ГОДОГРАФЫ ТЕРРИТОРИИ ДАГЕСТАНА

З.А. Адилов, О.А. Асманов, Р.А. Левкович

Дагестанский филиал ГС РАН, г. Махачкала, dfgsran@mail.ru

Для определения эпицентров землетрясений, расположенных на территории Дагестана и прилегающих районов, необходим теоретический годограф, рассчитанный для модели скоростного строения земной коры, характерной для данного региона. С этой целью проанализированы скоростные разрезы территории Дагестана и построены экспериментальные годографы сейсмических волн по записям землетрясений. Определены гипоцентры очагов по методу Вадати, впервые составляются годографы для различных глубин очагов, опираясь на наиболее уверенные экспериментальные значения времен пробега сейсмических волн от очагов.

Для Кавказского региона стандартным является годограф Лебедевой–Левицкой, ориентированный на модель земной коры Кавказа [1].

Для верхней части земной коры, лежащей над метаморфизованным фундаментом, имелся достаточно объемный материал сейсморазведочных работ на нефть и газ для разных по стратиграфическому охвату разрезов. Однако особенности его строения (мощность, литостратиграфия, плотность и др.) не учитывались в стандартной скоростной модели. Игнорирование анизотропии строения и свойств осадочного чехла негативно влияло на точность определения параметров местных мелкофокусных землетрясений. Для отдельных районов Кавказа были созданы уточненные местные годографы [2–5].

Первый годограф для территории Дагестана был составлен в 1970 г. При работе эпицентральной экспедиции ИФЗ АН СССР по изучению афтершоковой последовательности Дагестанского землетрясения 14.05.1970 г. [6] был составлен методом Вадати локальный годограф для фронтальной части тектонической области Дагестанский клин [7], который использовался для местных мелкофокусных землетрясений.

В 1978 г. [8] был составлен новый годограф Восточного Предкавказья. Однако он не может отразить некоторые особенности кинематики сейсмических волн, связанных с различием строения отдельных областей в его пределах.

За период длительной регистрации землетрясений на территории Дагестана и прилегающих районов с 1970 г. накопилось большое количество данных о параметрах землетрясений. Глубины очагов землетрясений были от 2–5 до 90 км. Данные бюллетеней о землетрясениях обрабатывались методом Вадати. Полученные данные были разбиты на группы множеств пар величин (t_i , d_i) для разных интервалов глубин, где $t_i = \tau_i - \tau_0$, τ_i – время прихода сейсмической волны на i-тую станцию, τ_0 – время в очаге, а d_i – эпицентральное расстояние.

Наблюдаемые совокупности точек образовывали формы кривых с положительной и отрицательной кривизной и точкой перегиба (рис. 1). В случае на рис. 1 форма совокупности наблюденных данных задает форму кривой с выпуклостью вниз на участке от начала координат до точки перегиба при эпицентральном расстоянии $d=71.7 \ \kappa m$ и выпуклость вверх от точки перегиба до эпицентральных расстояний $d=130 \ \kappa m$. Подобная же картина имеет место для всех интервалов глубин и всех типов волн (см. Приложение [9]). Участок кривой с выпуклостью вниз соответствует прямым волнам, распространяющимся в верхней полуплоскости от очага землетрясения, а участок с выпуклостью вверх — волнам, вышедшим из очага вниз и отраженным отражающими границами под очагом землетрясения. А точка перегиба соответствует волнам, вышедшим из очага землетрясения в горизонтальной плоскости очага землетрясения.

Общее число пар данных величин (t_i , d_i) разнилось в зависимости от интервала глубин. Так, для глубины $h=13 \ \kappa m$ имелось 376 пар искомых данных (рис. 2), а для интервала глубин $h=86-90 \ \kappa m$ – всего 25 (рис. 3).

Для аппроксимации полученных совокупностей точек были использованы полиномы 3-й степени (рис. 1–3, Приложение [9]). На каждом графике в [9] указаны интервал глубин, тип волны, средняя эффективная скорость и аппроксимирующий полином с величиной достоверности аппроксимации. Ниже в табл. 1 приводится также табличный вид этих годографов. Полученные результаты являются базой для дальнейшего уточнения локального сейсмического годографа Дагестана на базе экспериментального определения параметров очагов [10] и новых построений, ориентированных на азимутальные годографы сейсмических волн [11], и сравнения полученных значений с данными по региональному годографу.

h,	r,	t _P ,	t _s ,	t _{SP} ,	<i>h</i> ,	r,	t _P ,	t _s ,	t _{SP} ,	h,	r,	t _P ,	t _s ,	t _{SP} ,
КМ	КМ	С	С	С	КМ	КМ	С	С	С	КМ	КМ	С	С	С
2–5	10	2.7	4.7	2.0		70	14.1	23.6	9.7		90	16.9	29.4	12.4
	20	4.9	8.6	3.7		80	16.0	26.5	10.9		100	18.3	31.7	13.4
	30	7.2	12.8	5.6		90	17.8	29.4	12.2		110	19.5	33.9	14.4
	40	9.7	17.2	7.4		100	19.5	32.2	13.4		120	20.7	36.0	15.3
	50	12.5	21.6	9.1		110	21.2	34.7	14.6		130	21.8	37.9	16.2
	60	15.5	25.9	10.3		120	22.5	36.9	15.7		140	22.7	39.6	17.1
6–7	10	2.9	5.1	2.1	26-30	130	23.7	38.8	16.8		150	23.4	41.2	17.9
	20	4.9	8.4	3.5		10	4.7	8.0	3.2		160	23.9	42.4	18.6
	30	6.9	12.0	5.0		20	5.5	9.6	4.1	41–45	10	9.5	15.6	6.2
	40	8.9	15.8	6.8		30	6.7	11.6	5.0		20	10.4	17.5	7.1
	50	10.9	19.8	8.9		40	8.0	14.0	6.0		30	11.5	19.5	8.0
	60	12.7	23.9	11.5		50	9.6	16.6	7.1		40	12.5	21.5	8.9
8-10	10	3.2	5.4	2.3		60	11.3	19.4	8.2		50	13.7	23.5	9.8
	20	4.9	8.5	3.6		70	13.0	22.3	9.4		60	14.8	25.6	10.7
	30	6.8	11.8	5.0		80	14.8	25.3	10.5		70	16.0	27.6	11.6
	40	8.7	15.3	6.5		90	16.5	28.1	11.7		80	17.3	29.7	12.5
	50	10.6	18.7	8.0		100	18.2	30.9	12.9		90	18.5	31.7	13.3
	60	12.5	22.0	9.3		110	19.6	33.4	14.1		100	19.7	33.8	14.2
	70	14.3	25.1	10.5		120	20.8	35.7	15.3		110	20.9	35.8	15.0
	80	16.0	27.8	11.4		130	21.7	37.6	16.4		120	22.0	37.7	15.8
11-15	10	3.6	6.3	2.7		140	22.3	39.0	17.5		130	23.1	39.7	16.6
	20	5.1	8.8	3.7	31-35	10	5.8	10.0	4.4		140	24.2	41.5	17.3
	30	6.7	11.7	4.9		20	6.9	11.9	5.1		150	25.1	43.3	18.0
	40	8.4	14.7	6.2		30	8.1	14.1	6.0		160	26.0	44.9	18.6
	50	10.2	17.9	7.6		40	9.4	16.4	6.9		170	26.7	46.5	19.2
	60	12.0	21.2	8.9		50	10.8	18.8	7.9		180	27.4	48.0	19.7
	70	13.9	24.5	10.2		60	12.3	21.4	9.0		190	27.9	49.4	20.1
	80	15.8	27.8	11.4		70	13.9	24.0	10.0		200	28.3	50.6	20.5
	90	17.6	31.0	12.5		80	15.5	26.7	11.1	46–50	10	9.2	15.0	6.0
	100	19.5	34.0	13.3		90	17.1	29.3	12.2		20	10.5	17.3	6.9
16–20	10	4.0	7.0	3.0		100	18.7	31.9	13.3		30	11.8	19.6	7.9
	20	5.3	9.3	3.9		110	20.3	34.5	14.3		40	13.1	22.1	8.9
	30	6.9	11.9	5.1		120	21.8	37.0	15.3		50	14.5	24.6	10.0
	40	8.5	14.8	6.3		130	23.2	39.4	16.2		60	16.0	27.2	11.1
	50	10.3	17.8	7.6		140	24.5	41.6	17.1		/0	17.5	29.7	12.2
	60	12.0	20.7	8.8		150	25.7	43.6	17.8		80	19.0	32.4	13.4
	/0	13.6	23.3	9./	26.40	160	26.7	45.4	18.3		90	20.5	34.9	14.5
	80	15.1	25.6	10.4	36-40	10	7.1	12.4	5.5		100	22.0	37.5	15.6
21.25	90	16.4	27.2	10.7		20	8.0	14.1	6.2		110	23.4	40.0	10./
21-25	10	4.6	1.1	3.2		30	9.0	16.0	6.9		120	24.9	42.5	1/.8
	20	5.8	9.8	4.0		40	10.2	18.1	/.8		130	26.3	44.8	18.8
	30	1.2	12.2	5.0		50	11.4	20.2	8.6		140	27.6	4/.1	19.8
	40	8.8 10.5	14.8	0.1		70	12.8	22.3	9.5		150	28.9	49.2	20.6
	50	10.5	1/./	1.5		/0	14.2	24.8	10.5		100	30.1	52.0	21.4
	00	14.5	20.0	ð.J		80	13.3	27.1	11.5	1	1/0	31.2	33.0	LL.L

Таблица 1. Локальные сейсмические годографы Дагестана

			1		I			1						
h,	r,	t _P ,	t _s ,	t _{SP} ,	<i>h</i> ,	r,	t _P ,	t _s ,	t _{SP} ,	<i>h</i> ,	r,	t _P ,	t _s ,	$t_{\rm SP},$
КМ	км	С	С	С	КМ	км	С	С	С	КМ	км	С	С	С
	180	32.2	54.7	22.8		180	30.1	52.7	22.6	71-75	10	8.9	19.1	7.0
	190	33.1	56.1	23.3		190	31.8	55.4	23.7		20	9.2	19.1	7.3
	200	33.9	57.3	23.7		200	33.3	58.1	24.7		30	9.6	19.2	7.7
	210	34.6	58.3	23.9		210	34.9	60.6	25.8		40	10.2	19.8	8.1
	220	35.1	59.0	24.0		220	36.4	63.1	26.8		50	10.9	20.7	8.7
51-55	10	7.1	11.7	4.4	61-65	10	7.7	14.4	6.9		60	11.8	21.8	9.3
	20	7.4	12.7	5.2		20	7.7	14.5	7.0		70	12.8	23.2	10.0
	30	8.0	14.1	6.0		30	8.0	15.2	7.3		80	13.8	24.9	10.8
	40	8.8	15.8	7.0		40	8.7	16.4	7.8		90	15.0	26.7	11.7
	50	9.9	17.9	8.0		50	9.6	18.0	8.4		100	16.2	28.7	12.5
	60	11.1	20.2	9.1		60	10.8	20.0	9.2		110	17.5	30.8	13.5
	70	12.5	22.8	10.3		70	12.2	22.2	10.2		120	18.9	33.1	14.5
	80	14.1	25.5	11.5		80	13.7	24.8	11.2		130	20.2	35.5	15.5
	90	15.8	28.4	12.7		90	15.3	27.5	12.3		140	21.6	37.9	16.5
	100	17.6	31.4	13.9		100	17.0	30.4	13.5		150	23.0	40.4	17.6
	110	19.4	34.5	15.2		110	18.7	33.3	14.7		160	24.4	43.0	18.7
	120	21.3	37.6	16.4		120	20.4	36.3	16.0		170	25.8	45.5	19.8
	130	23.1	40.6	17.6		130	22.1	39.2	17.2		180	27.2	48.0	20.9
	140	24.9	43.6	18.8		140	23.6	42.0	18.5		190	28.5	50.4	22.0
	150	26.7	46.5	19.9		150	25.1	44.7	19.7		200	29.7	52.8	23.1
	160	28.4	49.2	20.9		160	26.3	47.1	20.8		210	30.9	55.1	24.2
	170	30.0	51.8	21.9		170	27.4	49.3	21.9		220	31.9	57.2	25.3
	180	31.4	54.1	22.8		180	28.2	51.1	22.9	85–90	10	12.8	21.0	8.2
	190	32.6	56.1	23.5		190	28.7	52.4	23.7		20	13.3	22.0	8.8
	200	33.7	57.8	24.2		200	28.8	53.4	24.5		30	13.9	23.3	9.4
	210	34.5	59.2	24.7	66–70	10	9.6	16.9	7.3		40	14.7	24.9	10.1
	220	35.0	60.2	25.1		20	10.9	19.2	8.3		50	15.7	26.6	10.9
56–60	10	7.6	14.4	6.9		30	12.3	21.6	9.4		60	16.7	28.5	11.7
	20	8.3	15.5	7.3		40	13.7	24.2	10.5		70	17.9	30.5	12.6
	30	9.0	16.7	7.8		50	15.2	26.9	11.7		80	19.2	32.6	13.5
	40	9.9	18.2	8.4		60	16.7	29.6	12.9		90	20.4	34.8	14.4
	50	10.9	19.9	9.1		70	18.2	32.4	14.1		100	21.8	37.0	15.3
	60	12.0	21.8	9.8		80	19.8	35.1	15.3		110	23.1	39.2	16.2
	70	13.2	23.9	10.7		90	21.3	37.9	16.5		120	24.4	41.4	17.0
	80	14.5	26.1	11.6		100	22.8	40.6	17.7		130	25.7	43.5	17.9
	90	15.9	28.4	12.6		110	24.3	43.2	18.8		140	26.9	45.6	18.7
	100	17.3	30.9	13.6		120	25.6	45.8	20.0		150	28.0	47.4	19.4
	110	18.8	33.5	14.6		130	26.9	48.1	21.1		160	29.1	49.2	20.1
	120	20.4	36.1	15.7		140	28.1	50.4	22.2		170	30.0	50.7	20.7
	130	22.0	38.8	16.9		150	29.1	52.4	23.2		180	30.7	51.9	21.2
	140	23.6	41.6	18.0		160	30.0	54.3	24.1	<u> </u>	190	31.3	52.9	21.6
	150	25.2	44.4	19.1		1/0	30.7	55.9	25.0					
	160	26.8	4/.1	20.3		180	31.3	57.2	25.8					
	170	28.5	49.9	21.4		190	31.6	58.2	26.6					

Литература

- 1. Левицкая А.Я., Лебедева Т.М. Годограф сейсмических волн Кавказа // Годографы сейсмических волн на Кавказе // Квартальный сейсмологический бюллетень. Тбилиси: Мецниереба, 1953. 2. № 1/4. С. 51–60.
- 2. Султанова 3.3. Обработка наблюдений над землетрясениями Азербайджана // Изв. АН СССР. Серия геофизическая. 1958 № 3. С. 398–404.
- 3. Папалашвили В.Г. Годограф сейсмических волн Кавказа для землетрясений с поверхностной глубиной залегания очагов // Изв. АН СССР. Серия геофизическая. 1959 № 7. С. 41–47.

- 4. Джибладзе Э.А., Гоцадзе О.Д. Общий осредненный годограф Кавказа // Труды Института геофизики АН ГССР. 1962 20. С. 75–89.
- 5. Краснопевцева Г.В. Глубинное строение Кавказского сейсмоактивного региона. М.: Наука, 1984. 108 с.
- 6. Дагестанское землетрясение 14 мая 1970 г. (сейсмология, геология, геофизика). М.: Наука, 1980. 220 с.
- 7. Асманов О.А. Годографы сейсмических волн для территории Дагестанского клина // Дагестанское землетрясение 14 мая 1970 г. М.: Наука, 1980. С. 17–22.
- 8. Асманов О.А., Алисултанова Г.С., Гамидова А.М., Мусалаева З.А. Годограф сейсмических волн Восточного Предкавказья // Сейсмичность и гидрохимия территории Дагестана. ИГ Даг. ФАН СССР. 1978 г. № 2(17). С. 26–42.
- 9. Асманов О.А. Кривые функций $t_P=f(d)$, $t_S=f(d)$, $t_{SP}=f(d)$ для глубин очагов $h=3.5 \ \kappa m$, $6-7 \ \kappa m$, $9 \ \kappa m$, $13 \ \kappa m$, $16-20 \ \kappa m$, $21-25 \ \kappa m$, $26-30 \ \kappa m$, $31-35 \ \kappa m$, $36-40 \ \kappa m$, $41-45 \ \kappa m$, $46-50 \ \kappa m$, $51-55 \ \kappa m$, $56-60 \ \kappa m$, $61-65 \ \kappa m$, $66-70 \ \kappa m$, $71-75 \ \kappa m$, $86-90 \ \kappa m$. (См. Приложение к наст. сб. на CD).
- Асманов О.А., Левкович Р.А. Вертикальный сейсмический годограф района Чиркейского водохранилища в Дагестане // Мониторинг и прогнозирование природных катастроф. Материалы научнопрактической конференции к 40-летию Дагестанского землетрясения 14 мая 1970 г. – Махачкала: ДИНЭМ, 2010. – С. 175–179.
- Левкович Р.А., Адилов З.А. Скоростной разрез верхней части земной коры тектонической области Дагестанский клин // Мониторинг и прогнозирование природных катастроф. Материалы научнопрактической конференции к 40-летию Дагестанского землетрясения 14 мая 1970 г. – Махачкала: ДИНЭМ, 2010 г. – С. 29–31.