СЕВЕРО-ВОСТОК РОССИИ

Е.И. Алёшина, Л.В. Гунбина, Л.И. Карпенко, Б.М. Седов

Магаданский филиал ГС РАН, г. Магадан, evgeniya@memsd.ru

Сейсмический мониторинг территории Магаданской области, Чукотского автономного округа (ЧАО) и шельфов прилегающих морей (Охотского, Чукотского, Берингова и Восточно-Сибирского) в 2008 г. осуществлялся сетью из 11 цифровых сейсмических станций. Для расчета параметров землетрясений, произошедших в приграничных с Саха (Якутией) районах, использовались данные станций Якутского филиала ГС СО РАН.

После длительного перерыва (29.08.2007 г.–23.11.2008 г.) вновь открылась станция «Эвенск», ей присвоен новый международный код EVEN. Подробные сведения о станциях, типах и параметрах регистрирующей аппаратуры приведены в табл. 1, 2.

№	Ста	нция		Аналогова	ая станция	Цифрова	я станция	Ко	Тип АЦП		
	название	КОД		Да		Да	na	^{(0°} N	or⁰ E	h 14	
1	2	межд. 2		5	закрытия	открытия 7	закрытия	φ, \mathbf{N}	γ, E 10	n, M	12
1	1*	5		5	0	/	0	9	10	50	
1	магадан-т*	01.00	INIVIA2			17.09.2007		59.550	150.800	50	PAR-24B
2	Омсукчан	OMS	OMC	01.12.1967	31.12.2005	04.07.2001		62.515	155.774	527	PAR-24B
3	Сеймчан	SEY	СМЧ	03.04.1969	31.12.2000	19.09.1999		62.933	152.382	218	PAR-24B
4	Сусуман	SUUS	CMH	01.08.1969	01.06.1999			62.781	148.149	640	
				01.06.1999	17.08.1999	17.08.1999		62.779	148.167	640	PAR-24B
5	Стекольный	MGD	СТК	26.03.1971	13.10.2004	13.10.2004		60.046	150.730	221	PAR-24B
6	Билибино		БЛБ	12.08.1981	01.04.1992			68.058	166.449	282	
		BILL				01.08.1995		68.039	166.271	299	Q-680
7	Синегорье		СНГ	01.09.1981	31.12.1987			62.15	150.48	300	
	1	SNGR					13.10.2004	62.059	150.405	450	PAR-24B
						02.10.2006		62.080	150.521	300	
8	Талая	TLAR	ТЛА	20.01.1989	29.07.1999	29.07.1999	22.09.2000	61.129	152.392	730	PAR-24B
						22.09.2000	21.02.2006	61.130	152.398	730	
						04.04.2007		61.130	152.398	730	
9	Омчак	OCHR	ОМЧ			01.10.1999		61.665	147.867	820	PAR-24B
10	Охотск	OHTR	OXT			06.07.2000		59.359	143.331	40	PAR-24B
		OKHR				05.10.2005		59.361	143.248	8	
11	Эвенск	EVNR				05.05.2006	29.08.2007	61.924	159.267	75	PAR-24B
		EVEN				23.11.2008		61.914	159.229	17	

Таблица 1. Сейсмические станции Северо-Востока России (в хронологии их открытия), действовавшие в 2008 г.

Примечание. В графе 2 символом «*» отмечена временная станция.

Таблица 2. Данные об аппаратуре цифровых станций в 2008 г.

Название	Тип	Перечень	Частотный	Частота	Разряд-	Чувствительность,
станции	сейсмометра	каналов	диапазон,	опроса данных,	ность	велосиграф – отсчет/ (M/c) ,
			Гц	Гц	ΑЦΠ	акселерограф – отсчет/(M/c^2)
Магадан-1*	CME-4011	SH (N, E, Z) v	0.33-20	50	24	$9.0 \cdot 10^8$
Омсукчан	СМ-3-КВ	SH(N, E, Z)v	0.2–10	50	24	$2.8 \cdot 10^8$
Сеймчан	STS-1	BH(N, E, Z)v	0.0028-5	50	24	9.73.1010
Сусуман	СМ-3-КВ	SH (N, E, Z) v	0.2–10	50	24	$2.8 \cdot 10^8$

Название станции	Тип сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Ги	Разряд- ность АЦП	Чувствительность, велосиграф – отсчет/ (м/с), акселерограф – отсчет/(м/с ²)
Стекольный	СМ-3-КВ	SH (N, E, Z) v	0.2–10	50	24	$2.8 \cdot 10^8$
Талая	СМ-3-КВ	SH (N, E, Z) v	0.2–10	50	24	$2.8 \cdot 10^8$
Билибино	STS-1	BH(N, E, Z)v	0.0028-3.0	20	24	$9.89 \cdot 10^{10}$
		LH (N, E, Z) v	0.0028-0.25	1	24	$2.47 \cdot 10^{10}$
		VH (N, E, Z) v	0.0028-0.02	0.1	24	$6.18 \cdot 10^{11}$
		VM (N, E, Z) a	0-0.0028	0.01	24	$8.14 \cdot 10^{11}$
	GS-13	EH (N, E, Z) v	0.05-20.0	80	24	$7.76 \cdot 10^{12}$
		SH (N, E, Z) v	0.05-20.0	40	24	$7.76 \cdot 10^{12}$
Омчак	СМ-3-КВ	SH (N, E, Z) v	0.2–10	50	24	$2.8 \cdot 10^8$
Охотск	KS-2000	BH(N, E, Z)v	0.01-50	50	24	9.0·10 ⁸
Синегорье	СМ-3-КВ	SH (N, E, Z) v	0.5-50	50	24	$2.8 \ 10^8$
Эвенск	СМ-3-КВ	SH (N, E, Z) v	0.8–10	50	24	$2.8 \cdot 10^8$

Примечание. Буквами «v» и «а» обозначены велосиграф и акселерограф соответственно.

Положение сейсмических станций МФ ГС РАН и энергетическая представительность землетрясений K_{\min} по наблюдениям действовавшей сети показана на рис. 1.

Рис. 1. Сеть станций и карта энергетической представительности *K*_{min} Северо-Востока России за 2008 г.

1 – изолиния K_{\min} ; 2, 3 – сейсмические станции, постоянная и временная соответственно; 4, 5 – граница района и региона соответственно; 6 – номер района.

Минимальный уровень энергии представительных землетрясений равен K_{\min} =6 в центре Колымы (район № 2). Площадь, ограниченная изолиниями K_{\min} всех энергетических классов в 2008 г., практически не изменилась по сравнению с таковой в 2007 г. [1]. Построить изолинии K_{\min} для территории ЧАО невозможно из-за недостаточности материалов сейсмических наблюдений (в этом районе работала только одна станция – «Билибино»).

В каталог [2] землетрясений Северо-Востока России приграничных районов за 2008 г. включены сведения о 238 землетрясениях с K_P =6.0–13.2 (рис. 1), из них 23 находятся за границами зоны ответственности сети МФ ГС РАН. Гипоцентры всех землетрясений расположены в пределах земной коры на глубинах $h \le 33 \ \kappa m$. В дополнительный каталог [3] включено лишь одно землетрясение в Чукотском море (рис. 1) из бюллетеня ISC [4], произошедшее 1 марта в $07^h 20^m$ с m_h (ISC)=3.8/17. Его расчетный энергетический класс K_P * по формуле К. Дж. Мяки из [5]

$$K_{\rm P}$$
*=2.84+2.03 $m_{\rm b}$

равен *К*_Р*=10.6. Карта эпицентров землетрясений, включенных в каталоги [2, 3], представлена на рис. 2.

Рис. 2. Карта эпицентров землетрясений Северо-Востока России за 2008 г.

1 – энергетический класс K_P ; 2 – эпицентр из [3]; 3, 4 – границы района и региона соответственно; 5 – номер района; 6 – номер сильного ($K_P \ge 10.6$) землетрясения, указанного в графе 2 каталога [2].

Методика определения основных параметров землетрясений не изменилась, обработка данных проводилась с помощью программы HYP2DT (версия 7.1), предоставленной К. Дж. Мяки (Мичиганский университет, США).

В табл. 3 приведено распределение землетрясений по энергетическим классам и выделенная суммарная сейсмическая энергия в разных районах региона.

Суммарная сейсмическая энергия, выделившаяся внутри границ региона, в 2008 г. достигла величины $\Sigma E=174.921 \cdot 10^{11} \ \square m$, что в 14 раз больше, чем в 2007 г. ($\Sigma E=12.575 \cdot 10^{11} \ \square m$) [1]. Число землетрясений в 2008 г. увеличилось на 83 (2008 г. – $N_{\Sigma}=215$; 2007 г. – $N_{\Sigma}=138$). Увеличение количества высвобожденной сейсмической энергии связано в основном с землетрясением (3), произошедшим 4 октября $18^{h}17^{m}$ с $K_{p}=13.2$, Mw=4.9 в районе $N_{\Sigma} 2$. В его очаге высвободилась энергия, равная $\Sigma E=158.49 \cdot 10^{11} \ \square m$, или 91% от общего ее значения в границах ответственности региона ($\Sigma E_{n}=174.921 \cdot 10^{11} \ \square m$). Ощутимых землетрясений в 2008 г. было три: 29 марта в $14^{h}55_{m}$ с $K_{p}=11.8$, 8 сентября в $04^{h}21^{m}$ с $K_{p}=10.5$, 4 октября в $18^{h}17^{m}$ с $K_{p}=13.2$. Во всех случаях интенсивность сотрясений не превысила I=3 балла [6] по шкале MSK-64 [7]. Общее число сотрясенных населенных пунктов невелико – всего четыре (Магадан, Охотск, Эвенск, Снежный) [8].

Таблица 3. Распределение числа землетрясений по энергетическим классам *K*_P и суммарная сейсмическая энергия Σ*E* по районам и приграничным территориям региона Северо-Восток России за 2008 г.

N⁰	№ Район				N_{Σ}	ΣΕ,					
		6	7	7 8		10	10 11		13		10 ¹¹ Дж
1	Охотское море		1	5	5	1		1		13	6.698
2	Колыма	18	72	69	28	11	2	1	1	202	168.23
3	Западная Чукотка										
4	Восточная Чукотка										
5	Чукотское море										
6	Берингово море										
	Всего в регионе	18	73	74	33	12	2	2	1	215	174.921
	Якутия		3	13	4	1	1			22	0.654
	Камчатка				1					1	0.003
	Всего	18	76	87	38	13	3	2	1	238	175.578

Большинство землетрясений локализовано вдоль сейсмического пояса Черского. При этом наиболее активна его северо-западная часть, на границе с Якутией. Отдельные слабые события зарегистрированы в восточной части района № 2.

Самое сильное (K_P =13.2) землетрясение (3) в пределах зоны ответственности произошло, как указывалось выше, 4 октября в 18^h17^m. Его эпицентр располагался в 132 км севернее г. Охотск. Жители города ощущали его с интенсивностью *I*=3 балла. Землетрясение произошло рано утром по местному времени. Толчки ощущались на верхних этажах каменных зданий. Люди проснулись от дребезжания посуды, шаталась мебель, качались люстры, некоторые почувствовали два толчка. В деревянных двухэтажных домах был слышен подземный гул.

Основные параметры землетрясения (3) по материалам различных сейсмологических агентств представлены в табл. 4. Все решения в плане изображены на рис. 3. Разброс координат по данным различных центров достигает 27 км по широте и 13 км по долготе. Все решения располагаются западнее и северо-западнее регионального. Наблюдаемое смещение в положении гипоцентра, по данным мировых агентств и Магаданского филиала, связано с односторонним положением региональных сейсмических станций относительно землетрясения (рис. 4). Обработка землетрясения была выполнена по данным восьми сейсмических станций. Гипоцентр землетрясения был определен по 6 фазам *P*-волн, 8 фазам *Pg*-волн и 8 фазам *Sg*-волн. Ближайшей к эпицентру является станция «Охотск» (Δ =132 км); максимальное эпицентральное расстояние составило 715 км (станция «Омсукчан»).

Агентство	$t_0,$	δt_0 ,			Гипоце	нтр		Магнитуда	Источник	
	ч мин с	С	φ°, N	δφ°	λ°, Ε	δλ°	h,	δh ,		
							КМ	КМ		
МФ ГС РАН	18 17 31.8	0.5	60.53	0.02	142.98	0.03	27	4	$K_{\rm P} = 13.2$	[2]
MOS	18 17 28.6	0.89	60.59		142.78		10f		MS=4.6/18	[9]
									MPSP=5.1/73	
ISC	18 17 31.0	0.14	60.60	0.02	142.69	0.04	10f		Ms=4.4/43,	[4]
									$m_{\rm b}$ =4.9/185	
IDC	18 17 28.7	0.42	60.51		142.76		0f		$Ms=4.2/23, m_b=4.5/29$	[4]
NEIC	18 17 32.7	2.0	60.58		142.70		24	15	$Ms=4.6/2, m_b=5.0/105$	[4]
BJI	18 17 29.6		60.63		142.49		7		$Ms=5.2/28, m_b=4.7/34$	[4]
GCMT	18 17 33.5	0.3	60.60		142.57		24	1	<i>Mw</i> =4.9	[4]
EHB	18 17 30.7		60.60		142.71		10f			[4]

Таблица 4. Основные параметры землетрясения 4 октября 2008 г. с *К*_P=13.2 по региональным данным в сопоставлении с определениями других агентств

Примечание. Буквой «f» отмечена фиксированная глубина.

Рис. 3. Сопоставление положения эпицентра землетрясения 4 октября 2008 г. с *К*_P=13.2, *Мw*=4.9 по данным станций сети МФ ГС РАН и других агентств

1 – инструментальный эпицентр по [2]; 2 – решение других сейсмологических служб.

Рис. 4. Положение региональных станций, зарегистрировавших землетрясение 4 октября в 18^h17^m с *K*_P=13.2, *Mw*=4.9

сейсмическая станция; 2 – эпицентр землетрясения;
эпицентральное расстояние.

Для землетрясения 4 октября имеется решение механизма очага по данным агентства GCMT (табл. 5, рис. 5) [10]. Согласно полученному механизму, землетрясение возникло под действием близких по величине растягивающих напряжений, ориентированных на северо-запад, и сжимающих, ориентированных на юго-запад. Однако в его очаге несколько преобладали напряжения сжатия, т.к. $PL_P=5^\circ < PL_T=18^\circ$. Обе нодальные плоскости имеют крутое ($DP=74-81^\circ$) падение. Простирание по плоскости NP1 – близмеридиональное ($STK_1=2^\circ$), по NP2 – субширотное ($STK_2=95^\circ$). Тип движения по обеим плоскостям – сдвиг (правосторонний – по NP1, левосторонний – по NP2) с компонентами взброса. В тектоническом отношении землетрясение тяготеет к Ульбейскому разлому протяженностью более 500 км север–северо-западного простирания (рис. 6) [11]. Ульбейский разлом представляет собой правосторонний сдвиг [12, 13]. Учитывая вышесказанное, в качестве действующей плоскости разрыва может быть выбрана плоскость NP1.

Агент-	Дата,	$t_0,$	h,	Маг	нит	уды	K _P	Оси главных напряжений						Нодальные плоскости						Ис-
ство	д м	ч мин с	КМ	Mw	$m_{\rm b}$	Ms		Т		N		Р		NP1		NP2		точ-		
								PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	ник
GCMT	04.10	18 17 33.5	24.3	4.9	5.0	4.6	13.2	18	319	72	123	5	228	2	74	171	95	81	16	[4]

Таблица 5. Параметры механизма очага землетрясения 4 октября 2008 г.

Рис. 5. Стереограмма механизма очага землетрясения 4 октября в 18^h17^m с *K*_P=13.2 в проекции нижней полусферы

1 – нодальные линии; 2, 3 – оси главных напряжений: растяжения и сжатия соответственно (зачернена область волн сжатия).

Рассмотрим особенности сейсмичности по отдельным районам.

В Охотском море (\mathbb{N} 1) локализовано 13 землетрясений с K_{P} =7.2–11.8, что составляет 6 % от общего числа, а доля выделившейся сейсмической энергии – 3.8 % (ΣE =6.698·10¹¹ Дж).

Наиболее сильное (K_p =11.8) землетрясение (1) произошло 29 марта в 14^h55^m. Оно ощущалось жителями г. Магадан (Δ =194 км) и пос. Снежный (Δ =205 км) с интенсивностью *I*=3 балла. Отметим также событие, произошедшее 8 сентября в 04^h21^m с K_p =10.5 в районе Гижигинской губы, которое ощущалось на пограничной заставе пос. Эвенск (Δ =103 км) с интенсивностью *I*=3 балла [6]. В районе **Колымы** (**№** 2) зарегистрировано наибольшее число землетрясений (*N*=202) с K_P =6.0–13.2, или 94 % от общего числа событий в регионе. Суммарная сейсмическая энергия, выделенная землетрясениями района **№** 2, оказалась равной ΣE =168.223·10¹¹ Дж, что составило 96 % от общего значения.

В Колымском районе 4 октября в $18^{h}17^{m}$ зарегистрировано самое сильное (K_{P} =13.2) землетрясение года (3), описанное выше.

Другое сильное (K_P =11.6) землетрясение (4) произошло 4 ноября в 21^h28^m в непосредственной близости от рудника им. Матросова, пос. Омчак (33 км). Сведений об его ощутимости нет, однако на руднике произошло осыпание отвала отработанной породы. За одну минуту до землетрясения (4) в 21^h27^m был зафиксирован один форшок с K_P =10.1. Ближайшая сейсмическая станция «Омчак», находящаяся на расстоянии Δ =33 км от эпицентра, зарегистрировала 50 слабых афтершоков с $K_P \le 6.7$ в период 4–24 декабря. Определить местоположение их гипоцентров удалось лишь для четырех из них. Другие не локализованы, т. к. они зарегистрированы только одной станцией. Эпицентр основного землетрясения, равно как предшествующие и последующие ему события (рис. 6), тяготеют к крупнейшему Тенькинскому разлому северозападного простирания (6) [11].

Рис. 6. Тектоническая схема района Колымы по [11] и положение эпицентров землетрясений 2008 г.

1 – крупнейшие разломы: установленные (а), предполагаемые (б), скрытые под молодыми образованиями (в) и в акватории моря (г); 2 – прочие тектонические нарушения: установленные (а), предполагаемые (б), скрытые под молодыми образованиями (в) и в акватории моря (г); 3 – скрытые разломы фундамента: М-С – Малык-Сиенский, Бр – Берелёхский, Х-М – Хейджано-Мылеинский, Д – Детринский, Бх – Бахапчинский; 4 – разломы с указанием угла наклона поверхности сместителя: надвиги (а), сдвиги (б); 5 – краевые ограничения установленных (а) и предполагаемых (б) шарьяжей, интерпретированная амплитуда их смещения, *м*; 6 – сейсмическая станция; 7 – энергетический класс землетрясений.

Интересна область из 32 эпицентров землетрясений с K_P =6.0–9.9 севернее г. Сусуман. Она вытянута в северо-западном направлении на расстояние около 30 км (рис. 7). Область эпицентров располагается в пределах Морджотской зоны тектоно-магматической активизации между двумя разломами северо-западного простирания – Дебинским и Кунтук [11]. Большинство этих толчков слабые, с K_P =6.0–8.0, хотя ранее (14.05.2003 г. [14]) здесь уже происходило достаточно сильное землетрясение с K_P =11.1, которое жители Сусумана ощущали с интенсивностью *I*=4 балла. Область форшок-афтершоковой активности этого землетрясения 14.05.2003 г. также была вытянута в северо-западном направлении.

Следует отметить, что поскольку в этом районе расположены мелкие россыпи золота, которые отрабатываются, то некоторые события малых энергетических классов являются, возможно, взрывами.

Рис. 7. Эпицентры землетрясений в районе г. Сусуман в 2008 г. (тектоническая основа дана по [11])

гранитоидные массивы; 2 – Малык-Сиенская неотектоническая впадина; 3 – разломы установленные (а), скрытые под более молодыми образованиями (б); 4 – контуры Морджотской зоны тектономагматической активизации;
Малыксиенский скрытый разлом фундамента; 6 – энергетический класс K_P; 7 – сейсмическая станция «Сусуман».

В районах Западной Чукотки (№ 3), Восточной Чукотки (№ 4), Берингова моря (№ 6) в 2008 г. не локализовано ни одного землетрясения.

В районе Чукотского моря (\mathbb{N}_{2} 5), как отмечено выше, по данным других сейсмологических служб, 1 марта 2008 г. в 07^h20^m произошло землетрясение с магнитудой m_b =3.8 (ISC) [4], но в регионе оно зарегистрировано только станцией «Билибино, находящейся на расстоянии более 1000 км от эпицентра (рис. 2). По данным одной станции, из-за нечетких вступлений волн, определить координаты эпицентра и энергетический класс не удалось. Эпицентр (по данным [4]) находится вдали от населенных пунктов, сведений о его ощутимости не поступало.

Оценить реальную сейсмическую обстановку в районах Чукотки невозможно из-за непредставительности материалов сейсмологических наблюдений. В рассматриваемый период на данной территории работала только станция «Билибино».

В заключение отметим, что сейсмическая активность региона в районах Колымы и Охотского моря в 2008 г. заметно увеличилась, по сравнению с таковой в 2007 г. Все землетрясения пространственно приурочены к известным сейсмогенным зонам: Охотоморской и сейсмическому поясу Черского [15, 16].

Литература

- 1. Алёшина Е.И., Гунбина Л.В., Карпенко Л.И., Седов Б.М. Северо-Восток России // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2013. С. 215–224.
- 2. Алёшина Е.И., Комарова Р.С. (отв. сост.) Каталог землетрясений Северо-Востока России за 2008 г. (*N*=238). (См. Приложение к наст. сб. на CD).

- 3. Артёмова Е.В. (сост.). Дополнение к каталогу землетрясений Северо-Востока России за 2008 г. (*N*=1). (См. Приложение к наст. сб. на CD).
- 4. Bulletin of the International Seismological Centre for 2008. Thatcham, United Kingdom: ISC, 2010. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/.
- 5. Mackey K.G. Seismological Studies in Northeast Russia. Dissertation for the degree of Ph.D. Michigan State University. Department of Geological Sciences, 1999. 346 p.
- 6. Алёшина Е.И. Макросейсмический эффект ощутимых землетрясений (*N*=3) в населенных пунктах Северо-Востока России в 2008 г. (См. Приложение к наст. сб. на CD).
- 7. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 8. Алёшина Е.И. (отв. сост.). Перечень названий сотрясенных в 2008 г. населенных пунктов (*n*=4) Северо-Востока России. (См. Приложение к наст. сб. на CD).
- 9. Сейсмологический бюллетень (ежедекадный) за 2008 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2008. – URL: //ftp.gsras.ru/pub/Teleseismic_bulletin/2008/.
- 10. Левина В.И. (сост.). Каталог механизмов очагов землетрясений Северо-Востока России за 2008 г. (N=1). (См. Приложение к наст. сб. на CD).
- Кузнецов В.М. Схема тектонического районирования Охотско-Колымского водораздела. Масштаб 1:1 000 000. – ФГУП «Магадангеология», 2001.
- 12. Имаев В.С., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. М.: ГЕОС, 2000. 227 с.
- 13. **Козьмин Б.М.** Сейсмические пояса Якутии и механизмы очагов землетрясений. М.: Наука, 1984. 125 с.
- 14. Алёшина Е.И., Гунбина Л.В., Лещук Н.М., Седов Б.М. Северо-Восток России // Землетрясения Северной Евразии, 2003 год. Обнинск: ГС РАН, 2009. С. 193–200.
- 15. Алешина Е.И., Седов Б.М. Развитие структуры и геодинамики северной границы Охотоморской плиты // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Тезисы докладов на региональной научно-технической конференции. – Петропавловск-Камчатский: КФ ГС РАН, 2009. – С. 11.
- 16. Сучкова О.Н., Седов Б.М. Сейсмичность юго-восточного окончания пояса Черского // Научная молодежь Северо-Востоку России: Материалы III Межрегиональной конференции молодых ученых (Магадан, 27–28 мая 2010 г.) СВКНИИ ДВО РАН. Магадан: СВНЦ ДВО РАН, 2010. С. 153–154.