<u>II. СПЕКТРЫ И ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ</u>

УДК 550.348.436

ОЧАГОВЫЕ ПАРАМЕТРЫ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ ЗЕМЛИ Л.С. Чепкунас, Л.С. Малянова

Геофизическая служба РАН, г. Обнинск, **luba@gsras.ru**

Для одиннадцати наиболее сильных землетрясений Земли в 2007 г. из [1], приведенных в табл. 1, рассчитаны очаговые параметры по спектрам продольных волн, зарегистрированных на станциях «Обнинск» и «Талая». Все землетрясения расположены в Восточном сегменте земного шара с очагами в земной коре (рис. 1) на расстоянии $\Delta < 100^{\circ}$. Девять из них ($\mathbb{N} = 1-4, 6-10$ в табл. 1) имеют магнитуды $MS \ge 7.0$, два ($\mathbb{N} = 5, 11$) – менее 7.0. Но землетрясение $\mathbb{N} = 5$ с MS = 6.5 явилось сильнейшим на Сахалине, а землетрясение $\mathbb{N} = 11$ на Алеутах с MS = 6.9 имело магнитуду MPLP = 7.0.

1 – магнитуда *MS* по [1]; 2 – сейсмическая станция ГС РАН.

N⁰	Дата,	$t_0,$	Гі	ипоцентр		Магнитуда	Pa
	2	11 11111 0	0	10	In and	MC	

Таблииа 1. Сведения о рассмотренных землетрясе	ениях 2007 г.
---	---------------

N⁰	Дата,	$t_0,$	Гипоцентр		э Магнитуда		Район				
	дм	ч мин с	φ°	λ°	һ, км	MS					
1	2	3	4	5	6	7	8				
1	13.01	04 23 25.2	46.21	154.51	54	8.2	Восточнее Курильских островов				
2	21.01	11 27 44.5	1.17	126.32	33f	7.2	Север Молуккского моря				
3	25.03	00 41 58.5	37.33	136.60	23	7.0	Западное побережье Хонсю, Япония				

N⁰	Дата,	$t_0,$	Гипоцентр			Магнитуда	Район		
	дм	ч мин с	φ°	λ°	h, км	MS			
1	2	3	4	5	6	7	8		
4	01.04	20 40 00.9	-7.82	157.03	33f	7.8	Соломоновы острова		
5	02.08	02 37 40.7	46.90	141.73	9	6.5	Сахалин, Россия		
6	02.09	01 05 17.2	-11.49	165.81	38	7.1	Острова Санта-Крус		
7	12.09	11 10 28.5	-3.86	102.02	34	8.3	Южная Суматра, Индонезия		
8	12.09	23 49 02.1	-2.54	100.89	33f	8.0	Южная Суматра, Индонезия		
9	13.09	03 35 28.1	-2.07	99.70	27	7.2	Южная Суматра, Индонезия		
10	30.09	02 08 32.1	10.67	145.70	33f	7.0	Южнее Марианских островов		
11	19.12	09 30 27.2	51.39	-179.47	42	6.9	Андреяновские острова, Алеуты		

Примечание. В графе 6 буквой «f» индексирована фиксированная глубина гипоцентров; названия районов даны по [2].

На обеих станциях использовались записи вертикального канала цифрового широкополосного сейсмометра STS-1. Анализируемый интервал длительностью τ =120–150 *с* выбирался от вступления продольной волны *P* до вступления отраженной волны *PP*. В качестве примера на рис. 2 приведены записи *P*-волн для четырех землетрясений на станции «Обнинск».

Рис. 2. Сейсмограммы продольных волн на станции «Обнинск» для землетрясений, произошедших 13 января с *MS*=8.2, Δ=66.30° (а); 25 марта с *MS*=7.0, Δ=65.51° (б); 2 августа с *MS*=6.5, Δ=60.48° (в); 12 сентября с *MS*=8.3, Δ=79.43° (г)

Амплитудные спектры, приведенные на рис. 3, рассчитаны по программе Access Service Controller (SAC) [3]. Это интерактивная программа общего назначения, снабженная модулями спектрального анализа, позволяющая выделять, рассчитывать и анализировать спектральные данные сигналов. Аппроксимация спектров и расчет очаговых параметров проводился по [4–6]. Станционные спектры исправлялись за влияние амплитудно-частотной характеристики аппаратуры и приводились к очагу с учетом геометрического расхождения $G(\Delta)$ фронта *P*-волн, направленности излучения из очага $R_{\theta\phi}$, неупругого затухания m(f), частотной характеристики земной коры под станцией c(f). Первые два фактора $G(\Delta)$ и $R_{\theta\phi}$ не зависят от частоты, они лишь корректируют уровень спектра, а два последних – m(f) и c(f) – приводят к изменению всей спектральной картины. В данной работе величина поправки за направленность излучения из очага $R_{\theta\phi}$ принималась средней и равной 0.4 для всех землетрясений.

Рис. 3. Спектры Р-волн землетрясений 2007 г. из табл. 1

Спектральные и очаговые параметры для всех 11 землетрясений даны в табл. 2. Определены следующие спектральные характеристики: уровень Ω_0 длиннопериодной ветви спектра, частота $f_{\rm n}$ точки перелома спектра, частота угловой точки f_0 . На их основе вычислялись динамические параметры: сейсмический момент M_0 , сброшенное $\Delta \sigma$ и кажущееся $\eta \sigma$ напряжения, а также длина L разрыва и подвижка \bar{u} в очагах по методике [4–6]. Для получения значений $L, \bar{u}, \Delta \sigma$ использовалась дислокационная модель Брюна [7], которая нашла широкое применение в сейсмологической практике.

№	Дата, дм	t ₀ , ч мин	С/ст	MS	Δ°	$\begin{array}{c}\Omega_{0},\\10^{-4}\mathcal{M}\mathcal{C}\end{array}$	$f_{\rm n}, 10^{-2} \Gamma u$	f ₀ , 10 ⁻² Гц	М ₀ , 10 ¹⁹ Н∙м	Mw	<i>L</i> , 10 ³ м	Δσ, 10 ⁵ Πa	- ησ, 10 ⁵ Πa	ū, M
1	13.01	04 23	OBN	8.2	66.30	11.5	2.8	16.2	120	8.0	36	900	37	33.70
2	21.01	11 27	OBN	7.2	88.90	1.8	7.9	17.8	15.0	7.4	28	239	9	6.96
3	25.03	00 41	OBN	7.0	65.51	0.5	5.2	15.8	1.2	6.7	32	13	58	0.43
4	01.04	20 40	TLY	7.8	74.80	15.1	4.0		45	7.7				
5	02.08	02 37	OBN	6.5	60.48	0.05	10.7	18.6	0.25	6.2	26	5	50	0.13
6	02.09	01 05	TLY	7.1	82.53	2.4	7.9		11.0	7.3				
7	12.09	11 10	OBN	8.3	79.43	11.7	5.9	10.6	56	7.8	46	201	111	9.63
8	12.09	23 49	OBN	8.0	77.72	15.1	2.3	10.0	72	7.9	50	202	31	10.48
9	13.09	03 35	OBN	7.2	76.69	1.3	2.4	13.2	5.8	7.1	37	40	24	1.54
10	30.09	02 08	TLY	7.0	53.49	1.7	5.0		2.9	6.9				
11	19.12	09 30	OBN	6.9	69.71	1.6	2.3	11.5	7.0	7.2	42	33	7	1.44

Таблица 2. Характеристики спектров *P*-волн и динамические параметры очагов землетрясений 2007 г. по записям STS-1 на станциях «Обнинск», «Талая»

На основе значений M_0 , полученных по цифровым записям на станции «Обнинск», вычислена моментная магнитуда Mw. Расчет Mw выполнен по формуле Х. Канамори [8]:

$Mw = \frac{2}{3} \lg M_0 - 10.7$

$$Mw = \frac{2}{3}(\lg M_0 + 7) - 10.7,$$

где M_0 имеет размерность *дн см* и *Н*·*м* в системах СГС и СИ соответственно.

Литература

- 1.Болдырева Н.В. (отв. сост.), Бабкина В.Ф., Аторина М.А., Щербакова А.И. Рыжикова М.И. Каталог землетрясений Земли (*N*=7438) за 2007 г. (См. Приложение к наст. сб. на CD).
- 2. Young J.B., Presgrave B.W., Aichele H., Wiens D.A. and Flinn E.A. The Flinn-Engdahl Regionalisation Scheme: the 1995 revision // Physics of the Earth and Planetary Interiors. 1996. 96. P. 223–297.
- 3. Golstein P., Dodge D., Firpoand M. and Lee M. The IASPEI International Handbook of Earthquake and Engineering Seismology / Ed. by W.H.K. Lee, H. Kanamori, P.C. Jennings and C. Kisslinger. London: Academic Press, 2003.
- 4. Захарова А.И., Чепкунас Л.С. Динамические параметры очагов сильных землетрясений по спектрам продольных волн на станции «Обнинск» // Физика Земли. 1977. № 2. С. 9–17.
- 5. Аптекман Ж.Я., Дараган С.К., Долгополов Д.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – № 2. – С. 60–70.
- 6. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология – 1989. – № 2. – С. 66–79.
- 7. Brune I.N. Tectonic stress and the spectrum of seismic shear waves from earthquake // J. Geophys. Res. 1970. 75. N 26. P. 4997–5009.
- 8. Hanks T.C., Kanamori H. A Moment Magnitude Scale // J. Geophys. Res. 1979. 84. N 135. P. 2348–2350.