ЛЕРИКСКОЕ-ІІ ЗЕМЛЕТРЯСЕНИЕ 11 июля 2007 г.

с К_Р=12.3, Мw=5.2, I₀=6 (Азербайджан)

Г.Д. Етирмишли, С.Э. Казымова, Э.С. Гаравелиев, С.С. Исмаилова

Республиканский центр сейсмологической службы НАН Азербайджана, г. Баку, science@azeurotel.com

11 июля 2007 г. в 06^h51^m в Талышской зоне Азербайджана произошло шестибалльное землетрясение. Согласно данным инструментальных наблюдений [1], координаты землетрясения равны ϕ =38.72°N, λ =48.50°E, *h*=10 *км*, магнитуды – *MPVA*=5.7, *ML*=4.9, энергетический класс – K_P =12.3. На рис. 1 представлена запись Лерикского-II землетрясения на канале HHZ, полученная на ближайших к эпицентру цифровых станциях: LKR – «Лянкяран», IML – «Исма-иллы», Gob – «Гобу», GAN – «Гянджа», BRD – «Барда», PQL – «Пиргулу».

Рис. 1. Волновые формы землетрясения 11 июля 2007 г. в 06^h51^m с *K*_P=12.3 [1], *Mw*=5.2 [2]

Следует отметить, что это второе землетрясение с таким названием. Первое произошло 9 июля 1998 г. и детально описано в [3]. Оно было 7-балльным с K_P =13.3 и имело магнитуду Mw=6.0. Как отмечено в [3], это было «первое событие подобной величины магнитуды в районе Талыш за прошедшее тысячелетие». Его гипоцентр с координатами ϕ =38.76°N, λ =48.42°E,

h=14 *км* практически совпадает с нынешним. В такой ситуации имеет смысл присвоить этим двум землетрясениям номера – Лерикское-I (9 июля 1998 г.) и Лерикское-II (11 июля 2007 г.).

Разные решения. Параметры Лерикского-II землетрясения, наряду с региональными (РЦСС), были определены в ряде информационно-обрабатывающих центров: в Геофизической службе РАН (MOS) [4], в Европейском Средиземноморском сейсмологическом центре (EMSC/CSEM) [5], в Геологической службе США (NEIC) [2], в Международном институте сейсмостойкого строительства и сейсмологии в Тегеране (THR) [2] и др., приведенных в табл. 1.

Агент-	<i>t</i> ₀ ,	δt_0 ,			Гипоцен	тр			Магнитуда	Источ-
ство	ч мин с	С	φ°, N	δφ°	λ°, Ε	δλ°	<i>h</i> ,	δh ,		ник
							км	км		
РЦСС	06 51 13.9	0.7	38.66		48.61		30		<i>K</i> _P =12.3, <i>MPVA</i> =5.7, <i>ML</i> =4.9	[1]
	06 51 12.5		38.72		48.50		10			наст.
			38.82 _{мкр}		48.42 _{мкр}		12 _{мкр}			статья
MOS	06 51 10.9	1.3	38.72	0.04	48.62	0.04	18		<i>MPSP</i> =5.1/47	[4]
ISC	06 51 15.0	0.1	38.82	0.02	48.64	0.01	29		$Ms=4.2/50, m_b=4.9/132$	[2]
							29*	1.3*	$h_{\rm pP}=29*\pm1.3*$	
IDC	06 51 11.1	1.7	38.66		48.58		12	10	$m_{\rm b}$ =4.6/25	[2]
CSEM	06 51 11.7	0.1	38.85		48.65		19		$Ms=3.9, m_b=4.9/69,$	[5]
NEIC	06 51 14.3	0.2	38.75		48.60				$m_{\rm b}$ =4.9/59	[2]
GCMT	06 51 14.3	0.4	38.79		48.60		25		Mw=5.2/72	[2]
THR	06 51 12.9	1.0	38.87	0.09	48.71	0.08	27	11	<i>ML</i> =4.9	[5]
BJI	06 51 12.7		38.88		48.10		45		$Ms=4.7, m_b=5.2$	[2]

Таблица 1. Основные параметры Лерикского-II землетрясения 11 июля 2007 г. с *К*_P=12.3, *Мw*=5.2 по данным РЦСС в сопоставлении с решениями других агентств

Примечание. Нижним индексом «мкр» выделены макросейсмические данные наст. ст.; знаком * – значения hpp.

Карта эпицентров разных решений для их сравнения дана на рис. 2.

Рис. 2. Сопоставление решения эпицентра Лерикского-II землетрясения 11 июля 2007 г. с *К*_Р=12.3, *Мw*=5.2 по данным близких станций сети РЦСС с решениями других агентств

1 – инструментальный эпицентр РЦСС [1] и авторов наст. ст.; 2 – макросейсмический эпицентр; 3 – решения по данным других сейсмологических служб; 4, 5 – телеметрическая станция «Лянкяран»-LKR и аналоговая станция «Баллабур»-BLB соответственно; 6 – Талышский разлом; 7 – населенный пункт; 8 – государственная граница.

Как видим, ситуация с положением разных решений в плане достаточно сложная. Вопервых заметно смещение к северо-западу эпицентра авторов наст. ст. относительно регионального, макросейсмический эпицентр смещен к север–северо-западу. Все эпицентры других агентств смещены к востоку относительно макросейсмического эпицентра. Согласованы между собой лишь эпицентры РЦСС и IDC. Кроме того, в [6] получено уточненное решение эпицентра по данным региональных и более удаленных станций (ϕ =38.73°N, λ =48.64°E), построены схемы распределения населения, а также круговые диаграммы затухания теоретических значений скоростей (PGV) и ускорений (PGA) грунта (рис. 3).

Рис. 3. Схемы распределения количества населения, скоростей (PGV) и ускорений (PGA) грунта в очаговой зоне Лерикского-II землетрясения 11 июля 2007 г. с К_Р=12.3, *Mw*=5.2

Макросейсмическое обследование землетрясения проведено созданной в РЦСС НАНА макросейсмической экспедицией.

В табл. 2 приводятся сведения об интенсивности сотрясений в 53 населенных пунктах.

Таблица 2. Макросейсмические данные о Лерикском-II землетрясении 11 июля 2007 г. с *К*_P=12.3, *Мw*=5.2

N⁰	Пункт	Δ,	φ°, N	ο°, Ν λ°, Ε		Пункт	Δ,	φ°, N	λ°, Ε
		КМ					КМ		
	<u>6 баллов</u>					<u>5-6 баллов</u>			
1	Лерик	5	38.78	48.43	18	Туадо	14.5	38.88	48.57
2	Шингадулан	5	38.87	48.38	19	Вамазгон	15	38.93	48.55
3	Вистан	5.5	38.83	48.48	20	Хонуба	16.5	38.85	48.57
4	Азербайджан	6	38.78	48.50	21	Талавар	18.5	38.90	48.40
5	Джангамиран	7.5	38.77	48.45	22	Порсова	19	38.90	48.38
6	Амбу	8.5	38.73	48.45	23	Аллар	19	38.88	48.25
7	Нюравуд	9	38.73	48.40	24	Разгов	19	38.67	48.42
8	Лермаруд	9	38.68	48.68	25	Дырьян	19	38.85	48.57
9	Визазамин	10	38.77	48.57	26	Алиабал	19.5	38.68	48.57
10	Алму	12.5	38.75	48.57	27	Маложа	22	38 93	48.63
11	Чайруд	13	38.72	48.52	28	Шафагли	26	38.90	48.18
12	Бурзунбул	14	38.88	48.30	29	Танкиван	14	38.72	48.63
13	Харан	14	38.87	48.27	30	Мистан	19	38.65	48.42
14	Сырыг	15	38.90	48.27	21	Горианан	10	20.05	48.22
15	Арус	17	38.88	48.33	20	1 осмалан	19	38.07	48.52
16	Велиханлы	18	38.92	48.28	32	Челери	21	38.92	48.13
17	Ярдымлы	19	38.88	48.27	33	Пирембел	28.5	38.68	48.07

		1	1		ı ——		1	1	
N⁰	Пункт	Δ,	φ°, N	λ° , Ε	N⁰	Пункт	Δ,	φ°, Ν	λ°, Ε
		КМ					КМ		
	<u>5 баллов</u>					<u>3-4 балла</u>			
34	Махмудавар	25	38.88	48.65	45	Масаллы	31.5	39.05	48.70
35	Шуви	26	38.80	48.70	46	Пришиб	36	39.00	48.68
36	Гызылавар	26.5	38.97	48.70	47	Мусалы	36	39.13	48.27
37	Шатыроба	27.5	38.92	48.73	48	Чахырлы	36.5	39.08	48.55
38	Рва	30	38.78	48.72	49	Халилабад	37	39.13	48.47
	1 5				50	Ховузбулаг	40	39.12	48.40
	<u>4 оалла</u>				51	Сяряк	47.5	38.89	48.35
39	Аркиван	28.5	39.02	48.60	52	Арчиван	50	38.63	48.78
40	Банбаши	30	39.05	48.58		3 балла			
41	Анбабо	32	38.60	48.63	50	<u>з ошни</u> П	10.5	20.20	40.52
42	Лиман	33.5	38.53	48.53	53	Джалилаоад	42.5	39.20	48.53
43	Пянкяран	37.5	38 78	48.88	54	Микаиллы	45	39.20	48.23
44		20	20.70	10.00	55	Зюнгюлеш	51.5	38.40	48.73
44	Ашагы пювяди	37	30.12	40.87	56	Астара	55	38.43	48.88

Экспедицией РЦСС НАНА было выявлено, что с наибольшей интенсивностью *I*=6 баллов по шкале MSK-64 [7] землетрясение проявилось в Лерикском и Ярдымлинском районах Азербайджана.

В этих районах больше всего пострадали строения. В Лерикском районе большинство зданий было построено из кирпича-сырца и местного речного камня. Можно сказать, что в результате землетрясения почти все здания в той или иной степени были повреждены. На стенах некоторых зданий образовались трещины шириной $1-1.5 \, cm$. По всему периметру ряда зданий встречались продольные, крестообразные, а также поперечные трещины (рис. 4 а). В Ярдымлинском районе даже здания, построенные из камня-«кубика», получили такие же повреждения (рис. 4 б). Население было напугано.

До и после землетрясения происходили оползни, характерные для рельефа и геологического строения этой зоны. Так, за день до землетрясения, т.е. 10 июля 2007 г., а также через некоторое время после землетрясения произошли оползни на территории с. Зейнаку Лерикского района. В то же самое время смещение почвы наблюдалось на участках 42–44 и 48–50 км автомобильной магистрали Лерик–Лянкяран.

Рис. 4. Поврежденные здания в Лерикском (а) и Ярдымлинском (б) районах Азербайджана

Карта изосейст Лерикского-II землетрясения (рис. 5) построена на основании собранного фактического материала (табл. 2). Изосейсты вытянуты вдоль Талышского разрыва северозападной (~318°) ориентации, а плейстосейстовая зона в основном охватывает Лерикский и Ярдымлинский районы. Расстояние между инструментальным и макросейсмическим эпицентрами приблизительно составляет 15 км (координаты макросейсмического эпицентра: ϕ =38.82°N, λ =48.42°E).

Рис. 5. Карта изосейст Лерикского-II землетрясения 11 июля 2007 г. с *К*_P=12.3, *Мw*=5.2

1 – интенсивность сотрясений по шкале [7]; 2, 3 – макросейсмический и инструментальный эпицентр соответственно; 4 – изосейста; 5, 6 – телеметрическая станция «Лянкяран» (LKR) и аналоговая станция «Баллабур» (BLB) соответственно; 7 – профиль А-А вертикального сечения, использованного на рис. 6; 8 – государственная граница.

Геометрические параметры макросейсмического поля сняты *ped*. с карты изосейст. Это размеры продольных (ℓ_a) и поперечных (ℓ_b) осей изосейст разной балльности и их отношение (ℓ_a/ℓ_b), среднегеометрический линейный размер изосейст ($\overline{\ell}$), площади S_i сотрясений разной интенсивности по формуле площади эллипса:

 $S=\pi \cdot ab$,

где *a*, *b* – продольная и поперечная полуоси эллипса. Все перечисленные параметры представлены в табл. 3.

I _i ,	Геоме	Площадь <i>S</i> _i зоны,			
баллы	$\ell_{\rm a}$	$\ell_{\rm b}$	$\overline{\ell}$	ℓ_a/ℓ_b	км ²
6	37.33	20.00	27.33	1.87	586
5	54.66	30.66	40.93	1.78	730
4	75.99	55.99	65.20	1.36	2027
3	106.66	78.66	91.60	1.35	3246

Таблица 3. Основные параметры макросейсмического поля Лерикского-II землетрясения 11 июля 2007 г. с *К*_P=12.3, *Мw*=5.2

Примечание. Среднее $\overline{\ell}$ является средним геометрическим $\overline{\ell} = \sqrt{\ell_a} \cdot \ell_b$.

Для определения глубины очага землетрясения на основе макросейсмических данных было использовано уравнение макросейсмического поля в виде [8]:

$$I_0 = b \cdot M - v \cdot \lg h + c.$$

Значения входящих в эту формулу коэффициентов для горных зон Азербайджана по [9] составляют: b=1.5, v=3.3, c=2.7. На основе проведенных расчетов макросейсмическая глубина очага Лерикского-II землетрясения составляет $h\approx 12 \ \kappa m$.

Согласно геологическому разрезу территории по [10], гипоцентр Лерикского-II землетрясения расположен в гранитном слое (рис. 6).

Рис. 6. Вертикальный геологический разрез Лерикской очаговой зоны по линии А-А с рис. 5

1 – вулканогенно-осадочные комплексы: а – кайнозой, б – мезозой; 2 – слои консолидированной коры: а – гранит, б – базальт; 3 – глубинные разломы: а – общекавказский, б – ортогональный; 4 – поверхности доальпийского фундамента (а) и Мохоровичича (б); 5 – гипоцентр Лерикского-II землетрясения 11 июля 2007 г. (заштрихована очаговая зона); 6 – зона пониженных скоростей продольных волн.

Механизм очага Лерикского-II землетрясения 2007 г. был определен в РЦСС [11] на основании первых вступлений *P*-волн (табл. 4), зарегистрированных 12 аналоговыми и 12 телеметрическими станциями. Оси напряжений сжатия *P* и растяжения *T* действуют в близгоризонтальной ($PL=28-40^{\circ}$) плоскости. Доверительные области осей сжатия и растяжения в объемном виде изображены на рис. 7.

Рис. 7. Доверительные области осей сжатия и растяжения в очаге Лерикского землетрясения 11.07.2007 г.

В табл. 4 *ред.* добавлено также решение Колумбийского университета США (CGMT), полученное по всей сейсмограмме на 57 станциях из [12].

Таблица 4. Параметры механизма очага Лерикского-II землетрясения 11 июля 2007 г. в 06^h51^m с K_P=12.3, Mw=5.2

Агент-	Дата,	t_0 ,	h,	Mar	титу	уды	Ks	Оси главных напряжений						Нодальные плоскости						Ис-
ство	дм	ч мин с	км	Mw	Ms	$m_{\rm b}$		Т			Ν	Р		NP1			NP2			точ-
								PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	ник
РЦСС	11.07	06 51 13.9	10	5.2	4.2	4.9	12.3	28	264	36	18	40	147	203	82	-52	303	38	-168	[11]
CGMT	11.07	06 51 13.9	25	5.2	4.2	4.9	12.3	42	223	19	331	42	80	242	19	-179	151	90	-71	[12]

Построение стереограмм обоих решений выполнено *ped*. по программе А.В. Ландера [13, 14] и изображено на рис. 8.

Рис. 8. Стереограмма механизма очага Лерикского землетрясения 11 июля 2007 г. с *К*_Р=12.3, *Мw*=5.2 в проекции нижней полусферы

1 – нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

На основе регионального решения [11] определения механизма очага землетрясения по первым вступлениям *P*-волн установлено, что в очаге превалирует напряжение растяжения, ориентированное на запад. Одна нодальная плоскость (*NP1*) залегает круто ($DP_1=82^\circ$) и простирается на юг-юго-запад ($STK_1=203^\circ$), другая – пологая ($DP_2=38^\circ$) и простирается на северозапад ($STK_2=303^\circ$) (табл. 4). Движение по первой – сброс с компонентами левостороннего сдвига, по второй – правосторонний сдвиг с компонентами сброса.

В решении CGMT напряжения сжатия P и растяжения T имеет одинаковый наклон $PL_P=PL_T=42^\circ$ к горизонту, т.е. они равновелики. Здесь крутая плоскость с простиранием с юго-востока на северо-запад ($STK_2=151^\circ \rightarrow 331^\circ$) вертикальна (90°) и по ней движение почти чистый сброс с очень незначительными компонентами левостороннего сдвига. По пологой (19°) плоскости, ориентированной на запад-юго-запад ($STK_1=242^\circ$), реализовался поддвиг, осложненный правосторонним сдвигом.

Сопоставление азимутов продольных осей изосейст (319°) с простиранием Талышского разлома (309°) общекавказского направления и нодальных плоскостей близкого направления в решении РЦСС ($STK_2=303^\circ$) и CGMT ($STK_2\rightarrow331^\circ$) показывает взаимное согласие в обоих решениях плоскостей *NP2*. Данное согласие можно считать достаточным для выбора последней (с небольшими вариациями) в качестве плоскости, действующей в очаге.

Представляет интерес сравнить систему напряжений и типы подвижек в очаге Лерикского-II землетрясения с таковыми для близких землетрясений в Талышской зоне, произошедших 27.01.1986 г. [15], 09.07.1998 г. [16], 29.10.2001 г. [17]. Параметры механизмов их очагов даны в табл. 5, а стереограммы – на рис. 9 на фоне сетки геологических разрывов.

Таблица 5. Параметры механизмов очагов трех землетрясений, произошедших в Талышской сейсмоактивной зоне в 1986, 1998 и 2001 гг.

№	Дата, д м год	t ₀ , ч мин с	Коорд	h, км	Маги туд	ни - ы	Ks		О на	си г апря	лавни яжени	ых Нодальные ий					плос	ти	Ис- точ-		
			φ°, N	λ°, E	1	MLH	Ms		T N P			NP1		NP2		?	ник				
						Mw^*			PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
1	27.01.1986	16 35 47.5	39.03	48,58	15	5.4	4.6	12.5	56	220	37	313	25	120	159	74	-46	275	30	-144	[15]
2	09.07.1998	14 19 18.9	38.76	48.42	14	6.0*	5.5	13.3	53	259	0	349	37	79	170	8	91	349	82	90	[16]
3	29.10.2001	10 04 48.5	38.93	48.43	45		4.6	11.3	76	258	1	353	14	83	352	59	89	174	31	92	[17]

В очаге первого землетрясения 27.01.1986 г. с *К*_P=12.5 в зоне Предталышского разрыва преобладали напряжения растяжения (*PL*_T=17°<*PL*_P=43°), в силу чего возникли сбросы: по кру-

той ($DP_1=74^\circ$) плоскости NP1 север-северо-западного простирания подвижка типа чистый сброс, по менее крутой ($DP_2=46^\circ$) плоскости NP2 близширотного простирания тоже сброс, но с компонентами правостороннего сдвига. Сравнение простирания плоскости NP1 с простиранием правого сегмента Предталышского разрыва с азимутом 315° (рис. 9) позволяет выбрать в качестве действующей плоскость NP1 с чисто сбросовым движением.

Рис. 9. Механизмы очагов землетрясений, произошедших в Талышской сейсмоактивной зоне

1 – энергетический класс K_P ; 2 – глубина гипоцентра h, км; 3 – сейсмическая станция; 4 – разрывы общекавказского направления: Предталышский (a-a), Талышский (b-b); разрывы поперечные: Ярдымлинский (c-c), Астаринский (f-f); 5 – государственная граница.

Землетрясение 09.07.1998 г., описанное в [3] как Лерикское и переименованное выше в Лерикское-I, наиболее интересно, поскольку оно приурочено к Талышскому разлому. Движение в его очаге произошло при небольшом превалировании напряжений сжатия $(PL_P=37^\circ < PL_T=53^\circ)$. Обе нодальные плоскости имеют близмеридиональное простирание (349° и 170°). Одна плоскость залегает близвертикально $(DP_2=82^\circ)$, тип движения по ней – взброс, движение по близгоризонтальной $(DP_1=8^\circ)$ плоскости представлено надвигом. Как отмечено в [3], в случае Лерикского-I землетрясения имеет место редко наблюдаемое несогласие в простирании области афтершоков и обеих нодальных плоскостей.

Землетрясение 29.10.2001 г. – самое слабое в табл. 5 и приурочено к поперечному Ярдымлинскому разрыву (рис. 9). Оно характеризуется значительным преобладанием напряжений сжатия ($PL_P=14^{\circ}<<PL_T=76^{\circ}$), что обеспечило подвижки типа чистый взброс по обеим нодальным плоскостям близмеридионального (352 и 173°) простирания. И тогда ни одна из плоскостей не согласуется с близширотной вытянутостью Ярдымлинского разрыва с азимутом 80°, что не позволяет определенно выделить действующую в очаге плоскость.

Сравнивая механизмы очагов четырех землетрясений, можно констатировать, что подобны лишь ближайшие очаги Лерикского-I и Лерикского-II землетрясений, приуроченных к Талышскому разрыву. В двух других очагах совершенно самостоятельная система напряжений и вызванных ими движений, которые в случае 1986 г. согласуются с вытянутостью разрыва (Предталышского), а в 2001 г. – вкрест разрыва (Ярдымлинского).

В тектоническом отношении Талышский хребет представляет крупный антиклинорий І-го порядка, состоящий из Астаринской, Лерик-Ярдымлинской, Буроварской, Джалилабадской и Южно-Муганской складок. Эти структуры простираются в северо-запад-юго-восточном направлении и осложняются поперечными структурными системами. Талышской складчатой области свойственны системы субпараллельных разломов глубокого заложения между отдельными продольными блоками общекавказского простирания. Поперечные разломы ориентированы вкрест простирания основных структурных элементов Талыша и в сочетании с продольными разломами предопределяют их блоково-глыбовое строение [10].

Форшок и афтершоки. Форшок у Лерикского-II землетрясения лишь один – 11 июля в $03^{h}47^{m}$ с K_{P} =8.3, афтершоков – свыше 100 с K_{P} =5.5–9.2, 37 из которых произошли в первые сутки (рис. 10). Часть из них приведена в [18].

Рис. 10. Карта афтершоков Лерикского-II землетрясения 11 июля 2007 г. с *К*_P=12.3, *Мw*=5.2 в первые сутки после главного толчка

Как видим, афтершоковое облако, вытянутое в меридиональном направлении, никак не согласуется с простиранием Талышского разлома (точно так же, как и при Лерикском-I землетрясении в [3]). Глубина их гипоцентров варьирует в интервале $h_{a\phi\tau}=10-30 \ \kappa m$. На рис. 11 представлен вертикальный разрез облака афтершоков по профилю I-I с рис. 10, где видна тенденция их заглубления к северу от очага главного толчка.

Рис. 11. Вертикальный разрез по профилю I-I через область афтершоков Лерикского-II землетрясения 11 июля 2007 г. с *К*_Р=12.3, *Мw*=5.2

Предваряющая сейсмичность перед Лерикским-II землетрясением представлена на рис. 12 с 2004 по 2006 год. Как видно, весь Талышский район характеризуется постепенным увеличением количества землетрясений в очаговой зоне будущего землетрясения.

Рис. 12. Годовые карты эпицентров землетрясений района Талыш за 2004-2006 гг.

Сейсмическая история очаговой зоны Лерикского-II землетрясения и района Талыша рассмотрена с 891 г. по 2007 г. Такое же исследование проводилось ранее [3], перед Лерикским-I землетрясением. Поэтому за основу была взята таблица из [3] по 1998 г. включительно и дополнена четырьмя пропущенными ранее землетрясениями 11-го класса (02.10.1993 г. с $K_{\rm P}$ =11.3, 27.05.1995 г. с $K_{\rm P}$ =11.4, 17.08. 1995 г. с $K_{\rm P}$ =11.2 и 28.05.1997 г. с $K_{\rm P}$ =11.3) и более поздними землетрясениями за 1999–2007 гг. (табл. 6).

N₂	Дата,	t_0 ,	Эпиг	центр	h,	М	$K_{\rm P}$	I_0	Ис-	Примечание
	дмг	С	φ°, N	λ°, Ε	КМ				точ-	
									ник	
1	891 г. н. э.	00±1 год	38.3±1.0	48.3±1.0		$(6.3)\pm1.0$	(15.1)	(8–9)±1	[19]	Ардебильское
2	28.02.1861	00±1 год	39.4±0.5	47.5±0.5		5.6±0.5	(14.1)	(6)±1	_"_	
3	24.05.1861	13 00±1 час	39.4±1.0	47.5±1.0	32	6.2±0.5		7±1	_''_	Южно-Азер-
	10.10.10(0						(14.0)	-		байджанское
4	19.12.1862	02 30±1 час	39.7±0.2	47.9±0.2	20	5.9±0.5	(14.6)	(7)±1	_"_	
5	30.12.1863	19 00±1 час	38.5±0.5	48.0±0.5	30	5.8±0.5	(14.4)	$(6-7)\pm 1$	_''_	
6	22.03.1879	01 00±10 мин	39.2±0.2	47.6±0.2	11	6.5±0.5	(15.4)	9±1	_''_	
7	31.07.1889	15 00±10 мин	39.0±0.5	49.0±0.5	20	4.5±0.5		$(6)\pm 0.5$	_''_	
8	09.08.1892	01 00±10 мин	$(38.8) \pm 0.5$	$(49.0) \pm 0.5$		4.6±0.7		6±1	_''_	
9	01.10.1896	15 30±10 мин	39.5±1.0	47.6±1.0	25	5.2 ± 0.5	(13.4)	$(6)\pm 1$	_''_	
10	05.09.1902	04 33±10 мин	39.5±0.2	$\pm 48.0 \pm 0.2$	20	5.0±0.5		6±0.5	_"_	
11	26.10.1902	11 37±1 мин	39.7±0.2	47.8±0.2	14	4.9±0.7		5-6±0.5	_''_	
12	04.12.1910	14 02±1 мин	39.3±0.5	48.0±0.5	37	5.4±0.7	(13.7)	7±1	_"_	
13	16.04.1913	06 00±1 час	39.1±0.2	48.6±0.2	12	5.1±0.7	(13.2)	7±0.5	_"_	Ленкоранское
14	02.06.1917	$00\ 28\ 05\pm10\ c$	(38.0) ±0.2	(48.5) ±0.2		4.9±0.7			_''_	
15	19.02.1924	07 00 02±10 c	39.0±0.5	47.42±0.5	30	6.6±0.1	(15.5)	8±0.5	[19]	Ардебильское
16	05 07 1931	17 57 09±10	39.3±0.5	47.8±0.5	60	5.3±0.7	(13.5)	$(6)\pm 0.5$	[19]	
17	16 04 1933	06 54 38±10	39.1±0.5	48.4±0.5		4.6±0.5	(12.3)		_"_	
18	11 07 1940	01 23 33±2	39.5±0.5	47.6±0.5	18	4.9±0.5	(12.8)	6–7±0.5	_"_	
19	05.03.1946	04 45 07±5	39.6±0.5	49.3±0.5	11	4.8±0.3	(12.6)	(7)±1	_''_	
20	19.08.1957	07 22 24±5	38.0±0.5	49.5±0.5		4.6±0.5	(12.3)		_''_	
21	31.07.1959	10 28 02±2	38.8±0.2	49.4±0.2		4.8±0.2	(12.6)		_''_	
22	29.03.1964	23 03 43±2	39.2±0.2	49.0±0.2	14	4.6±0.5	11-12	6±0.5	_''_	
23	11.02.1971	01 41 24±2	38.5±0.5	47.2±0.5	12	4.5±0.5	12	(6)±1	_''_	
24	04.05.1980	18 35 17.8±2	28.06±0.1	49.20±0.1	30	6.2±0.2	(15.2)			
25	04.08.1981	18 35 41.8 ±1	38.21±0.1	49.47±0.1	30	5.4±0.2	12			
26	02.04.1983	00 32 25.4±1	38.90±0.2	48.40±0.2	10	4.6±0.5	12.0	6±0.5		
27	27.01.1986	16 35 48.5±2	38.86±0.2	48.75±0.2	30	4.6±0.1	12.5	7±0.5		Талышское
28	02.10.1993	09 22 00.6±0.6	38.87±0.05	48.53±0.05	11	(4.0)	11.3			
29	27.05.1995	21 21 38.4±1.5	39.50±0.25	48.30±0.25		3.7	11.4			
30	17.08.1995	18 09 58.1±1.5	39.20±0.25	48.90±0.25		3.9	11.2			
31	28.02.1997	12 57 17.1±2.9	37.95±0.25	48.20±0.25		6.1±0.2	14.5*			Ардебильское
32	28.02.1997	13 55 57.5±3.2	37.95±0.25	48.30±0.25		4.7	12.2			-
33	02.03.1997	18 29 44.0±2.3	38.10±0.25	48.10±0.25	41	4.8	12.3			
34	28.05.1997	05 04 16.7±2.5	38.52±0.10	48.13±0.10	37	(4.0)	11.3			
35	09.07.1998	14 19 18.9±1.1	38.76±0.05	48.42±0.05	39	5.5	12.9	7±0.5		Лерикское-І
36	03.10.1999	13 19 15.8±0.6	38.88±0.05	48.71±0.05	26	(4.1)	11.4			-
37	12.10.1999	15 41 10.6±1.0	39.10±0.05	48.31±0.05	10	(4.4)	12.0			
38	29.10.2001	10 04 48.5±1.8	38.93±0.05	48.43±0.05	16	(4.0)	11.3			
39	11.07.2007	06 51 13.9±0.7	38.66±0.16	48.61±0.19	30	4.2	12.3			Лерикское-II

Таблица 6. Основные параметры землетрясений района Талыш за 891-2007 гг. с М>4

Примечание. Информация за 1980–2007 гг. заимствована из годовых каталогов землетрясений Азербайджана; в скобках даны расчетные по формуле $M=(K_P-4)/1.8$ [21] значения M и K_P .

Карта эпицентров исторических землетрясений изображена на рис. 13.

Рис. 13. Карта эпицентров землетрясений района Талыш и соседних с ним территорий за 891–2007 гг.

1 – магнитуда *M*; 2 – глубина гипоцентра *h*, *км*; 3 – инструментальный эпицентр Лерикского-II землетрясения 11.07.2007 г.; 4 – телеметрическая и аналоговая станции соответственно; 5 – населенный пункт; 6 – государственная граница.

Анализ исторических данных на рис. 13 свидетельствует о том, что при высоком уровне сейсмической активности соседних территорий, современное Лерикское-II землетрясение расположено южнее всех предыдущих событий, собственно на «пустом» месте, где за более чем тысячу лет таких землетрясений еще не было. Оно свидетельствует об активизации зоны Талышского разлома с северо-запада на юго-восток. Если эта тенденция сохранится, то следующее землетрясение на Талышском разломе следует ожидать в его нижнем сегменте.

В заключение отметим, что на основании макросейсмических исследований было установлено, что Лерикское-II землетрясение 11 июля 2007 г. с максимальной интенсивностью ощущалось на территории Лерикского и Ярдымлинского районов. Здесь интенсивность землетрясения по шкале MSK-64 была оценена в 6 баллов, а глубина очага по макросейсмическим данным равна $h \approx 12 \ \kappa m$. Согласно геологическому разрезу территории, гипоцентр землетрясения находится в гранитном слое.

Литература

- 1. Етирмишли Г.Д., Абдуллаева Р.Р. (отв. сост.), Мамедова М.К., Абдуллаева Э.Г., Саидова Г.Э., Исламова Ш.К., Исмайлова С.С., Казымова С.Е., Ширинова З.Г. Каталог (оригинал) землетрясений Азербайджана за 2007 г. (*N*=644). Обнинск: Фонды ГС РАН, 06.07.2010. 15 с.
- 2. Bulletin of the International Seismological Centre for 2007. Thatcham, United Kingdom: ISC, 2009.
- 3. Гасанов А.Г., Алиев А.Р., Алиева З.С., Абдуллаева Р.Р. Лерикское землетрясение 9 июля 1998 года с *Мw*=6.0, *I*₀=7 баллов (Азербайджан) // Землетрясения Северной Евразии в 1998 году. Обнинск: ГС РАН, 2004. С. 222–231.
- 4. Болдырева Н.В. (отв. сост.), Бабкина В.Ф., Аторина М.А., Щербакова А.И. Рыжикова М.И., Каталог землетрясений Земли (*N*=7438) за 2007 г. (См. Приложение к наст. сб. на CD).
- 5. Bulletin of the EMSC (European Mediterranean Seismological Centre) for 2007. http://www.emsccsem.org/Earthquake/earthquake.php

- 6. Centre Sismologique Euro-Mediterranean for 2007. http://www.emsc-csem.org/Earthquake/earth quake.php?id=49389
- 7. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- Шебалин Н.В., Айвазишвили И.В., Варазанашвили О.Ш., Папалашвили В.Г. Уравнения макросейсмического поля Большого Кавказа и Закавказья // Сейсмологический бюллетень Кавказа за 1974 г. – Тбилиси: Мецниереба, 1976. – С. 113–126.
- 9. Кулиев Ф.Т. Уравнение макросейсмического поля для Азербайджана и его геотектонических областей // Сейсмологический бюллетень Кавказа за 1977 г. Тбилиси: Мецниереба, 1980. С. 129–140.
- 10. Исмаил-заде А.Д. Геология Азербайджана. Том IV. Тектоника. Баку: Nafta-Press, 2005 360 с.
- 11. Абдуллаева Э.Г. Каталог механизмов очагов землетрясений Азербайджана за 2007 г. (*N*=1). (См. Приложение к наст. сб. на CD).
- 12. Михайлова Р.С. Дополнение к каталогу механизмов очагов землетрясений Азербайджана за 2007 г. (*N*=1). (См. Приложение к наст. сб. на CD).
- Ландер А.В. Комплекс программ определения меанизмов очагов землетрясений и их графического представления // Комплексные сейсмологические и геофизические исследования Камчатки и Командорских островов (01.01.2003–31.12.2003). Отчет КОМСП ГС РАН. – Петропавловск-Камчатский: Фонды КОМСП ГС РАН, 2004. – С. 359–380.
- Ландер А.В. Описание и инструкция для пользователя комплекса программ FA (расчет и графическое представление механизмов очагов землетрясений по знакам первых вступлений *P*-волн). – М.: Фонды автора, 2006. – 27 с.
- 15. Агаларова Э.Б., Гасанов А.Г., Шафадияев Р.Н., Юсифов Р.Ю. Талышское землетрясение 27 января // Землетрясения в СССР в 1986 году. М.: Наука, 1989. С. 52–58.
- 16. Михайлова Р.С. Каталог механизмов очагов землетрясений Азербайджана за 1998 г. // Землетрясения Северной Евразии в 1998 году. Обнинск: ГС РАН, 2004.
- 17. Чепкунас Л.С. Каталог механизмов очагов землетрясений Азербайджана за 2001 г. // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. (На СD).
- Абдуллаева Р.Р. Форшок (N=1) и афтершоки (N=15) Лерикского-II землетрясения 11.07.2007 г. с К_Р=12.3, Mw=5.2. (См. Приложение к наст. сб. на CD).
- Бабаян Т.О., Кулиев Ф.Т., Папалашвили В.Г., Шебалин Н.В., Вандышева Н.В. (отв. сост.). Кавказ (50–1974 гг., M≥4.0; I₀≥5) // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. – М.: Наука, 1977. – С. 69–170.
- Никонов А.А. Разрушительные землетрясения в иранском Азербайджане // Инженерносейсмологические исследования для районирования сейсмической опасности. Вопросы инженерной сейсмологии; Вып. 33. – М.: Наука, 1992. – С. 88–103.
- 21. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности. (Труды ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.