ЯКУТИЯ

Б.М. Козьмин

Якутский филиал ГС СО РАН, г. Якутск, b.m.kozmin@diamond.ysn.ru

Инструментальные наблюдения Якутского филиала ГС СО РАН в 2007 г. обеспечивали 19 цифровых сейсмических станций. В их число входили две опорные станции «Якутск» и «Тикси», задействованные в мировой системе наблюдений IRIS, остальные являлись региональными. Число станций и их местоположение на территории исследований в 2007 г., по сравнению с таковым в 2006 г. [1], осталось без изменений. Из них 6 станций располагались на северо-востоке Якутии, 8 пунктов наблюдений – в Южной Якутии и 5 – действовали в центре региона. Список действующих станций и их аппаратура приведены в табл. 1 и 2. Сохранился также уровень представительности K_{min} зарегистрированных в Якутии сейсмических событий таким же, как и в 2006 г. [1]: вблизи станций этот уровень соответствовал 7-му и 8-му энергетическим классам, а на северных окраинах региона – ≥ 12 . Как и раньше [1, 2], параметры эпицентров местных землетрясений определялись на основе обработки цифровых сейсмограмм, полученных станциями ЯФ ГС СО РАН. Для нахождения координат подземных толчков в приграничной территории привлекались данные сводной обработки и наблюдений отдельных станций из соседних регионов: Байкальского филиала ГС СО РАН (г. Иркутск) и Магаданского филиала ГС РАН (г. Магадан), а также сведения из бюллетеня землетрясений станций «Кировский» и «Бомнак» Сахалинского филиала ГС РАН (г. Южно-Сахалинск). Координаты эпицентров землетрясений рассчитывались на основе компьютерной программы, созданной К.Д. Маккей в отделе геологии и геофизики Университета штата Мичиган (США) с использованием времен пробега прямых и преломленных Р-и S-волн.

№	Станция			Начало рабо	Ко	оординати	Тип ЦСС		
	Название	Код		аналоговой	цифровой	φ°, N	λ°, Ε	h,	
		межд.	рег.					м	
1	Тикси	TIXI	Ткс	02.03.1956	13.08.1995	71.65	128.87	100	IRIS
2	Якутск	YAK	Як	04.10.1957	01.09.1993	62.03	129.68	91	IRIS
					01.09.1999				SDAS
3	Чульман	CLNS	Члн	05.08.1962	25.03.2000	56.84	124.89	747	SDAS
4	Усть-Нера	UNR	Унр	21.11.1962	20.04.2002	64.57	143.23	485	PAR-24B
5	Чагда	CGD	Чгд	04.10.1968	25.07.2004	58.75	130.61	195	SDAS
6	Батагай	BTGS	Бтг	12.03.1975	12.12.2002	67.65	134.63	127	SDAS
7	Мома	MOMR	Мом	05.03.1983	01.11.2002	66.47	143.22	192	PAR-4CH
8	Артык	ATKR	Атк	04.07.1988	25.04.2002	64.18	145.13	700	PAR-24B
9	Алдан	ALDR	Алд		01.09.1999	58.61	125.41	658	SDAS
10	Усть-Мая		Усм		01.09.2000	60.42	134.54	170	SDAS
11	Тында	TNDR	Тыд		20.06.2001	55.15	124.72	530	SDAS
12	Витим		Втм		25.06.2003	59.44	112.58	190	SDAS
13	Табага		Тбг		26.06.2003	61.82	129.64	98	Байкал-11
14	Кангалассы		Кнг		07.07.2003	62.21	129.58	100	Байкал-11
15	Депутатский		Деп		01.09.2003	69.39	139.90	320	PAR-4CH
16	Юктали		Юкл		04.07.2004	56.59	121.65	420	SDAS
17	Иенгра		Иен		10.07.2004	56.22	124.86	860	Байкал-11
18	Хани		Хн		11.12.2005	56.92	119.98	690	Байкал-11
19	Нижний Бестях		Бест		01.07.2006	61.93	129.89	95	SMART-24

Таблица 1. Сейсмические станции Якутии (в хронологии их открытия), работавшие в 2007 г.

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных,	Разряд- ность АЦП	Чувствительность, велосиграф – отсчет/(<i>м/c</i>),
				Τų		акселерограф – отсчет/ (m/c^2)
Тикси	IRIS+STS-1	BH (N. Z. E) v	0.0028-5	20	24	$1.00.10^9$
-		LH (N, Z, E) v	0.0028-0.25	1	24	$3.98 \cdot 10^9$
		VH (N. Z. E) v	0.0028-0.025	0.1	24	$1.59 \cdot 10^{10}$
		VM (N. Z. E) a	0-0.0028	0.01	24	$1.23 \cdot 10^{10}$
	IRIS+GS-13	EH (N, Z, E) v	1–25	80	24	$4.08 \cdot 10^9$
		SH (N, Z, E) v	1-10	40	24	$4.08 \cdot 10^9$
Якутск	IRIS+STS-1	BH (N. Z. E) v	0.0028-5	20	24	$1.00 \cdot 10^9$
		LH (N. Z. E) v	0.0028-0.25	1	24	$4.00 \cdot 10^9$
		VH (N. Z. E) v	0.0028-0.025	0.1	24	$1.60 \cdot 10^{10}$
		VM (N, Z, E) a	0-0.0028	0.01	24	$1.20 \cdot 10^{10}$
	IRIS+GS-13	EH (N, Z, E) v	1–25	80	24	$2.08 \cdot 10^9$
		SH (N, Z, E) v	1-10	40	24	$2.08 \cdot 10^9$
	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	16	$8.70 \cdot 10^8$
		BL (N. Z. E) v	0.02-6.7	20	16	$2.18 \cdot 10^8$
Чульман	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	16	$5.29 \cdot 10^8$
5		BL (N, Z, E) v	0.02-6.7	20	16	$1.32 \cdot 10^8$
Усть-Нера	PAR-24B+CKM-3	SH (N, Z, E) v	0.8-5.0	30	24	$2.47 \cdot 10^{10}$
Чагда	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	24	3.83·10 ⁹⁸
		BL (N, Z, E) v	0.02-6.7	20	24	1.20.10
Батагай	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	24	1.03.109
		BL(N, Z, E)v	0.02-6.7	20	24	$2.58 \cdot 10^8$
Мома	PAR-4CH+KS-2000	SH(N, Z, E)v	0.01-50	50	24	$9.01 \cdot 10^8$
Артык	PAR-24B+CM-3-KB	SH (N, Z, E) v	0.8-10	30	24	$4.03 \cdot 10^{10}$
Алдан	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	16	$5.32 \cdot 10^8$
		BL(N, Z, E)v	0.02-6.7	20	16	$1.36 \cdot 10^8$
Усть-Мая	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	16	$5.26 \cdot 10^8$
		BL (N, Z, E) v	0.02-6.7	20	16	$1.32 \cdot 10^{8}$
Тында	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	16	9.01·10 ⁸
		BL(N, Z, E)v	0.02-6.7	20	16	$2.25 \cdot 10^8$
Витим	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	24	7.35·10 ⁹
		BL (N, Z, E) v	0.02-6.7	20	24	$2.29 \cdot 10^8$
Табага	Байкал-11+СМ-3-КВ	SH (N, Z, E) v	0.5-2.0	100	20	$2.04 \cdot 10^{10}$
Кангалассы	Байкал-11+СМ-3-КВ	SH (N, Z, E) v	0.5-2.0	100	20	$2.04 \cdot 10^{10}$
Депутатский	PAR-4CH+KS-2000	SH (N, Z, E) v	0.01-50	20	24	8.93·10 ⁸
Юктали	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	24	$3.65 \cdot 10^9$
		BL (N, Z, E) v	0.02-6.7	20	24	$1.14 \cdot 10^8$
Иенгра	Байкал-11+СМ-3-КВ	SH (N, Z, E) v	0.05-2.0	50	20	2.86·10 ⁹
Хани	Байкал-11+СМ-3-КВ	SH (N, Z, E) v	0.5-2.0	100	20	$2.04 \cdot 10^{10}$
Нижний Бестях	SMART-24+KS-2000	SH (N, Z, E) v	0.02-100	100	24	$1.49 \cdot 10^{10}$

Таблица 2. Данные об аппаратуре цифровых станций в 2007 г.

Примечание. Символами «v» и «а» обозначены велосиграф и акселерограф соответственно.

По результатам сводной обработки инструментальных наблюдений в 2007 г. в пределах Якутии выявлено 760 сейсмических событий в интервале K_P =6.6–13.0 [3]. Сведения о 270 из них с $K_P \ge 7.6$ включены в каталог землетрясений [4] на CD в наст. сб. Распределение числа землетрясений по районам и энергетическим классам K_P показано в табл. 3, а их положение в пространстве обозначено на карте эпицентров (рис. 1). Выделившееся в 2007 г. количество сейсмической энергии равно $\Sigma E=1.38 \cdot 10^{13} \ Дж$, что в 2.7 раза меньше ее величины ($\Sigma E=3.70 \cdot 10^{13} \ Дж$) в 2006 г. [1].

N⁰	Район		K _P						N_{Σ}	ΣE ,
			8	9	10	11	12	13	-	Дж
1	Олёкминский		57	19	8	3	1		307	$1.185 \cdot 10^{12}$
2	Становой хр.	90	25	4	2	3			124	$2.800 \cdot 10^{11}$
3	Алданское нагорье	115	40	4	3	3			165	$1.780 \cdot 10^{11}$
4	Учурский		6	1	1				23	$5.056 \cdot 10^9$
5	Охотский									_
6	Хр. Сетте-Дабан			1					1	$1.338 \cdot 10^{10}$
7	Верхоянский хребет		10	6					24	$7.111 \cdot 10^9$
8	Яно-Оймяконское нагорье		6	1			1		19	$4.007 \cdot 10^{11}$
9	Хребет Черского		19	13	6	1		1	61	$1.015 \cdot 10^{13}$
10	Приморская низменность		1	1			1		5	$6.330 \cdot 10^{11}$
11	Лаптевский		6	5	4	2	1		19	$1.030 \cdot 10^{12}$
12	Восточная часть Сибирской платформы		3	2					12	$2.698 \cdot 10^9$
	Всего	489	173	57	24	12	4	1	760	$1.380 \cdot 10^{13}$

Таблица 3. Распределение числа землетрясений по энергетическим классам *К*_Р и суммарной сейсмической энергии по районам за 2007 г.

Рис. 1. Карта эпицентров землетрясений Якутии за 2007 г.

1 – энергетический класс землетрясений $K_{\rm P}$; 2, 3 – сейсмическая станция, опорная и региональная соответственно; 4 – сейсмическая станция соседних регионов; 5 – разлом по [5], установленный (сплошная линия) и предполагаемый (штриховая): У – Улахан, Э – Эльгинский, Чб – Чибагалахский; 6, 7 – граница района и региона соответственно.

Одной из активных структур на юге региона в 2007 г. была Олёкмо-Становая сейсмотектоническая зона, продолжающая проявления сейсмичности Байкальского рифта к Охотскому морю. В пределах этой зоны на карте эпицентров (рис. 1) можно заметить постепенный спад ее сейсмической активности в направлении с запада на восток. Очаги землетрясений традиционно тяготели здесь к широкой (до 200 км) Становой системе разломов, область влияния которой протянулась от среднего течения р. Олёкма до Охотского побережья вдоль 56-й параллели. Более активным на западе названной зоны был Олёкминский район (№ 1). Здесь продолжали регистрироваться подземные толчки Чаруодинского роя 2005 г., деятельность которого за два года существенно ослабела: число сейсмических событий в 2007 г. сократилось на порядок (примерно в 11 раз) с момента его появления в 2005 г. (рис. 2). В 2007 г. отмечено два ощутимых землетрясения этого роя, которые произошли 13 марта в 04^h51^m с $K_P=11.3$ и 28 октября в 00^h59^m с $K_P=11.8$. Оба события вызвали сотрясения на ближайшей к эпицентрам железнодорожной станции БАМ – Хани на расстояниях $\Delta=97$ и 85 км соответственно, с интенсивностью I=2-3 балла [4].

Рис. 2. Распределение числа землетрясений Чаруодинского роя в 2005–2007 гг.

В двух следующих районах – Становом хребте (№ 2) и Алданском нагорье (№ 3) – в 2007 г. выделилось примерно одинаковое количество сейсмической энергии: $\Sigma E=2.80 \cdot 10^{11} \, \Pi \mathcal{H}$ и 1.78·10¹¹ Дж соответственно. Повышенная плотность эпицентров землетрясений была характерна для западного фланга Станового хребта, граничащего с Чульманской впадиной [5], где современными тектоническими движениями охвачена ее южная окраина, прилегающая к хребту. К этому участку принадлежит эпицентральная зона 8-балльного Южно-Якутского землетрясения 20.04.1989 г. с K_P=16.5 [6], сюда же был приурочен очаг землетрясения 2007 г. с $K_{\rm P}$ =11.2, зарегистрированного 3 марта в 08^h35^m. Сейсмические проявления на Алданском нагорье были сосредоточены в основном в его цен-

тральной части, на правобережье р. Тимптон (притоке р. Алдан), где 23 июля 14^h33^m также возник подземный толчок с *К*_P=11.0.

Еще восточнее, в **Учурском районе** (№ 4), фиксировались лишь слабые (*K*_P=7–10) землетрясения (табл. 3). Их эпицентры были локализованы в бассейне верхнего течения р. Учур (притока р. Алдан). Гипоцентры землетрясений Олёкмо-Становой зоны происходили в земной коре на глубинах 8–23 *км* [5].

Среди северо-восточных районов по уровню сейсмичности особенно выделялся район Хребет Черского (№ 9), где более активной была его юго-восточная часть. Большинство эпицентров близких землетрясений связаны с подвижками вдоль Индигиро-Колымской сети «живых» тектонических нарушений, рассекающих систему хребтов Черского [7, 8]. Особенно подвижен был Эльгинский разлом. Он с югозапада ограничивает хр. Тас-Кыстабыт и следится от р. Индигирки до р. Колымы, протягиваясь на 600 км в направлении северо-запад-юго-восток (рис. 1, 3). Его кинематика по геологическим данным соответствует сдвигу. Разлом отражается В геофизических полях: в магнитном - линейной аномалией, в поле силы тяжести малоамплитудной ступенью [7]. Между

Рис. 3. Эльгинское землетрясени 20 ноября 2007 г. с *К*_P=13.0 и его афтершоки

1 – энергетический класс K_P (черным цветом помечен главный толчок, серым – афтершоки); 2 – сейсмоактивный разлом.

Эльгинским разломом, оперяющим его разрывом II-го порядка и параллельным им Оймяконским дизъюнктивом 20 ноября в $00^{h}42^{m}$ на глубине $h=10 \ \kappa m$ произошло самое крупное ($K_{P}=13.0$ [4], Ms=4.5 [9]) в регионе событие 2007 г. Его эпицентр пришелся на ненаселенную горнотаежную местность. Оно ощущалось лишь в двух ближайших населенных пунктах: пос. Артык ($\Delta=103 \ \kappa m$) с I=2-3 балла и пос. Усть-Нера (158 κm) – 2 балла. После главного удара до конца года была отмечена небольшая (N=8) серия афтершоков с $K_{P}=6-10$ (рис. 3).

Отдельные скопления очагов землетрясений в хр. Черского зафиксированы также в центральной части разлома Улахан и на северо-западном окончании Чибагалахского разрывного нарушения.

Меньший уровень сейсмичности наблюдался в районах **Верхоянского хребта (№ 7)** и **Яно-Оймяконского нагорья (№ 8)**. Так, центральная часть Верхоянского хребта была асейсмична, зато активнее проявили себя его фланги, где выявлены скопления слабых землетрясений в Южном и Северном Верхоянье. Заслуживает внимание небольшая группа толчков с K_P =6.4–9.4 в Северном Верхоянье, которая реализовалась 12 и 13 апреля на границе Найбинского кряжа с Хараулахской впадиной вблизи морского побережья (табл. 4). Эти проявления интересны тем, что являются прямым продолжением известной сейсмоактивной зоны моретрясений губы Буор-Хая моря Лаптевых [10] на континент.

Таблица 4. Список слабых землетрясений 2007 г. в Найбинском кряже вблизи губы Буор-Хая моря Лаптевых

№	Дата,	$t_0,$	Эпицентр		Эпицентр		$K_{\rm P}$	N₂	Дата,	$t_0,$	Эпицентр		K _P
	дм	ч мин с	φ°, Ν	λ°, Ε			д м	ч мин с	φ°, Ν	λ°, Ε			
1	12.04	03 10 18.4	70.76	129.95	7.8	6	12.04.	04 35 33.3	70.67	129.74	9.1		
2	12.04	03 26 49.9	70.76	129.90	7.1	7	12.04.	09 37 12.7	70.66	129.66	8.4		
3	12.04	03 28 13.5	70.84	130.04	7.4	8	13.04.	06 56 31.6	70.72	129.71	6.7		
4	12.04	03 40 14.8	70.72	129.87.	9.4	9	13.04.	07 03 27.5	70.70	129.46	6.4		
5	12.04	03 42 44.5	70.75	129.87	8.2								

На Яно-Оймяконском нагорье на фоне рассеянного облака слабых толчков в хр. Кулар на левобережье р. Яна в ее среднем течении 21 мая в $08^{h}21^{m}$ зарегистрировано землетрясение с $K_{\rm P}$ =11.6.

В районе **Приморской низменности** (**N** $emptysel{10}$) определено только пять сейсмических событий, максимальное (K_P =11.8) из которых возникло 16 марта в 21^h08^m. Его эпицентр пришелся на северные отроги субширотного хр. Полоусный.

Умеренный уровень сейсмичности наблюдался в **Лаптевском районе** (**№** 11). Активнее других был участок дельты р. Лены. Здесь эпицентры нескольких землетрясений тяготеют к Оленёкской протоке, среди которых зафиксирован толчок 19 июля в $06^{h}18^{m}$ с $K_{p}=11.8$. Особняком расположился очаг землетрясения с $K_{p}=11.2$ под дном Восточно-Сибирского моря ($\phi=74.24^{\circ}$ N, $\lambda=147.01^{\circ}$ E), возникший 11 января в $01^{h}59^{m}$ [4]. Это событие произошло в пределах полосы слабой сейсмичности, пересекающей шельф Восточно-Сибирского моря примерно от устья р. Индигирки к Новосибирским островам.

К спокойным в регионе могут быть отнесены районы **Хребта Сетте-Дабан** (\mathbb{N} 6) и **Восточной части Сибирской платформы** (\mathbb{N} 12). В первом следует отметить лишь два землетрясения с $K_{\rm P}$ =8.9 и 10.1, зарегистрированные 25 января в $07^{\rm h}00^{\rm m}$ и 15 марта в $17^{\rm h}09^{\rm m}$ соответственно. Во втором, по данным каталога [4], локализованы четыре землетрясения с $K_{\rm P}$ =9.2, 8.3, 7.9, 8.9, записанные сетью станций 6 января в $01^{\rm h}30^{\rm m}$, 1 апреля в $14^{\rm h}55^{\rm m}$, 20 июня в $13^{\rm h}11^{\rm m}$ и 24 августа в $21^{\rm h}24^{\rm m}$ соответственно.

В итоге мониторинг сейсмичности за 2007 г. показал дальнейшее снижение активности в регионе, всплеск которой наблюдался в 2005 г.

Литература

^{1.} Козьмин Б.М. Якутия // Землетрясения Северной Евразии, 2006 год. – Обнинск: ГС РАН, 2012. – С. 220–227.

- 2. Козьмин Б.М. Якутия // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 234–240.
- 3. Козьмин Б.М., Шибаев С.В. (отв. сост.), Петрова В.Е., Захарова Ж.Г., Каратаева А.С., Москаленко Т.П. Каталог (оригинал) землетрясений Якутии за 2007 г. с *К*_Р=6.6–13.0 (*N*=760). Якутск: Фонды ЯФ ГС СО РАН, 2008. 17 с.
- 4. Козьмин Б.М., Шибаев С.В. (отв. сост.), Петрова В.Е., Захарова Ж.Г., Каратаева А.С., Москаленко Т.П. Каталог землетрясений Якутии за 2007 г. (*N*=270). (См. Приложение к наст. сб. на CD).
- 5. Имаев В.С., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. М.: ГЕОС, 2000. 227 с.
- 6. Козьмин Б.М., Голенецкий С.И. и др. Южно-Якутское землетрясение 20(21).04.1989 г. и его афтершоки // Землетрясения в СССР в 1989 году. М.: Наука, 1993. С. –172–193.
- 7. **Имаев В.С., Имаева Л.П., Козьмин Б.М.** Активные разломы и сейсмотектоника Северо-Восточной Якутии. – Якутск: ЯНЦ СО АН СССР, 1990. – 140 с.
- Fujita K., Koz'min B.M., Mackey K.G., Riegel S.A., Mclean M.S. and Imaev V.S. Seismotectonics of the Chersky seismic belt, eastern Russia (Yakutia) and Magadan district, Russia // Geology, geophysics and tectonics of Northeastern Russia: a tribute to Leonid Parfenov. Stephan Mueller Spec. Publ. – 2009. – 4. – P. 117–145.
- 9. Bulletin of the International Seismological Centre for 2007. Thatcham, United Kingdom: ISC, 2009.
- 10. Imaev V.S., Imaeva L.P., Koz'min B.M., Mackey K., Fujita K. Seismotectonic processes along boundary of lithospheric plates of Northeast Asia and Alaska // Geol. of Pac. Ocean. 2000. 15. N 2 P. 211–232.