ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ КРЫМА

Б.Г. Пустовитенко¹, Е.А. Мержей², Е.И. Поречнова², З.Н. Сыкчина²

¹Крымский экспертный совет по оценке сейсмической опасности и прогнозу землетрясений, г. Симферополь, bella@seismoexpert.crimea.ua, ²Отдел сейсмологии Института геофизики им. С.И. Субботина НАН Украины, г. Симферополь, seismosilver@mail.ru

В 2007 г. сеть сейсмических станций Крыма была полностью переведена на цифровой способ регистрации сейсмических колебаний. Цифровые сертифицированные сейсмоприемники SDAS [1] функционируют в Крыму с 2000 г. [2] на стационарных сейсмических станциях «Симферополь» (SIM) и «Ялта» (YAL). На этих цифровых станциях запись землетрясений проводится группами каналов: короткопериодным (EH) и длиннопериодным (BH), которые регистрируют сейсмический сигнал, пропорциональный скорости колебания почвы в рабочем диапазоне от 0.1 до 20 $\Gamma \mu$ (EH) и от 0.01 до 4 $\Gamma \mu$ (BH). Частота опроса, соответственно, 100 и 20 $\Gamma \mu$.

На других станциях Крыма цифровой способ регистрации сейсмических колебаний осуществляется короткопериодной аппаратурой MSP-Ш [3], изготовленной в отделе сейсмологии ИГ НАН Украины. Для проведения методических работ и корректировки параметров MSP-Ш на станции «Алушта» (ALU) параллельно с цифровой продолжена аналоговая регистрация по горизонтальной компоненте (N–S). Это позволило для землетрясения 7 ноября в $00^{h}20^{m}$ (табл. 1) рассчитать и сравнить спектры по записям двух видов регистрации. Для относительно слабого (K_{Π} =8.9) землетрясения 6 октября в $19^{h}34^{m}$ надежный спектр получен только по аналоговой записи, а для наиболее сильного – 5 октября в $23^{h}17^{m}$ с K_{Π} =11.8 – только по цифровой.

№	Дата,	$t_0,$	Эпицентр		h,	Магнитуды					K_{Π}	Район
	дм	ч мин с	φ°, N	λ°, Ε	км	<i>Mc</i> [4]	Mw	<i>Ms</i> [5]	MPSP[6]	$m_b[5]$		
1	2	3	4	5	6	7	8	9	10	11	12	13
1	05.10	23 17 55.8	44.56	37.08	18	4.0	4.3	3.8	4.5	4.4	11.8	Керченско-Анапский (№ 5)
2	06.10	19 34 07.4	44.02	33.79	41		3.0				8.9	Севастопольский (№ 1)
3	07.11	00 20 20.8	44.65	37.05	23		3.2				9.6	Керченско-Анапский (№ 5)

Таблица 1. Список землетрясений Крыма, для которых рассчитаны спектры в 2007 г.

Примечание. Параметры землетрясений в графах 2–7 соответствуют таковым в [4]; в графе 8 магнитуды *Мw* – по настоящей статье.

Всего в 2007 г. рассчитано 16 спектров объемных *P*- и *S*-волн для трех землетрясений Крыма (табл. 1). Два из них произошли в Керченско-Анапском районе (\mathbb{N} 5), одно – в пограничной зоне Севастопольского и Ялтинского районов (рис. 1). Диапазон эпицентральных расстояний Δ =88–269 км, энергетических классов – K_{Π} =8.9–11.8.

Для анализа и расчета спектров отбирались записи только с четкими фазами *P*- и *S*-волн, не осложненные микросейсмическим шумом. Там, где условия отбора позволяли, спектры рассчитывались по обеим горизонтальным составляющим (N–S) и (E–W). Как и при обработке аналоговых записей [8], относительная длительность исследуемого участка по цифровым станциям принята

Рис. 1. Карта эпицентров землетрясений, для которых рассчитаны спектры

1 – сейсмическая станция; 2 – энергетический класс K_{Π} [7]; номера землетрясений соответствуют таковым в табл. 1.

равной интервалу времени от вступления *P*- и *S*-волн до времени спада максимальных колебаний A_{max} на уровень ${}^{1}/{}_{3}A_{\text{max}}$.

Аналоговые сейсмограммы по станции «Алушта» со скоростью развертки записи 60 *мм/мин* оцифрованы ручным способом по характерным точкам и спектры рассчитаны экспресс-методом по методике [8]. Спектры по цифровым станциям получены методом БПФ по стандартной программе с учетом методических рекомендаций в [9]. При этом записи скоростей были пересчитаны в функции смещения грунта с учетом имеющихся АЧХ и рабочих динамических диапазонов каналов регистрации. Примеры цифровых записей даны на рис. 2.

Рис. 2. Примеры цифровых записей землетрясений по короткопериодным каналам ЕН: 5 октября в 23^h17^m с K_{II}=11.8, *Мw*=4.3, Δ=238 км на станции «Симферополь» (а); 7 ноября в 00^h20^m с K_{II}=9.6, *Mw*=3.2, Δ=209 км на станции «Алушта» (б)

Амплитудные спектры для наиболее сильного (K_{Π} =11.8) землетрясения 5 октября в 23^h17^m рассчитаны по цифровым записям на семи станциях Крыма: «Алушта» (ALU), «Керчь» (KER), «Севастополь» (SEV), «Симферополь» (SIM) «Судак» (SUDU), «Феодосия» (FEO), «Ялта» (YAL). Интерпретация спектров и расчет динамических параметров во всех случаях выполнен в рамках дислокационной модели Брюна [10]. На рис. 3 и 4 представлены амплитудные спектры *S*-волн, записанных, соответственно, аналоговой и цифровой аппаратурой на станции «Алушта», а также результаты их аппроксимации.

Прямое сравнение спектров по записям двух видов регистрации колебаний от землетрясения 7 ноября в $00^{b}20^{m}$ (рис. 3 б, в) показало идентичность их аппроксимации и практически равенство значений спектральной плотности (Ω_0) в длиннопериодной части и угловой частоты f_0 . При этом в рамках выполнения настоящей работы рассчитанный ранее [11] спектр был интерпретирован заново и, соответственно, заново откорректированы восстановленные по нему динамические параметры.

Рис. 3. Амплитудные спектры землетрясений 2007 г. на станции «Алушта»: а – 6 октября в $19^{h}34^{m}$ с K_{Π} =8.9, Mw=3.0, Δ =88 км по аналоговой записи; б, в – 7 ноября в $00^{h}20^{m}$ с K_{Π} =9.6, Mw=3.2, Δ =212 км по аналоговой и цифровой записям соответственно (составляющая N–S)

Для восстановления динамических параметров очага землетрясения 5 октября с K_{Π} =11.8 использовано 13 амплитудных спектров, рассчитанных только по записям цифровых станций. Примеры спектров по записям четырех станций («Керчь» (KER), «Судак» (SUDU), «Феодосия» (FEO), «Ялта» (YAL)) даны на рис. 4.

Рис. 4. Примеры амплитудных спектров землетрясения 5 октября в 23^h17^m с *K*_П=11.8, *Мw*=4.3 по записям цифровых сейсмических станций

Как видим, полученные спектры по цифровым станциям также надежно аппроксимируются в рамках модели Брюна со спадом уровня спектральной плотности по квадратичному за-

кону. Вид и аппроксимация остальных девяти спектров этого землетрясения аналогичны приведенным на рис. 4 и относятся к классу надежных.

Характеристики амплитудных спектров f_0 и Ω_0 использованы для расчета динамических параметров очагов землетрясений [8, 9]. В табл. 3 представлены следующие параметры очагов землетрясений: Δ – эпицентральное расстояние, Ω_0 – спектральная плотность, f_0 – угловая частота, M_0 – сейсмический момент, r_0 – радиус круговой дислокации, $\Delta \sigma$ – сброшенное напряжение, ε – деформация сдвига, u – средняя подвижка по разрыву. Здесь же приведены значения моментной магнитуды Mw, рассчитанной по сейсмическому моменту M_0 с использованием формулы Канамори [12]:

$$M_W = 2/3 \cdot \lg M_0 - 10.7,$$

 $M_W = 2/3 \cdot (\lg M_0 + 7) - 10.7,$

где *M*₀ имеет размерность *дин*·*см* и *H*·*м* в системах СГС и СИ соответственно.

При оценке сейсмического момента для землетрясения 5 октября в $23^{h}17^{m}$ с известным механизмом очага [13] учитывалась расчетная поправка за направленность излучения ($R_{\theta\phi}$) для каждой станции регистрации (табл. 2), рассчитанная А.А. Пустовитенко [14]. Спектральная плотность Ω_0 , полученная по спектру записей на двух горизонтальных составляющих, пересчитывалась в полный вектор колебаний (в табл. 3 отмечено как N+E). При вычислении средних по группе станций значений динамических параметров использовался логнормальный закон распределения величин, как и в работе [8], и оценивалось стандартное отклонение (дисперсия *S*).

Таблица 2. Значения $R_{\theta\phi}$ для землетрясения 5 октября в 23^h17^m с K_{Π} =11.8, Mw=4.3

Станция	Алушта		Симферополь		Керчь	ерчь Севастополь		Судак Феодосия		Ялта	
Волна	Р	S	Р	S	S	S P S		S	Р	S	
$R_{ heta \phi}$	0.124	0.38	0.052	0.31	0.53	0.42	0.036	0.21	0.19	0.44	

Для остальных землетрясений $R_{\theta\phi}$ была принята равной 0.4, как и для других слабых сейсмических событий Крыма [8].

Станция	Состав- ляющая	Δ, км	$\Omega_0,$ $10^{-6} M \cdot c$	f ₀ , Гц	$\begin{array}{c} M_{0},\\ 10^{13} H \cdot M\end{array}$	Mw	r ₀ , км	Δσ, 10 ⁵ Πα	ε, ·10 ⁻⁵	\overline{u} , $10^{-2} M$		
Землетрясение 5 октября: t ₀ =23 ^h 17 ^m 55.8 ^s , φ=44.56°, λ=37.08°, h=18 км, K _П = 11.8												
Алушта*	Ζ	212	0.32	2.1	313	4.3	1.1	10	3.35	2.7		
Алушта*	N+E	212	5.3	1.2	312	4.3	1.12	9.8	3.27	2.66		
Керчь*	Ν	97	15	1.02	325	4.3	1.30	6.45	2.15	2.04		
Севастополь*	Ν	269	2.0	1.12	303	4.25	1.2	7.74	2.58	2.25		
Симферополь*	Z	238	0.12	2.2	236	4.2	1.06	8.72	2.91	2.24		
Симферополь*	N+E	238	8.6	1.02	522	4.4	1.30	10.1	3.35	3.2		
Судак*	Ζ	168	0.09	2.0	346	4.3	1.16	9.6	3.2	2.71		
Феодосия*	N+E	143	3.9	1.2	221	4.2	1.12	6.92	2.31	1.88		
Ялта*	Z	232	0.8	1.9	658	4.5	1.23	15.6	5.22	4.65		
Ялта*	Ν	232	4.0	1.05	388	4.35	1.28	8.15	2.72	2.52		
Среднее геометрическое					344	4.3**	1.22	9.04	3.01	2.60		
Дисперсия S					0.05	0.1**	0.02	0.03	0.03	0.04		
Землетрясение 6 октября: $t_0 = 19^h 34^m 07.4^s$, $\varphi = 44.02^\circ$, $\lambda = 33.79^\circ$, $h = 41 \kappa M$, $K_{\Pi} = 8.9$												
Алушта	Ν	88	0.04	3.9	3.01	3.0	0.43	1.68	0.28	0.087		
Землетрясение 7 ноября: $t_0 = 00^h 20^m 20.8^s$, $\phi = 44.65^\circ$, $\lambda = 37.05^\circ$, $h = 23 \ \kappa m$, $K_{\Pi} = 9.6$												
Алушта	Ν	209	0.10	3.98	7.72	3.2	0.34	8.8	0.29	0.72		
Алушта*	Ν	209	0.12	4.0	8.82	3.2	0.34	10.3	0.34	0.83		

Таблица 3. Спектральные и динамические параметры очагов землетрясений Крыма за 2007 г.

Примечание. Знаком * отмечены данные цифровых станций, ** - среднее арифметическое значение и погрешность.

Прежде всего нужно отметить хорошее внутреннее согласие станционных определений динамических параметров и сходимость результатов при прямом сопоставлении определений по аналоговым и цифровым станциям для землетрясения 7 ноября в $00^{h}20^{m}$ (табл. 3). Станционные определения очаговых параметров по двум группам волн – продольным (*P*) и поперечным (*S*) – также находятся в пределах погрешностей их определения, а по записям станции «Алушта» получено практически полное совпадение результатов. Поскольку в расчеты введены поправки за направленность излучения и сделана коррекция за влияние станционных условий, то отклонения сейсмического момента как в сторону завышения («Ялта», Z и «Симферополь», N+E), так и в сторону занижения («Феодосия», N+E) можно объяснить многообразием других трудно учитываемых факторов, влияющих на отклик среды под станцией на подходящие к ней сейсмические волны.

Помимо прямого сравнения динамических параметров, восстановленных по параллельным записям двумя видами аппаратуры, проведена проверка соответствия средних значений M_0 и r_0 , по цифровым станциям долговременным зависимостям $M_0(K_{\Pi})$ и $r_0(K_{\Pi})$ [15], полученным по аналоговым записям в виде:

$$lg M_0 = 0.645(\pm 0.027) \cdot K_{\Pi} + 15.142(\pm 0.271), \qquad \rho = 0.99, \tag{1}$$

lg
$$r_0$$
=0.112(±0.011)· K_{Π} -1.293(±0.107), ρ=0.93. (2)

Восстановленные значения M_0 и r_0 по цифровым станциям находятся в пределах доверительного интервала долговременных зависимостей (1, 2) этих параметров от энергетического класса K_{Π} землетрясений [8, 15], установленных по аналоговым записям. При этом значения M_0 рассмотренных землетрясений лежат вблизи регрессионной прямой, а r_0 – в верхней части доверительной области [16].

В целом же можно заключить, что восстановленные динамические параметры очагов рассмотренных землетрясений относятся к категории надежных и могут быть использованы в решении различных сейсмологических и тектонофизических задач.

Литература

- Красилов С.А., Коломиец М.В., Акимов А.П. Организация процесса цифровых сейсмических данных с использованием программного комплекса WSG // Современные методы обработки и интерпретации сейсмологических данных. Материалы Международной сейсмологической школы, посвященной 100-летию открытия сейсмической станции «Пулково» и «Екатеринбург». Обнинск: ГСН РАН, 2006. С. 77–83.
- 2. Пустовитенко А.Н., Свидлова В.А., Пустовитенко А.А., Поречнова Е.И., Сыкчина З.Н. Крым // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 58–63.
- 3. Пустовитенко А.Н., Свидлова В.А., Пасынков Г.Д., Сафонов И.П., Шаторный Б.И. Сейсмичность Крыма в 2006 году // Сейсмологический бюллетень Украины за 2006 год. Симферополь: ОС ИГ НАНУ, 2008. – С. 6–12.
- 4. Свидлова В.А., Сыкчина З.Н., Козиненко Н.М. Каталог землетрясений Крыма за 2007 г. (*N*=49). (См. Приложение к наст. сб. на CD).
- 5. Bulletin of the International Seismological Centre for 2007. Thatcham, United Kingdom: ISC, 2009. URL: *http://www.isc.ac.uk/search/bulletin/ 2007*
- 6. Сейсмологический бюллетень (ежедекадный) за 2007 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2007–2008. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2007/*
- 7. Пустовитенко Б.Г., Кульчицкий В.Е. Об энергетической оценке землетрясений Крымско-Черноморского региона // Магнитуда и энергетическая классификация землетрясений. – М.: ИФЗ АН СССР, 1974. – Т. 2. – С. 113–125.
- 8. Пустовитенко Б.Г., Пантелеева Т.А. Спектральные и очаговые параметры землетрясений Крыма. Киев: Наукова думка, 1990. 249 с.
- 9. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология. – 1989. – № 2. – С. 66–79.

- Brune I.V. Tectonic stress and the spectra of seismic shear waves from earthquakes // J. Geophys. Res. 1970. – 75. – N 26. – P. 4997–5009.
- 11. **Поречнова Е.И., Сыкчина З.Н**. Спектры и динамические параметры очагов землетрясений Крыма за 2007 г. // Сейсмологический бюллетень Украины за 2007 год. Симферополь: ИГ НАНУ, КЭС, 2009. С. 11–13.
- Hanks T.C., Kanamori H. A Moment Magnitude Scale // J. Geophys. Res. 1979. 84. N 135. P. 2348–2350.
- 13. Пустовитенко А.А. (отв. сост.). Каталог механизмов очагов землетрясений Крыма за 2007 г. (*N*=1). (См. Приложение к наст. сб. на CD).
- 14. Пустовитенко А.А. Личный архив. Симферополь, 2012 г.
- Пустовитенко Б.Г., Пустовитенко А.А., Капитанова С.А., Поречнова Е.И. Пространственные особенности очаговых параметров землетрясений Крыма // Сейсмичность Северной Евразии. – Обнинск: ГС РАН, 2008. – С. 238–242.
- 16. Пустовитенко Б.Г., И.В. Калинюк, Мержей Е.А., Пустовитенко А.А. Сравнение динамических параметров землетрясений Крыма по данным цифровых и аналоговых записей // Землетрясения Северной Евразии, 2006 год. – Обнинск: ГС РАН, 2012. – С. 461–468.