.), Петрова В.Е., Захарова Ж.Г., Каратаева А.С., Москаленко Т.П. Каталог (оригинал) землетрясений Якутии за 2008 г. (*N*=873). Якутск: Фонды ЯФ ГС СО РАН, 2009. – 17 с.
- 3. Козьмин Б.М., Шибаев С.В., Тимиршин К.В. (отв. сост.), Петрова В.Е., Захарова Ж.Г., Каратаева А.С., Москаленко Т.П. (сост.) Каталог землетрясений Якутии за 2008 г. (*N*=317). (См. Приложение к наст. сб. на CD).

4. Имаев В.С., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. – М.: ГЕОС, 2000. – 201 с.

5. Козьмин Б.М. Якутия // Землетрясения Северной Евразии, 2005 год. – Обнинск: ГС РАН, 2011. – С. 234–240.

- 6. Сейсмологический бюллетень (ежедекадный) за 2008 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2008. – URL: //ftp.gsras.ru/pub/Teleseismic_bulletin/2008/
- 7. Bulletin of the International Seismological Centre for 2008. Thatcham, United Kingdom: ISC, 2010. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/.
- 8. Козьмин Б.М. Алданское землетрясение 8 ноября 2008 г. с *К*_P=13.5, *I*₀=6 (Якутия). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 9. Шибаев С.В., Петров А.Ф., Козьмин Б.М., Имаева Л.П., Мельникова В.И., Радзиминович Н.А., Тимиршин К.В., Петрова В.Е., Гилева Н.А., Пересыпкин Д.М. Чаруодинский рой землетрясений 2005 года и его ощутимые землетрясения: Чаруодинское-I 10 ноября в 19^h29^m с K_P=15.7, Mw=5.8, I₀=8 и Чаруодинское-II 11 декабря в 15^h54^m с K_P=14.8, Mw=5.7, I₀=7 (Южная Якутия) // Землетрясения Северной Евразии, 2005 год. – Обнинск: ГС РАН, 2011. – С. 404–418.
- 10. Козьмин Б.М. Макросейсмический эффект ощутимых землетрясений (*N*=8) в населенных пунктах Якутии в 2008 г. (См. Приложение к наст. сб. на CD).
- 11. Шибаев С.В., Козьмин Б.М., Петров А.Ф., Имаева Л.П., Тимиршин К.В. Андрей-Тасское землетрясение 22 июня 2008 г. с *K*_P=15.6, *Mw*=6.1, *I*₀=7–8 (Северо-восток Якутии). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 12. Имаева Л.П., Имаев В.С., Козьмин Б.М. Сейсмотектоника северо-восточного сегмента зоны хр. Черского // Отечественная геология. – 2009. – № 5. – С. 94–100.
- Гусев Г.С., Веклич В.С., Третьяков Ф.Ф. Морфокинематическая характеристика разломов Верхояно-Чукотской складчатой области // Разломная тектоника территории Якутской АССР.– Якутск: ЯФ СО АН СССР, 1976.– С. 150–159.
- 14. Сайт http:// www.globalcmt.org/CMTsearch.html.