КУРИЛО-ОХОТСКИЙ РЕГИОН

Т.А. Фокина, Д.А. Сафонов, Е.Н. Дорошкевич, В.И. Михайлов

Сахалинский филиал ГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru

Региональная сеть и карта M_{min} . Сеть сейсмических станций на территории Курило-Охотского региона в 2008 г., как и в предыдущие тринадцать лет, состояла из трех станций: «Северо-Курильск» (SKR), «Курильск» (KUR) и «Южно-Курильск» (YUK) (рис. 1). 1 июня на станции «Южно-Курильск» была установлена и запущена в опытную эксплуатацию цифровая станция Ugra [1]. На станции «Северо-Курильск» (SKR) дополнительно к существующему комплексу аналоговой аппаратуры 2 июня специалистами КФ ГС РАН установлена цифровая аппаратура СЦСС+GSR-24. Сведения о местоположении курильских станций и регистрирующей аппаратуре приведены в Приложении к наст. сб. [2].

Рис. 1. Карта магнитудной представительности землетрясений *M*_{min} Курило-Охотского региона в 2008 г.

1 – изолиния M_{\min} ; 2 – сейсмическая станция; 3 – граница и номер района соответственно; 4 – граница региона; 5 – ось глубоководного Курило-Камчатского желоба.

Существующая сеть из трех названных станций совместно со станциями Приамурья-Приморья [3] и Сахалина [4] обеспечила на значительной части территории Курило-Охотского региона регистрацию без пропусков землетрясений с расчетной магнитудой $M^{P}>4.0$ ($K_{C}=9$), а на территории Онекотан-Матуанского района и северо-восточной части Охотского моря без пропусков могут регистрироваться лишь события с $M^{P} \ge 4.5$ ($K_{C} \ge 10$). И только на небольшом участке юго-западной части Охотского моря, находящемся в окружении трех региональных станций, представительными являются землетрясения с $M^{P} \ge 3.5$ ($K_{C} \ge 8$). Карта магнитудной представительности в пределах границ Курило-Охотского региона показана на рис. 1. В целом представительность землетрясений в Курило-Охотском регионе, по сравнению с таковой в 2007 г. [5], не изменилась.

Методика обработки землетрясений, по сравнению с таковой в [5], не изменилась. По-прежнему для определения параметров землетрясений региона привлекались инструментальные данные сейсмических станций Приамурья и Приморья 3], Сахалина [4], а также бюллетени ГС РАН [6], JMA и ISC [7]. Методика обработки данных, изложенная в [8–16], не изменилась.

Границы региона остаются в рамках изменений 2004 г., когда северо-восточная

часть региона вошла в зону ответственности Камчатского филиала ГС РАН, а юго-восточная часть (о. Хоккайдо и Японское море) была исключена из зоны ответственности СФ ГС РАН, т.к. эта территория входит в Японию [17, 18]. Но небольшая восточная часть острова, отрезанная по меридиану λ=144° (рис. 1), осталась как район № 6.

Для магнитуд принята процедура внедрения в каталог единой графы, содержащей расчетные магнитуды M^P для всех землетрясений, кроме небольшой части коровых толчков, для которых берется региональное значение магнитуды *MLH* по стандартной методике [19], для всех остальных производится пересчет (или из класса K_C , или из разных магнитуд *MPV*, *MPVA*, *MSH*, *MSHA*). Конкретно, в каталоге землетрясений за 2008 г. [20] реальных магнитуд *MLH* – 129, против 247 в [21].

В качестве оценки энергии землетрясений использована расчетная магнитуда M^P , значения которой определены по формулам связи магнитуд по объемным и поверхностным волнам С.Л. Соловьёва и О.Н. Соловьёвой из [13–15]:

– для событий с глубиной *h*≤80 км: M^{P} =*MLH*; M^{P} =(*K*_C−1.2)/2; M^{P} =(*MSH*−1.71)/0.75; M^{P} =(*MPV*−2.5)/0.65; M^{P} =(*MSH*−1.71)/0.75; M^{P} =(*MPV*−2.5)/0.65;

– для событий с h>80 км: $M^{P}=(MSH-1.71)/0.75$; $M^{P}=(MPV-2.5)/0.65$; $M^{P}=(K_{C}-1.2)/2$; $M^{P}=(MSHA-1.71)/0.75$; $M^{P}=MLH$; $M^{P}=(MPVA-2.5)/0.65$.

Каталоги региона в 2008 г. Результаты обработки землетрясений, сбора сведений о знаках первых вступлений *P*-волн, о макросейсмических данных представлены в наст. сб. в четырех Приложениях на CD – это каталог всех землетрясений Курило-Охотского региона [20], каталог только ощутимых землетрясений с представлением всех пунктов ощутимости [22], каталог механизмов очагов некоторых землетрясений [23] и список названий населенных пунктов [24], в которых один или более раз отмечены сотрясения земной поверхности в 2008 г.

Приведем краткую характеристику каталогов и сравнение объемов информации в 2008 и 2007 гг.

В региональный каталог землетрясений [20] включены параметры 572 землетрясений с $M^p = 2.0 - 8.5$ (что почти в два раза меньше, чем в 2007 г. [21]). Из гипоцентры 410 землених трясений (72 % общего числа) локализованы в верхнем глубинном интервале с *h*≤80 км, 141 (25 %) – в промежуточном слое с *h*=81-300 км, а в нижнем интервале глубин *h*>300 км зарегистрировано 21 землетрясение, т.е. менее 4 %. Распределение всех землетрясений по глубине дано на рис. 2.

К ощутимым событиям в каталоге [20] отнесено 58 землетрясений, 22 из которых, представленных в [22], отмече-

Рис. 2. Распределение землетрясений Курило-Охотского региона по глубине гипоцентра *h*, *км*

ны в населенных пунктах региона [24] и, возможно, в Японии, остальные 36 выявлены по данным ISC [7] и были ощутимы только в Японии (*ped.*). Соответственно, в каталоге [20] созданы две графы макросейсмических данных. Максимальный макросейсмический эффект на территории региона не превышал *I*=4 балла [22], что необычно мало для такого сейсмоактивного региона. Наибольшее число ощутимых землетрясений зафиксировано, как обычно, в диапазоне глубин *h*=31–80 *км*.

Механизмы очагов в 2008 г. определены методом полярности первых смещений для 53 землетрясений Курило-Охотского региона [23], что почти в восемь раз превышает объем аналогичного каталога в 2007 г. [25].

Карта эпицентров землетрясений Курило-Охотского региона в 2008 г. приведена на рис. 3. Как видим, основная часть землетрясений располагается на западном склоне Курило-Камчатского глубоководного желоба, углубляясь в северо-западном направлении. Самое сильное (MLH=6.4) из коровых землетрясений (6) локализовано на глубине h=24 км ближе к средней части эпицентральной зоны 3 марта в 09^h30^m. В этот же день (3 марта в 14^h35^m) состоялось и самое сильное (MLH=6.2) землетрясение (7) с промежуточной глубиной h=103 км на крайнем юге эпицентральной зоны. Эпицентры глубоких (h>300 км) землетрясений расположены в акватории Охотского моря. Самое сильное (Mw_{GCMT} =7.7) из них (32) реализовалось 5 июля в 02^h12^m на максимальной глубине h=604±7 км (рис. 3).

Рис. 3. Сейсмическая сеть и карта эпицентров землетрясений Курило-Охотского региона в 2008 г.

1 – магнитуда M^P ; 2 – глубина *h* гипоцентра, *км*; 3 – сейсмическая станция; 4 – граница и номер района соответственно; 5 – граница зоны ответственности сети СФ ГС РАН; 6 – ось глубоководного Курило-Камчатского желоба.

Сейсмичность региона. В табл. 1 и 2 даны распределения землетрясений по магнитудам в поверхностном и глубоком слоях сейсмоактивного объема в 2001–2008 гг.

Год	M^{P}									$N_{\Sigma}(M^{\mathrm{P}}>4)$	ΣE	ΣE
	≤4	4.5	5	5.5	6	6.5	7	8			10 ¹² Дж	10^{12} Дж, (M^{P} >4)
2001	239	108	26	5	4		1		383	144	4362.23	4343.75
2002	217	85	10	2	3	1			318	101	734.72	717.02
2003	256	140	33	15	9	2			455	199	1959.97	1937.82
2004	173	155	24	8	2	2	2		366	193	3887.31	3874.87
2005	150	79	16	2	2				249	99	242.22	230.36
2006	405	371	75	21	7	5	1	1	886	481	66766.49	66730.70
2007	545	283	49	8	4	1		1	891	346	89918.32	89877.22
Сумма	1985	1221	233	61	31	11	4	2	3548	1563	167871.3	167711.7
Среднее	283.6	174.4	33.3	8.7	4.4	1.6	0.6	0.3	506.6	223.3	23981.6	23958.8
2008	270	114	19	4	2	1			410	140	476.93	460.21

Таблица 1. Число мелкофокусных (*h*≤80 км) землетрясений разных магнитуд *N*(*M*) и суммарная сейсмическая энергия Σ*E* в Курило-Охотском регионе в 2001–2008 гг.

Примечание. Распределение землетрясений по магнитудам построено для следующих диапазонов: *M*^P=4: 3.8≤*M*<4.3; *M*^P=4.5: 4.3≤*M*<4.8; *M*^P=5: 4.8≤*M*<5.3; *M*^P=5.5: 5.3≤*M*<5.8 и т.д.

Таблица 2. Число глубокофокусных (*h*>80 *км*) землетрясений разных магнитуд *N*(*M*^P) и суммарная сейсмическая энергия Σ*E* в Курило-Охотском регионе в 2001–2008 гг.

Год	$M^{ m P}$										$N_{\Sigma}(M^{\mathrm{P}}>4)$	ΣE	ΣE
	≤4	4.5	5	5.5	6	6.5	7	8	8.5			10 ¹² Дж	10 ¹² Дж, (M>4)
2001	64	53	25	8	4	3	1			158	94	6087.98	6083.70
2002	64	53	32	11	3	2	1	1		167	103	65492.03	65487.96
2003	54	55	31	19	4		1			164	110	1479.57	1476.04
2004	25	21	24	13	3		1			87	62	1852.69	1851.02
2005	24	17	20	17	3	1				82	58	741.38	739.79
2006	16	22	48	31	4	2				123	107	1241.02	1240.30
2007	38	41	23	13	5	3	1			124	86	3851.16	3848.15
Сумма	285	262	203	112	26	11	5	1	0	905	620	80745.8	80727
Среднее	40.7	37.4	29	16	3.7	1.6	0.7	0.1	0	129.3	88.6	11535.1	11532.4
2008	79	46	14	18	3	1			1	162	83	380945.37	380939.56

По совокупности данных за 2008 г. построены графики повторяемости землетрясений разных магнитуд M^P (рис. 4), из которых следует, что в рассматриваемом году и для поверхностных, и для глубоких землетрясений можно считать представительной магнитуду M^P =4.5. Исходя из этого, дальнейший сравнительный анализ сейсмичности региона в 2008 г. проведен для землетрясений с $M^P \ge 4.5$.

Рис. 4. Графики повторяемости для землетрясений из поверхностного (а) и глубокого (б) слоев по данным каталога Курило-Охотского региона [20] за 2008 г.

Мелкофокусная сейсмическая активность в 2008 г. испытала резкий спад после двух сейсмически активных лет (табл. 1 и рис. 5 а). Сейсмическая энергия, высвобожденная поверхностными очагами в 2008 г. (E_{Σ} =460.21·10¹² Дж), более чем в 50 раз меньше среднего значения за предыдущие семь лет.

Рис. 5. Распределение числа мелкофокусных (а) и глубокофокусных (б) землетрясений с *М*^P≥4.5 и величины суммарной сейсмической энергии Σ*E* Курило-Охотского региона за 2001–2008 гг.

1 – число землетрясений N; 2 – среднее число землетрясений по данным за 2001–2007 гг. 3 – сейсмическая энергия ΣE; 4 – средняя величина энергии за период 2001–2007 гг.

Продолжалась афтершоковая активность в очагах Симуширских землетрясений 15.11.2006 г. с *Мw*=8.3 и 13.01.2007 г. с *Mw*=8.1 [26], поэтому самыми сейсмоактивными были Симушир-Урупский и Онекотан-Матуанский районы (№ 3 и № 2 соответственно), но их активность очень снизилась. Остальные районы продемонстрировали нетипичную, весьма умеренную активность (табл. 3).

N⁰	Район	Район М ^Р												
		<4	4	4.5	5	5.5	6	6.5	7	8.5		10 ¹² Дж		
1	Парамуширский	1	1	2	1						5	3.47		
2	Онекотан-Матуанский	14	43	19	4	1					81	27.92		
3	Симушир-Урупский	19	87	44	8	3	2	1			164	406.98		
4	Северо-Итурупский	12	32	24							68	12.52		
5	Кунашир-Шикотанский	8	40	22	5						75	22.42		
6	Восток о. Хоккайдо	1	10	3	1						15	3.59		
8	Охотское море	1	1								2	0.03		
	Всего	56	214	114	19	4	2	1			410	476.93		
	h>80 км													
1	Парамуширский	1	1								2	0.12		
2	Онекотан-Матуанский	3	220	9		3					37	44.730		
3	Симушир-Урупский	1	15	18	7	3	1				45	171.05		
4	Северо-Итурупский	1	3	5	1	2					12	34.96		
5	Кунашир-Шикотанский	2	13	5	4	6	1	1			32	331.90		
6	Восток о. Хоккайдо		2	3	1	1					7	8.64		
8	Охотское море	3	12	60	1	3	1			1	27	380353.98		
	Всего	11	68	46	14	18	3	1		1	162	380945.37		

Таблица 3. Распределение землетрясений по магнитудам *M*^P и суммарная сейсмическая энергия Σ*E* по районам Курило-Охотского региона в 2008 г.

Глубокофокусная (h>80 км) сейсмическая активность, напротив, испытала всплеск из-за упомянутого выше сильного (Mw_{GCMT} =7.7) глубокого (h=604±7 км) землетрясения, произошедшего 5 июля в 02^h12^m в северо-восточной части Охотского моря.

Из 22 ощутимых землетрясений [22] наибольшее их число (N=15) произошло в Кунашир-Шикотанском районе (№ 5), четыре – в Северо-Итурупском (№ 4), два – в районе о. Хоккайдо (№ 6) и одно – в Охотском море (№ 8) (табл. 4).

N⁰	Район	һ км	N_{Σ}	N _{omvt.}	I _{max}	$K_{\rm C max}$	M _{max}		
							MLH	MSH	M^{P}
1	Парамуширский	0-30							
		31-80	5			10.6	5.0		5.0
		81-94	2			10.2	4.0		4.2
2	Онекотан-Матуанский	0-30	12			10.3	4.3	5.4	4.6
		31-80	69			12.1	5.5	6.5	5.5
		81-148	37			12.3	4.6	5.9	5.6
3	Симушир-Урупский	0-30	20			13.2	6.4	6.9	6.4
		31-80	144			12.8	5.8	6.3	5.8
		81-176	45			11.7	4.7	6.0	6.2
4	Северо-Итурупский	0-30	11			10.2			4.5
		31-80	57	3	3-4	12.7	4.7	5.4	4.8
		81-167	12	1	2	11.6	4.2	5.9	5.6
5	Кунашир-Шикотанский	0-30	5			9.5			4.2
		31-80	70	8	3-4	12.4	4.8	5.7	5.3
		81-167	32	7	4	13.0	6.2	6.0	6.3
6	О. Хоккайдо	0-30							
		31-80	15	2	3-4	11.4	4.8	5.7	4.8
		81-143	7			10.0		5.7	5.3
8	Охотское море	0-30	2			9.2	3.0		3.8
		31-80							
		81-604	27	1	2-3	9.1	6.7	8.1	8.5

Таблица 4. Распределение землетрясений по интервалам глубины h, максимальные значения интенсивности сотрясений I_{max} , энергетического класса K_{Cmax} и магнитуд *MLH*, *MSH*, M^{P} в районах Курило-Охотского региона

Представление о вариациях сейсмического режима в отдельных районах Курило-Охотского региона можно получить из анализа табл. 5 и рис. 7, где приведены ежегодные числа землетрясений и величина сейсмической энергии в каждом из районов за 2001–2008 гг. Сопоставление параметров сейсмичности проведено для землетрясений с магнитудой $M^P \ge 4.5$.

Год	Район												
		Nº 2		Nº 3		<u>№</u> 4		Nº 5	<u>Nº</u> 8				
	N_{Σ}	ΣE											
	һ≤80 км												
2001	12	50.19	21	79.76	38	4078.94	35	69.10	1	0.25			
2002	12	40.79	16	5.98	21	510.43	26	95.72					
2003	17	101.79	15	13.08	31	89.03	28	50.75					
2004	23	416.02	28	21.47	32	147.53	65	2047.56					
2005	12	87.63	20	18.18	17	6.89	25	13.42					
2006	220	1084.34	199	65584.81	18	16.97	38	1.58					
2007	130	89572.74	143	238.91	32	26.96	32	27.88	1	0.50			
Сумма	426	91353.5	442	65962.19	189	4876.75	249	2306.01	2	0.75			
Среднее	60.9	13050.5	63.1	9423.17	27	696.68	35.6	329.43	0.3	0.11			
2008	24	24.61	58	400.13	24	9.97	27	19.18					

Таблица 5. Число землетрясений с *М*^Р≥4.5 и их суммарная сейсмическая энергия по некоторым районам Курило-Охотского региона за 2001–2008 гг.

	1													
Год	Район													
		Nº 2	Nº 3			<u>№</u> 4		Nº 5	Nº 8					
	N_{Σ}	ΣE												
	h>80 км													
2001	5	710.14	17	357.56	10	12.79	13	4005.37	27	880.33				
2002	13	1426.10	10	89.16	17	19.09	17	435.59	21	63315.52				
2003	11	17.76	20	67.88	5	15.29	21	75.60	13	55.21				
2004	5	32.49	13	1508.37	10	88.04	16	66.29	13	119.44				
2005	1	0.7	12	213.06	8	50.72	18	346.75	15	123.81				
2006	21	161.78	35	195.34	10	374.35	24	118.5	12	360.32				
2007	6	17.50	33	3206.19	5	192.28	27	410.94	13	19.73				
Сумма	62	2366.47	140	5637.56	65	752.56	136	5459.04	114	64874.36				
Среднее	8.9	338.07	20	805.37	9.29	107.51	19.4	779.86	16.3	9267.77				
2008	12	42.91	29	169.90	8	34.82	17	330.38	12	380353.02				

Примечание. Суммарная энергия в табл. 5 дана в единицах *E*, 10¹² Дж.

Рис. 6. Эпицентры сильнейших землетрясений Курило-Охотского региона в 2008 г. и стереограммы механизмов очагов

1 – магнитуда M^P ; 2 – глубина *h* гипоцентра, *км*; 3 – сейсмическая станция; 4 – стереограмма механизма очага землетрясения в проекции на нижнюю полусферу, зачернены области сжатия; 5 – граница и номер района соответственно; 6 – граница зоны ответственности сети СФ ГС РАН; 7 – ось глубоководного Курило-Камчатского желоба.

Рис. 7. Распределение ежегодных чисел землетрясений с *M*^P≥4.5 и величины суммарной сейсмической энергии Σ*E* в поверхностном (а) и глубоком (б) слое по районам Курило-Охотского региона в 2001–2008 гг.

1 – число землетрясений N; 2 – сейсмическая энергия ΣE; – 3, 4 – среднее значение числа землетрясений и сейсмической энергии по данным за 2001–2007 гг.

Сейсмичность районов региона. Рассмотрим особенности сейсмического процесса в каждом из семи районов Курило-Охотского региона.

В Парамуширском районе (\mathbb{N} 1) зарегистрировано пять мелкофокусных землетрясений с M^{P} =3.7–5.0 и два с промежуточными (*h*=87 и 94 км) глубинами с M^{P} =4.2 и 3.8, соответственно. Ни одно из них не было ощутимым.

На территории Онекотан-Матуанского (\mathbb{N} 2) и Симушир-Урупского (\mathbb{N} 3) районов продолжался афтершоковый процесс упомянутых выше Симуширских землетрясений, произошедших 15.11.2006 г. (*MLH*=8.0) и 13.01.2007 г. (*MLH*=8.1), эпицентры которых располагались на границе районов \mathbb{N} 2 и \mathbb{N} 3, и область афтершоков распространилась на значительный объем двух смежных районов [26]. В Онекотан-Матуанском районе в поверхностном слое (h<80 км) резко снизилось как число землетрясений, так и суммарная сейсмическая энергия (табл. 5, рис. 7 а), по сравнению с таковыми в 2007 г. [5]. Самое сильное (MLH=5.5) в этом районе мелкофокусное (h=43±6 км) землетрясение (10) произошло 14 марта в 10^h45^m. Подвижка в его очаге может быть классифицирована как сдвиг со значительной сбросовой компонентой. Одна из нодальных плоскостей запад-юго-западного простирания почти вертикальна, а вторая – юго-восточного простирания, наклонена под углом DP=46° к западу, движение в очаге можно классифицировать как сдвиг. Не менее сильные (Mw_{GCMT} =5.4, 5.4) землетрясения (59) и (60) произошли 28 декабря в 13^h31^m и в 21^h40^m соответственно. Оба землетрясения относятся к очаговой зоне Симуширских землетрясений [26] и имеют взбросовый тип подвижки, обусловленный близгоризонтальным сжатием в северо-западном направлении. В механизмах очагов менее сильных землетрясений (14, 16, 18, 19, 53) поверхностного слоя Онекотан-Матуанского района наблюдаются разнонаправленные движения и типы подвижек. Столь хаотичная картина движений определяется, возможно, ограниченным числом знаков первых вступлений объемных волн, что приводит к низкой точности получаемых решений.

В слое $h=81-148 \ \kappa m$ зарегистрировано 12 землетрясений с $M^P \ge 4.5$, что в 1.5 раза больше среднего значения за период 2001–2007 гг., но суммарная сейсмическая энергия почти в 8 раз меньше среднего значения за указанный период (табл. 5, рис. 7 б). Самое сильное ($Mw_{GCMT}=5.1$, $M^P=5.6$) землетрясение (8) произошло 10 марта в $04^{h}57^{m}$ на глубине $h=119\pm12 \ \kappa m$. Для него определен механизм очага, согласно которому подвижка может быть классифицирована как сбросо-сдвиг в условиях близгоризонтального субширотного растяжения, при этом ось сжимающего напряжения направлена на юг под углом $PL=52^{\circ}$, т.е. сдвиговая компонента механизма достаточно существенна. В очаге землетрясения (61) 28 декабря в $22^{h}39^{m}$ на глубине $h=87\pm5 \ \kappa m$ с MSH=5.8, $Mw_{GCMT}=5.0$ наблюдается взброс по плоскости, ориентированной вдоль глубоководного желоба.

В Симушир-Урупском районе (\mathbb{N} 3) зарегистрировано 58 мелкофокусных землетрясений с $M^P \ge 4.5$, что в 2.5 раза меньше, чем наблюдалось в 2007 г., и лишь на 5 событий меньше среднего значения за период 2001–2007 гг., а суммарная сейсмическая энергия даже превысила в 1.7 раза уровень в 2007 г., хотя и оказалась более чем в 20 раз меньше среднего значения за указанный период (табл. 5, рис. 7а).

Самое сильное (MLH=6.4, $Mw_{GCMT}=6.5$) в районе мелкофокусное землетрясение (6) произошло 3 марта в 09^h30^m. Движение в очаге этого землетрясения относится к пологим надвигам, при этом пологая ($DP=6^{\circ}$) плоскость падает под островную дугу, а субвертикальная – наклонена в сторону Тихого океана.

В слое $h=81-176 \ \kappa m$ зарегистрировано 29 землетрясений с $M^P \ge 4.5$, что на четыре события меньше, чем в 2007 г., но на девять землетрясений больше среднего значения за период 2001–2007 гг. Все землетрясения намного слабее, чем в 2007 г., поэтому суммарная сейсмическая энергия в 18 раз меньше, чем таковая в 2007 г. (табл. 5, рис. 7 б).

Самое сильное (M^{P} =6.2, MPV=6.5) землетрясение (47) в промежуточном (h=85±6 км) слое произошло 1 октября в 00^h 53^m. Механизм очага этого землетрясения по региональным данным определить не удалось, но по данным агентства NIED [6, 27] в его очаге движение типа правосторонний сдвиг по плоскости северо-восточного простирания с незначительной сбросовой компонентой.

По оценкам международных сейсмологических агентств [6] наиболее сильное $(Mw_{GCMT}=5.2)$ землетрясение (56) на глубинах $h>80 \ \kappa m$ произошло 22 декабря в $13^{h}25^{m}$ на глубине $h=94\pm5 \ \kappa m$. Согласно [27], в его очаге реализовался правосторонний сдвиг по северовосточной плоскости со взбросовой компонентой.

В очагах Симушир-Урупского района наблюдается преобладание движений типа взбросо-сдвиг по плоскостям, ориентированным вдоль простирания глубоководного желоба, что довольно хорошо согласуется с региональным полем напряжений, наблюдаемым в зоне субдукции.

Сведений о макросейсмических проявлениях ощутимых землетрясений Симушир-Урупского района на территории Курило-Охотского региона в 2008 г. не поступало, но имеются сообщения о макросейсмических проявлениях на территории Японии для землетрясений (34) 6 июля в $09^{h}08^{m}$ с Mw_{GCMT} =5.7 и (43) 27 августа в $05^{h}24^{m}$ с Mw_{GCMT} =5.7. Оба они ощущались на востоке о. Хоккайдо с интенсивностью *I*=I по шкале JMA [28], или *I*=1–2 балла по шкале MSK-64 [29]). Можно здесь напомнить принятое в [30] приближенное соответствие этих двух шкал: I JMA \rightarrow 1–2 балла MSK-64; II \rightarrow 3–4; III \rightarrow 5; IV \rightarrow 6–7; V \rightarrow 8; VI \rightarrow 9–10; VII \rightarrow 11–12 баллов.

В Северо-Итурупском районе ($N \ge 4$) мелкофокусная сейсмическая активность продолжала снижаться: на глубине $h \le 80 \ \kappa m$ произошло 24 землетрясения, их число сопоставимо со среднегодовым значением за период 2001–2007 гг. (N=27), сейсмическая энергия почти в 70 раз меньше среднегодового значения (табл. 6, рис. 6 а). Максимальная магнитуда не превышала $M^P=4.5$.

В интервале глубины *h*=81–167 км зарегистрировано восемь землетрясений, что лишь на единицу меньше среднегодового числа за 2001–2007 гг., суммарная сейсмическая энергия в три раза меньше среднегодового значения (табл. 5, рис. 7 б).

Для восьми землетрясений (4, 13, 17, 26, 27, 31, 39, 41) Северо-Итурупского района определены механизмы очагов. В шести из них наблюдаются взбросо-сдвиговые подвижки по плоскостям, субпараллельным простиранию Курило-Камчатской сейсмофокальной зоны, что характерно для рассматриваемого региона.

Макросейсмический эффект проявили четыре землетрясения, интенсивность сотрясений на территории Курило-Охотского региона не превышала 3–4 баллов. Все четыре землетрясения ощущались в Японии [6, 22]. Максимальная интенсивность сотрясений составила *I*=II JMA (*I*=3–4 балла MSK-64).

В Кунашир-Шикотанском районе (\mathbb{N} 5) сейсмическая активность также оставалась на невысоком уровне, как в поверхностном, так и в глубоком слое. Число мелкофокусных землетрясений (N=27) в 1.3 раза, а величина сейсмической энергии – в 16.6 раза ниже среднегодовых значений, рассчитанных для этого района по данным 2001–2007 гг., магнитуда землетрясений не превышала M^{P} =5.3 (табл. 5, рис. 7 а). В глубоком слое число землетрясений (N=17) сравнимо со среднегодовым значением, а величина сейсмической энергии в два раза меньше среднего значения за указанный период (рис. 7 б).

Самое сильное ($M^{h}=6.3$, MPV=6.6) землетрясение (2) в районе произошло 6 января в $08^{h}14^{m}$ на глубине $h=85\pm8$ км вблизи южной оконечности о. Кунашир. Механизм очага этого события определен не был.

Для 14 землетрясений Кунашир-Шикотанского района определены механизмы очагов (рис. 6), среди них у 8 событий (1, 9, 20, 28, 29, 46, 48, 52) движения в очаге типа взброс, с наличием сдвиговой компоненты. Во всех очагах одна из нодальных плоскостей имеет северовосточное простирание. Движения в очагах пяти землетрясений (12, 23, 37, 38, 42) типа сбрососдвиг, причем одна из нодальных плоскостей также ориентирована на северо-восток.

16 землетрясений ощущались в населенных пунктах Кунашир-Шикотанского района. Интенсивность сотрясений не превышала 3–4 балла (табл. 4). Более интенсивные сотрясения от землетрясений района наблюдались на территории Японии [6, 22]. Так, события (29) 31 мая в $06^{h}23^{m}$ с M^{P} =5.5 и (42) 14 августа в $11^{h}10^{m}$ с M^{P} =5.5 ощущались на востоке о. Хоккайдо с интенсивностью *I*=III JMA [28] (*I*=5 баллов [29]).

Кроме упомянутых выше 16 ощутимых землетрясений, еще для 19 событий имеются сведения о макросейсмических проявлениях на территории Японии [20]. Интенсивность сотрясений для них не превышала *I*=II JMA (*I*=3–4 балла MSK-64)

Восток о. Хоккайдо (№ 6), как отмечено выше, составляет лишь малую часть прежней территории района до 2004 г., в связи с чем сопоставления параметров сейсмического режима с данными 2001–2007 гг. не проводится.

Здесь в верхнем интервале глубины $h \le 80 \ \kappa m$ было зарегистрировано 15 землетрясений с магнитудой $M^{P} \le 4.8$, в интервале глубины $h = 81 - 143 \ \kappa m$ – семь землетрясений с $M^{P} \le 5.3$ (табл. 3).

Землетрясение (44), произошедшее 12 сентября в $22^h 34^m$ на глубине $h=52\pm 4 \kappa m$ с $Mw_{GCMT}=5.0$, ощущалось в пос. Южно-Курильск ($\Delta=214 \kappa m$) с интенсивностью I=2 балла. На юго-востоке о. Хоккайдо это землетрясение ощущалось с интенсивностью I=III JMA [6, 22] по шкале [28], или I=5 баллов по шкале MSK-64 [29]. Имеются также сведения о сотрясениях на территории Японии еще для 15 землетрясений, эпицентры которых находятся на территории района N_{2} 6 [20].

В Охотском море (\mathbb{N} 8) отмечено два мелкофокусных землетрясения с M^{P} =3.0 и 3.8, в глубоком слое (h>80 км) зарегистрировано 27 землетрясений, 12 из которых с M^{P} ≥4.5, что

близко к среднему значению за период 2001–2007 гг. При этом суммарная сейсмическая энергия в 40 раз превышает среднее значение за указанный период (табл. 5, рис. 7).

Как отмечено выше, самое сильное (MSH=8.1, $Mw_{GCMT}=7.7$) и глубокое ($h=604 \ \kappa m$) землетрясение (32) района произошло 5 июля под акваторией Охотского моря, недалеко от западного побережья Камчатки (рис. 3, 6). Поскольку землетрясение очень сильное и глубокое, оно ощущалось на большой территории Сахалинской области и части Хабаровского края с интенсивностью не более 2–3 баллов. Движение в очаге этого землетрясения классифицируется как сбросо-сдвиг, горизонтальное напряжение растяжения ориентировано субширотно, сжимающее напряжение наклонено к северу под углом $PL=61^\circ$. Землетрясение (32) произошло на границе двух регионов – Камчатского и Курило-Охотского, поэтому его параметры имеются в каталогах обоих регионов [20, 31]. Подробное описание Охотоморского землетрясения (32) представлено в отдельной статье в наст. сб. [32] (*ped*.).

В целом в 2008 г. произошло возвращение к более типичному для Курило-Камчатской сейсмофокальной зоны распределению механизмов очагов землетрясений, большинство из них (35 из 53) произошли в условиях преобладания сжимающего напряжения, у большей части решений как минимум одна плоскость параллельна островной дуге. Однако наблюдается большое число решений механизмов со значительной сдвиговой компонентой. Также отмечается некоторое количество решений с нодальными плоскостями, развернутыми относительно простирания основных геолого-тектонических структур региона. Это может свидетельствовать либо о продолжающемся процессе перераспределения тектонических напряжений в регионе после сильных событий 2006–2007 гг., либо о недостаточно высоком качестве полученных решений, т.к. в этом году была предпринята попытка вернуть массовое определение механизмов очага, а действительно сильные события были в дефиците. Впрочем механизмы относительно слабых землетрясений часто бывают хаотичны.

Литература

- 1. Технический паспорт сейсмической станции «Грозный» типа UGRA. Обнинск. Фонды ГС РАН, 2008. 5 с.
- 2. Михайлов В.И. (сост.). Сейсмические станции Курило-Охотского региона в 2008 г. (См. Приложение к наст. сб. на CD).
- 3. Коваленко Н.С. (сост.). Сейсмические станции Приамурья и Приморья в 2008 г. (См. Приложение к наст. сб. на CD).
- 4. Михайлов В.И. (сост.). Сейсмические станции Сахалина в 2008 г. (См. Приложение к наст. сб. на CD).
- 5. Фокина Т.А., Сафонов Д.А., Дорошкевич Е.Н. Курило-Охотский регион // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2013. С. 191–201.
- 6. Сейсмологический бюллетень (ежедекадный) за 2008 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2008–2009. – - URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2008*.
- 7. Bulletin of the International Seismological Centre for 2008. Thatcham, United Kingdom: ISC, 2010. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/.
- 8. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. Методические работы ЕССН. – М.: Наука, 1989. – С. 32–51.
- 9. Миталёва Н.А., Бойчук А.Н. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1985 году. М.: Наука, 1988. С. 144–154.
- 10. Поплавская Л.Н., Миталёва Н.А., Бобков А.О., Бойчук А.Н., Рудик М.И. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1990 году. – М.: Наука, 1996. – С. 91–100.
- Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.

- Тараканов Р.З., Ким Чун Ун, Сухомлинова Р.И. Закономерности пространственного распределения гипоцентров Курило-Камчатского и Японского регионов и их связь с особенностями геофизических полей // Геофизические исследования зоны перехода от Азиатского континента к Тихому океану. – М.: Наука, 1977. – С. 67–75.
- Соловьёв С.Л., Соловьёва О.Н. Скорость колебания земной поверхности в объемных волнах неглубокофокусных Курило-Камчатских землетрясений на расстояниях до 17° // Физика Земли. – 1967. – № 1. – С. 37–60.
- 14. Соловьёв С.Л., Соловьёва О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. – 1967. – № 2. – С. 13–23.
- 15. Соловьёва О.Н., Соловьёв С.Л. Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. М.: Наука, 1968. С. 75–97.
- 16. Вермишева Л.Ю., Гангнус А.А. Применение типизации подвижек в очагах землетрясений для решения сейсмотектонических задач // Физика Земли. – 1977. – № 3. – С. 103–109.
- 17. Фокина Т.А., Дорошкевич Е.Н., Нагорных Т.В., Сафонов Д.А. Курило-Охотский регион // Землетрясения Северной Евразии, 2004 год. – Обнинск: ГС РАН, 2010. – С. 180–187.
- 18. Габсатарова И.П. Границы сейсмоактивных регионов с 2004 г. // Землетрясения России в 2004 году. Обнинск: ГС РАН, 2007. С. 139.
- 19. Инструкция о порядке производства и обработки наблюдений на сейсмических станциях Единой системы сейсмических наблюдений СССР. М.: Наука, 1982. 272 с.
- 20. Дорошкевич Е.Н. (отв. сост.), Брагина г.И., Гладырь Ж.В., Пиневич М.В. (сост.). Каталог землетрясений Курило-Охотского региона за 2008 г. (*N*=572). (См. Приложение к наст. сб. на CD).
- 21. Дорошкевич Е.Н. (отв. сост.), Пиневич М.В., Гладырь Ж.В., Швидская С.В. Каталог землетрясений Курило-Охотского региона за 2007 г. (*N*=1015) // Землетрясения Северной Евразии, 2007 год. – Обнинск: ГС РАН, 2013. – (Ha CD).
- 22. Кондорская Н.В. Инструментальные данные // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. – М.: Наука, 1977. – С. 13.
- 23. Фокина Т.А., Дорошкевич Е.Н. Макросейсмический эффект ощутимых землетрясений (*N*=58) в населенных пунктах Курило-Охотского региона в 2008 г. (См. Приложение к наст. сб. на CD).
- 24. Сафонов Д.А. (отв. сост.), Гладырь Ж.В. (сост.). Каталог механизмов очагов землетрясений Курило-Охотского региона за 2008 г. (*N*=53). (См. Приложение к наст. сб. на CD).
- 25. Дорошкевич Е.Н. (сост.). Координаты сотрясенных в 2008 г. населенных пунктов (*n*=22) Курило-Охотского региона и прилегающих территорий. (См. Приложение к наст. сб. на CD).
- 26. Сафонов Д.А. (отв. сост.) Каталог механизмов очагов землетрясений Курило-Охотского региона за 2007 г. (*N*=7) // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2013. (Ha CD).
- 27. Рогожин Е.А., Левина В.И. Симуширские землетрясения 15 ноября 2006 г. (I) и 13 января 2007 г. (II) с *Мw*=8.3 и *Mw*=8.1. Средние Курилы) // Землетрясения Северной Евразии, 2007 год. Обнинск: ГС РАН, 2013. С. 326–338.
- 28. **Левина В.И. (сост.).** Дополнение к каталогу механизмов очагов землетрясений Курило-Охотского региона за 2008 г. (*N*=265). (См. Приложение к наст. сб. на CD).
- 29. Hisada T., Nakagawa K. Present Japanese Development in Engincering Seismology and their Application to Buildings. Japan, 1958.
- 30. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 31. Давыдова Н.А. (отв. сост.), Брагина Г.И., Паршина И.А., Пиневич М.И. Курило-Охотский регион // Землетрясения Северной Евразии в 1994 году. – М.: ГС РАН, 2000. – С. 232–265.
- 32. Чеброва А.Ю., Шевченко Н.А. (отв. сост.), Бахтиарова Г.М., Митюшкина С.В., Пархоменко С.А., Пилипенко Л.В., Раевская А.А. Каталог землетрясений Камчатки и Командорских островов за 2008 г. (*N*=822). (См. Приложение к наст. сб. на CD).
- 33. Чеброва А.Ю., Митюшкина С.В., Иванова Е.И., Гусева Е.М. Охотоморское-І землетрясение 5 июля 2008 г. с *Мw*=7.7, *I*₀=5 и Охотоморское-II землетрясение 24 ноября 2008 г. с *Mw*=7.3, *I*₀=5 (Охотское море). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).