ПРИАМУРЬЕ И ПРИМОРЬЕ

Н.С. Коваленко, Т.А. Фокина, Д.А. Сафонов

Сахалинский филиал ГС РАН, г. Южно-Сахалинск kovalenko@seismo.sakhalin.ru fokina@seismo.sakhalin.ru,

В 2007 г. непрерывная регистрация землетрясений на территории Приамурья и Приморья осуществлялась сетью из восьми аналоговых станций: «Николаевск-на-Амуре», «Бомнак», «Кировский», «Ясный», «Зея», «Горный», «Экимчан», «Терней». Данные о станциях и параметры аппаратуры приведены в [1], их положение показано на рис. 1.

Длительные перерывы в регистрации землетрясений на сейсмической станции «Ясный» (11 февраля–10 марта и 11 мая–28 октября) и значительные простои, связанные с техническими неисправностями регистрирующей аппаратуры на станциях «Кировский», «Николаевск-на-Амуре», «Бомнак» (22, 27, 15 дней соответственно), крайне негативно повлияли как на число зарегистрированных землетрясений, так и на качество обработки в целом.

В рамках научного сотрудничества по проекту «Исследование сейсмотектоники Охотоморской плиты» между Сообществом университетов Японии и ГС РАН дополнительно к уже открытым в 2006 г. пяти цифровым сейсмическим станциям («Хабаровск», «Горный», «Терней», «Зея», «Горнотаежное» [1]) в пос. Охотск Хабаровского края 15 августа запущена в опытную эксплуатацию стационарная цифровая сейсмическая станция «Охотск» (ОКНТ). Сведения об этой станции приведены в табл. 1 и 2.

N⁰	Ст	анция		Дата	Ко	ординаты	Тип станции	
	Название	Код		пуска	$\phi^{\circ}, N \qquad \lambda^{\circ}, E$		<i>h</i> ,	
		межд. рег.			-		\mathcal{M}	
1	Охотск	OKHT	OXT	15.08.2007	59.357	143.240	2	Datamark LS-7000XT

Таблица 1. Новая цифровая сейсмическая станция «Охотск»

Название станции	Тип сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Гц	Эффективная разрядность АЦП	Чувствительность, велосиграф – отсчет/(<i>м</i> / <i>c</i>)
Охотск	L4C-3D	LH (N, E, Z) v	1.0–20	100	24	$2.57 \cdot 10^7$
	STS-2	BH (N, E, Z) v	0.00833–50	100	24	$1.96 \cdot 10^8$

Таблица 2. Данные об аппаратуре цифровой станции «Охотск»

Сейсмические станции Приморья и Приамурья (код сети – SKHL) входят в состав общей сети Сахалинского филиала ГС РАН, представленной на рис. 1. Для локации землетрясений региона привлекались данные всех сейсмических станций сети SKHL [2, 3], сейсмической станции «Кульдур» (KLR), входящей в состав сети агентства MOS¹, а также станционные бюллетени Прибайкалья, Якутии, ГС РАН (MOS) [4], JMA, NEIC, ISC [5]. Методика обработки данных [6–12], границы региона и сейсмоактивных районов [13], по сравнению с таковыми в 2006 г. [1], не изменились. Карта энергетической представительности M_{min} , рассчитанная с учетом конфигурации сети сейсмических станций, принимавших участие в обработке, изображена на рис. 1.

Кроме того, как указано в [1], в рамках научного сотрудничества между упомянутым выше сообществом университетов Японии и ГС РАН на юге Сахалина работает сеть сезонных

¹ Расшифровка кодов агентств дана в условных обозначениях к наст. сб.

цифровых сейсмических станций на базе регистраторов Datamark LS-7000XT с короткопериодными сейсмометрами L4C-3D и длиннопериодными – STS-2. Математическое обеспечение обработки записей цифровых станций Datamark позволяет использовать их для локации землетрясений с $K_P \ge 8.6$. По этой причине дополнение сети цифровыми станциями лишь несколько повышает надежность определения эпицентров, располагающихся вблизи станций, не улучшая энергетическую представительность землетрясений в регионе. Как следует из рис. 1, на значительной территории Приморья и Приамурья представительными являются землетрясения с $M_{\min}=3$ ($K_{\min}\div9$), а в южной части региона могут регистрироваться лишь события с $M_{\min}=3.5$ ($K_{\min}\div10$).

Рис. 1. Карта магнитудной представительности землетрясений *M*_{min} Приморья и Приамурья, Сахалина и Курило-Охотского регионов в 2007 г.

1 – опорная сейсмическая станция; 2, 3 – цифровая и аналоговая сейсмическая станция сети SKHL соответственно; 4 – аналоговая сейсмическая станция ГС РАН «Кульдур»; 5 – граница региона; 6 – изолиния M_{\min} .

В региональный каталог [14] включены основные параметры 778 сейсмических событий. из них 453 коровых землетрясений с *h*≤30 км, 9глубокофокусных с *h*=312-563 км, а 316 событий отнесены к категории «возможно взрыв». Шестнадцать землетрясений находятся вне зоны ответственности сети СФ ГС РАН и в обзоре не анализируются. На рис. 2 дано помесячное распределение взрывов, землетрясений и всех событий вместе. Как видим, наибольшее число (N=73) землетрясений зарегистрировано в марте, наименьшее (N=14) – в июне.

Карта эпицентров землетрясений представлена на рис. 3. Два наиболее сильных коровых землетрясения

Рис. 2. Распределение ежемесячных чисел взрывов, землетрясений и всех сейсмических событий Приморья и Приамурья в 2007 г.

(1) и (8) по [14] произошли в пределах северной части разветвленной системы глубинного разлома Тан-Лу. Первое (1²) (K_P =13.5, MLH=4.7) локализовано севернее Комсомольска-на-Амуре 12 января в 23^h28^m на глубине h=20±5 км, второе (8) (K_P =13.0, MLH=4.8) – юго-западнее Николаевска-на-Амуре 20 мая в 13^h23^m на глубине h=19±5 км. Оба землетрясения вызвали в ближайших к эпицентру населенных пунктах сотрясения с интенсивностью *I*=5 баллов [15] (описание см. ниже).

Рис. 3. Карта эпицентров землетрясений Приамурья и Приморья в 2007 г.

1 – энергетический класс K_P ; 2 – магнитуда *MPVA*; 3 – глубина *h* гипоцентра, *км*; 4 – стереограмма механизма очага, нижняя полусфера, зачернена область волн сжатия; 5, 6 – аналоговая и цифровая сейсмическая станция соответственно; 7 – номер и граница условного района; 8 – граница региона; 9 – государственная граница.

² Здесь и далее номер землетрясения дан по каталогу [14].

Среди глубокофокусных землетрясений наиболее значительным событием 2007 г. явилось землетрясение (3) с MPVA=6.5, произошедшее 9 марта в $03^{h}22^{m}$ на юге Приморского края на глубине $h=445\pm6$ км. Максимальная глубина гипоцентра h=563 км отмечена для землетрясения (12) (5 октября в $14^{h}24^{m}$ с MPVA=4.8), эпицентр которого располагался в районе южной границы с Китаем.

Для восьми землетрясений имеются макросейсмические данные [14, 15]. Максимальная интенсивность сотрясений в 2007 г. не превышала І=5 баллов. Для корового землетрясения (1) (12 января в $23^{h}28^{m}$ с $h=20 \kappa M$, *MLH*=4.7) и глубокофокусных (3, 6, 12, 13) землетрясений (9 марта в $03^{h}22^{m}$ с $h=445 \kappa M$, *MPVA*=6.5; 29 апреля в 13^h40^m с *h*=323 *км*, *MPVA*=4.7; 5 октября в 14^h24^m с *h*=563 км, *MPVA*=4.8; 4 декабря в $00^{h}14^{m}$ с $h=437 \kappa M$, *МРVА*=5.1) определены механизмы очагов [16].

В течение 2007 г. продолжалась работа по распознаванию записей промышленных взрывов, методика которой подробно описана в [17]. Местоположение площадок взрывных работ и карта эпицентров событий «возможно взрыв» представлены на рис. 4. Суммарное число взрывов (N=316) увеличилось по сравнению с таковым в 2006 г. (N=207), что связано главным образом с активными работами на трассе строительства нефтепровода «Восточная Сибирь – Тихий

Рис. 4. Карта эпицентров взрывов на территории Приамурья и Приморья в 2007 г.

1 – энергетический класс K_P ; 2 – сейсмическая станция; 3 – площадка взрывных работ; 4 – граница условного района; 5 – государственная граница; 6 – трасса строящегося нефтепровода ВСТО.

океан» (ВСТО) (рис. 4). Число взрывов в карьерах и рудниках также увеличилось. Наибольшее число (N=80) взрывов зарегистрировано в марте, наименьшее (N=8) – в октябре (рис. 2). Диапазон классов взрывов составил K_P =5.8–8.5, а величина суммарной сейсмической энергии равна $\Sigma E_{\rm взр}$ =0.014·10¹² Дж, что соизмеримо с энергией взрывов за 2006 г., но составляет менее 1% годовой суммарной сейсмической энергии коровых землетрясений. Самые сильные (K_P =8.5) взрывы были зарегистрированы в карьере в верховьях р. Бурея.

В табл. 4 приведено распределение коровых землетрясений по энергетическим классам K_P и суммарная сейсмическая энергия ΣE по данным каталогов Приморья и Приамурья за 2000–2007 гг. [18–24, 14], а на рис. 5 показаны годовые числа коровых землетрясений и суммарная сейсмическая энергия за этот период. Поскольку область представительной регистрации K_{min} =8 охватывает значительную часть региона, сравнение значений N_{Σ} и ΣE за 2000–2007 гг. проводится для землетрясений с $K_P \ge 7.6$. Однако следует заметить, что в число землетрясений могут входить и взрывы, которые не удалось выявить при обработке.

Как следует из табл. 4, число коровых землетрясений, регистрируемых в регионе в 2007 г., на 27% меньше среднегодового числа за период наблюдений (2000–2006 гг.). Тем не менее уровень сейсмической активности превзошел максимум, наблюдаемый в 2004 г. Суммарная сейсмическая энергия, высвобожденная коровыми землетрясениями в 2007 г., в три раза выше среднего значения за последние семь лет наблюдений.

Год			K		N_{Σ}	ΣE ,		
	8	9	10	11	12	13	_	10 ¹² Дж
2000	142	48	13	3	3		209	1.68
2001	183	37	10	3	2		235	0.92
2002	190	36	7	4	1		238	1.01
2003	193	44	17	1	6		261	2.58
2004	185	46	16	8	2	1	258	6.55
2005	138	53	15	5	5		216	2.54
2006	112	36	12	1	1		162	0.40
Сумма	1143	300	78	24	19	1	1579	15.68
Среднее	163.29	42.86	12.86	3.57	2.86	0.14	226	2.24
2007	100	50	7	3	4	2	166	8.62

Таблица 4. Распределение коровых землетрясений по энергетическим классам и суммарная сейсмическая энергия ΣE за 2000–2007 гг.

Рис. 5. Изменение ежегодного числа коровых землетрясений Приамурья и Приморья и суммарной сейсмической энергии *ΣE* за 2000–2007 гг.

Число всех зарегистрированных коровых землетрясений в регионе Приамурье и Приморье, как указано выше, равно N=437, что на 17% больше, чем соответствующее значение для 2006 г. [1]. Суммарная сейсмическая энергия коровых землетрясений (табл. 4, 5, рис. 5) достигла величины $\Sigma E=8.627 \cdot 10^{12} Дж$, что в 21.7 раза выше такового значения в 2006 г. [1].

В 2007 г. локализованы девять глубокофокусных землетрясений (8 в районе № 4, одно – в № 5) с суммарной энергией Σ*E*=3073.1·10¹² Дж. Это в 12 тыс. раз больше такового значения для глубокофокусных землетрясений 2006 г. [1]. В табл. 5 дано распре-

деление числа коровых землетрясений по энергетическому классу K_P , а глубокофокусных – по магнитуде *MPVA*, а также рассчитана суммарная сейсмическая энергия по районам региона за 2007 г. Наибольшее число (*N*=190) землетрясений с очагами в земной коре произошло в Янкан-Тукурингра-Джагдинском районе (№ 2). Ни одного корового землетрясения в 2007 г., как и в 2006 г., не было зарегистрировано в Сихотэ-Алиньском районе (№ 5). На рис. 6 приведены распределения числа коровых землетрясений и суммарной сейсмической энергии по районам региона, а на рис. 7 показано сравнительное распределение величины сейсмической энергии по районам за 2006–2007 гг. Максимальное количество (92%) сейсмической энергии коровых землетрясений высвобождено в Турано-Буреинском районе (№ 4) (табл. 5, рис. 6, 7).

Таблица 5.	Распределение	коровых	землетрясений	по	энергетическому	классу	$K_{\mathrm{P},}$					
	глубокофокусных – по магнитуде MPVA и суммарная сейсмическая											
по районам Приамурья и Приморья в 2007 г.												

	һ≤30 км											
№	2 Районы <i>К</i> р										N_{Σ}	ΣΕ,
		5	6	7	8	9	10	11	12	13		10 ¹² Дж
1	Становой	1	21	58	24	4	1				109	0.022
2	Янкан-Тукурингра-Джагдинский	4	42	105	25	10	2	1	1		190	0.482
3	Зейско-Селемджинский		2	6	3	4					15	0.006

	һ≤30 км													
№	Районы					$K_{\rm P}$					N_{Σ}	ΣE ,		
		5	6	7	8	9	10	11	12	13	_	10 ¹² Дж		
4	Турано-Буреинский	1	2	25	39	26	2	2	2	2	101	7.964		
5	Сихотэ-Алиньский										0	0		
6	Приграничный		1	3	9	6	2		1		22	0.153		
	Bcero	6	68	197	100	50	7	3	4	2	437	8.627		
	Вне зоны ответственности сети		2	10	2	2					16	0.001		
h≥300 км														
	Районы				M	PVA					N_{Σ}	ΣΕ,		
			4			5			6			10 ¹² Дж		
5	Сихотэ-Алиньский		4		3				1		8	3073.079		
6	Приграничный					1					1	0.059		
	Всего		4			4			1		9	3073.138		

Примечание. При составлении таблицы использованы расчетные магнитуды *M*^p путем пересчета из классов *K*_P для коровых землетрясений и из магнитуд *MPVA* – для глубокофокусных по следующим соотношениям: *M*^p=(*K*_P-4)/1.8; *M*^p=1.77·*MPVA*-5.2 (70 км<h≤390 км); *M*^p=1.85·*MPVA*-4.9 (*h*>390 км) [25].

Распределение взрывов по районам региона представлено в табл. 6. Значительно увеличилось число взрывов в Янкан-Тукурингра-Джагдинском районе (\mathbb{N} 2), где проводятся работы по прокладке нефтепровода (рис. 4). В 2006 г. здесь насчитывалось 34 события, идентифицированных как «возможно взрыв», а в 2007 г. их число возросло до N=177. По-прежнему наиболее сильные взрывы производились в Турано-Буреинском районе (\mathbb{N} 4), диапазон их классов составил $K_{\rm P}=6.5-8.5$ [14]. В районах \mathbb{N} 5, 6 взрывы не отмечены.

Таблица 6. Распределение числа взрывов в регионе Приморья и Приамурья в 2007 г.

№	Район	N_{Σ}	K _{min} –K _{max}	№	Район	N_{Σ}	K _{min} –K _{max}
1	Становой	12	5.8-8.0	4	Турано-Буреинский	56	6.5-8.5
2	Янкан-Тукурингра-Джагдинский	177	5.8-8.3	5	Сихотэ-Алиньский		
3	Зейско-Селемджинский	71	5.8-7.7	6	Приграничный		

Далее приводится обзор сейсмичности в каждом из условно выделенных районов региона. В Становом районе (№ 1) в 2007 г. зарегистрировано 109 коровых землетрясений, что на 23% больше, чем в 2006 г. [1], но их суммарная сейсмическая энергия Σ*E*=0.02·10¹² Дж ниже соответствующей величины в 2006 г. в 12 раз (табл. 5). В 2007 г. район характеризуется умеренной сейсмичностью. Наиболее сильное (K_P =10.4) землетрясение зарегистрировано в верховье р. Уда 13 марта в 15^h19^m с *h*=9±3 км.

Как и в 2006 г. [1], в верховье р. Зея, в районе хр. Токинский Становик, продолжали регулярно происходить землетрясения с $K_P < 9.0$ (рис. 3). Небольшая группа слабых ($K_P < 9.0$) толчков зарегистрирована в долине р. Мая. В непосредственной близости от северной части Зейского водохранилища, так же как и в 2006 г. [1], наблюдалась крайне слабая сейсмическая активность. Восточная окраина района продолжает находиться в спокойном состоянии. Наиболее заметное землетрясение с $K_P=9.4$ произошло 30 сентября в $14^h 53^m$ в районе хр. Геран.

В западной части района, севернее г. Тында, регистрируются промышленные взрывы (N=12), энергетический класс которых $K_P \leq 8.0$ (табл. 6). Необходимо заметить, что на этой территории часто регистрируются и тектонические землетрясения. В 2007 г. продолжали регистрироваться слабые сейсмические события в очаговой зоне землетрясения 17 октября 2006 г. с MLH=4.2 [1], однако достоверно выяснить природу этих событий не удалось, прежде всего по причине отсутствия близких к эпицентрам сейсмических станций.

Янкан-Тукурингра-Джагдинский район (№ 2) в 2007 г., как и в 2006 г., был самым активным (табл. 5) по числу (*N*=190) зарегистрированных коровых землетрясений, главным образом благодаря наличию удовлетворительной сети сейсмических станций. Вполне возможно, что в каталог могли попасть и несколько взрывов. Величина суммарной сейсмической энергии (ΣE =0.48·10¹² Дж) в 2007 г. в 7.4 раза выше таковой в 2006 г. (табл. 5, рис. 6, 7), главным образом из-за сильного (K_P =12.2, *MLH*=4.1) землетрясения (11) в районе Селемджинского хребта, зарегистрированного 15 сентября в 20^h56^m с *h*=12±5 км. Оно ощущалось жителями пп. Токур (43 км) и Экимчан (52 км) с интенсивностью *I*=2–3 балла. Южная часть Зейского водохранилища характеризуется слабой сейсмичностью. Наиболее значительное (K_P =10.7) землетрясение (2) произошло 17 января в 15^h45^m и *h*=7±1 км. Его эпицентр располагался с восточной стороны водохранилища, близ хр. Соктахан. Это землетрясение ощущалось в пос. Верхнезейск (36 км) с интенсивностью *I*=2 балла [14]. Так же как и в 2006 г. [1], в 2007 г. наблюдалась умеренная сейсмическая активность вдоль всего Тукурингра-Джагдинского разлома. Наибольшая плотность эпицентров землетрясений с K_P =5.3–10.1 наблюдалась к западу от Зейского водохранилища, вдоль всего хр. Тукурингра.

Промышленные взрывы регистрируются на территории района западнее и юго-западнее Зейского водохранилища, вдоль трассы строящегося нефтепровода, рудника Покровского и др. (рис. 4). Общее их число, как отмечено выше, равно 177 ($K_{\rm P}$ =5.8–8.3).

В Зейско-Селемджинском районе (\mathbb{N} 3) в 2007 г. наблюдался слабый уровень сейсмической активности. Число землетрясений составило N=15. Центральная и южная части района асейсмичны. В северной части района, в эпицентральной области землетрясения 16.01.2004 г. с MLH=5.0 [26], в 2007 г. зарегистрировано два афтершока с $K_P=8.0-9.1$. Суммарная сейсмическая энергия района, равная $\Sigma E=0.006 \cdot 10^{12} \ Дж$, в три раза превзошла ее уровень в 2006 г. (табл. 5, рис. 6, 7) [1]. Наиболее сильное ($K_P=9.4$) на данной территории землетрясение про-изошло 3 ноября в $19^{h}13^{m}$ западнее пос. Экимчан.

Взрывные работы проводились в северо-западной части района (рис. 4, табл. 6). Зарегистрировано достаточно много (N=71) взрывов с $K_P=5.8-7.7$.

В **Турано-Буреинском районе** (**№** 4) самый высокий уровень сейсмической активности. Здесь было зарегистрировано 101 коровое землетрясение, что на 44% больше, чем в 2006 году. Суммарная сейсмическая энергия, равная $\Sigma E=7.964 \cdot 10^{12} \ \square m$, в 156 раз больше соответствующей величины в 2006 г. (табл. 5, рис. 6, 7).

Все наиболее сильные землетрясения данного района приурочены к разветвленной системе разломов Тан-Лу [27] (рис. 8). По сведениям В.В. Николаева [28], разлом Тан-Лу имеет общую протяженность около 2500 км. Он проходит через территорию Северного Китая от Ляодунского залива на северо-восток, на территории Дальнего Востока представлен Ишу-Харпинским, Хинганским, Курским разломами также северо-восточного простирания, уходящими внутрь Сихотэ-Алиньской складчатой зоны. В 2007 г. сейсмическая активность северной части разлома значительно увеличилась, причем события распределились по всей протяженности разлома. Рассмотрим более детально сейсмичность системы разломов Тан-Лу.

Рис. 8. Карта эпицентров землетрясений района № 4 за 2007 г.

энергетический класс (K_P); 2 – глубина гипоцентра h, км;
 сейсмическая станция; 4 – разломы системы Тан-Лу по [27]:
 I – Хинганский, II – Курский, III – Ишу-Харпинский, IV – Куканский. На рисунке представлена стереограмма механизма очага землетрясения (1) 12 января 2007 г. по данным [16]; номера землетрясений соответствуют таковым в каталоге [14].

Первое значительное (*К*_P=13.5, *MLH*=4.7) землетрясение (1) произошло 12 января в 23^h28^m севернее Комсомольска-на-Амуре. Очаг землетрясения находился на глубине *h*=20±5 км. Для определения механизма очага землетрясения использовались сведения о знаках первых смещений в Р-, Рп-, Рд-волнах на 12 сейсмических станциях. Одна из возможных плоскостей разрыва (NP1) имеет юго-восточное простирание (STK=143°) и крутое (DP=84°) падение на юго-запад [16]. Плоскость NP2 север-северо-западного простирания почти горизонтальна (DP=6°). Подвижка по крутой плоскости NP1 – чистый взброс, по пологой NP2 – надвиг.

Землетрясение ощущалось в пос. Горин (Δ =19 км) и Кондон (Δ =28 км) с интенсивностью сотрясений *I*=5 баллов, в пос. Эворон (Δ =48 км), Солнечный (Δ =50 км), Горный (Δ =53 км) – 4 балла, в Комсомольске-на-Амуре (Δ =63 км) – 3 балла. Оно предварялось форшоком 9 января в 12^h12^m с K_p =8.9 и сопровождалось небольшим числом афтершоков с K_p =7.2–9.7, растянувшимися до конца года (табл. 7).

Таблица 7. Основные параметры землетрясения 12 января в 23^h28^m с *K*_P=13.5, *MLH*=4.7, его форшока и афтершоков

№	Дата,	<i>t</i> ₀ ,	Эпицентр	h,	MLH	K _P	N⁰	Дата,	$t_0,$	Эпицентр	<i>h</i> ,	MLH	K _P
	О М	ч мин с	$ \phi^\circ, N \lambda^\circ, E$	КМ				О М	ч мин с	$ \phi^\circ, N \lambda^\circ, E$	к КМ		
			Форшок			3	16.01	02 57 05.3	51.20 136.9	3 20		8.9	
	09.01	12 12 17.4	51.20 136.8	1 10		8.9	4	17.01	13 27 00.3	51.19 136.7	9 10		9.0
		Осно	овной толчок				5	30.01	17 01 58.7	51.08 136.9	7 10		8.8
	12.01	23 28 50.9	51.14 136.9	1 20	4.7	13.5	6	31.01	06 38 17.5	51.06 137.0	0 10		8.8
		А	фтершоки				7	06.03	05 11 51.6	51.07 137.0	0 10		7.2
1	13.01	00 36 04.3	51.32 136.8	4 10		8.3	8	09.06	17 40 02.3	51.18 136.8	0 22		9.7
2	13.01	01 03 26.5	51.22 136.9	8 10		8.9	9	13.12	08 55 04.8	51.09 137.0	1 10		8.8

В марте на юге района активизировалась часть разлома Тан-Лу на границе с Китаем. В течение марта–апреля здесь было зарегистрировано три форшока с K_P =7.7–8.6, один из которых (1 марта в 07^h50^m с K_P =8.6) ощущался в пос. Головино (Δ =63 км) с интенсивностью *I*=2–3 балла. Основной толчок (5) произошел 22 апреля в 10^h03^m (*MLH*=4.1, K_P =12.2, *h*=14±4 км) западнее Хабаровска. Землетрясение ощущалось в г. Хабаровск (Δ =116 км) с интенсивностью *I*=3 балла.

В мае наиболее активно проявила себя северная часть разломной зоны, расположенная юго-западнее Николаевска-на-Амуре. События здесь развивались по сценарию предыдущего сильного землетрясения 22 апреля, где форшоковая активность была значительно выше афтершоковой. Главному толчку предшествовали четыре форшока с K_P =9.3–11.7 (табл. 8). Максимальный (*MLH*=4.2, K_P =11.7) форшок произошел 3 мая в 20^h02^m и ощущалось с интенсивностью *I*=3 балла в пп. Тыр (Δ =45 км), Сусанино (Δ =48 км), Тахта (Δ =68 км). Основной толчок (8) произошел 20 мая в 13^h23^m с *MLH*=4.8, K_P =13.0. Очаг землетрясения локализован на глубине *h*=19±5 км.

№	Дата, д м	t ₀ , ч мин с	Эпи ф°, N	центр λ°, Е	h, км	MLH	К _Р	№	Дата, д м	t ₀ , ч мин с	Эпи ф°, N	центр λ°, Е	h, км	MLH	$K_{ m P}$
		(Форшо	ки					Осн	овной т	олчок				
1	03.05	20 01 04.8	52.56	139.47	11		9.8		20.05	13 23 51.1	52.63	139.55	19	4.8	13.0
2	03.05	20 02 03.5	52.56	139.48	10	4.2	11.7	Афтершоки							
3	03.05	20 23 28.6	52.50	139.60	10		9.5	1	20.05	16 28 24.8	52.53	139.61	10		8.9
4	08.05	12 26 29.8	52.39	139.38	10		9.3	23	29.08	15 26 34.3 06 24 04.1	52.52 52.71	139.69	21 6		10.9

Таблица 8. Форшоки и афтершоки землетрясения 20 мая в 13^h23^m с K_P=13.0, MLH=4.8

Сведения о макросейсмических проявлениях размещены на рис. 9 и в табл. 9.

Рис. 9. Карта макросейсмических проявлений землетрясения 20 мая 2007 г. в 13^h23^m с *MLH*=4.8

1 - интенсивность сотрясений в баллах шкалы MSK-64 [29]; 2 - инструментальный эпицентр.

Таблица 9. Макросейсмические данные о землетрясении 20 мая 2007 г. в 13^h23^m с *MLH*=4.8

№	Пункт	Δ,	φ°, Ν	λ°, Ε	N⁰	Пункт	Δ,	φ°, N	λ° , Ε
		КМ					КМ		
	5 баллов				8	Мариинское	109	51.73	140.18
1	Тыр	36	52.93	139 76	9	Оремиф	112	53.01	141.10
2	Сусанино	40	52.80	140.08	10	Нижние Пронге	114	52.85	141.21
-	<u>4–5 баллов</u>	10	02.00	110.00	11	Софийск	119	51.58	139.84
3	Тахта	59	53.13	139.84		<u>3 балла</u>			
4	Богородское	67	52.37	140.44	12	Лазарев	140	52.20	141.50
	<u>4 балла</u>					2 балла			
5	Оглонги	56	52.93	138.89	13	Александровск-Саха-	264	50.89	142.16
6	Маго	81	52.93	138.89	15	пинский	20.	20.07	112.10
	<u>3—4 балла</u>				14	Комсомольск-на-Амуре	287	50.58	137.01
7	Николаевск-на-Амуре	95	53.15	140.68					

Несколько увеличилась активность северо-западной части района, где 4 августа в $17^{h}54^{m}$ отмечено довольно сильное (K_{P} =11.4) землетрясение (9) с h=19±1 κm .

На территории района в окрестностях пос. Кульдур и пос. Чегдомын в течение 2007 г., как и в 2006 г. [1], продолжалась регистрация взрывов с K_P =6.5–8.5 (рис. 4), число которых составило N=56 (табл. 6). В Сихотэ-Алиньском районе (№ 5) в 2007 г., как отмечено выше, не зарегистрировано ни одного корового землетрясения. Число глубокофокусных землетрясений с $h=312-545 \ \kappa m$ в районе равно N=8 с MPVA=4.2-6.5 [14], а суммарная сейсмическая энергия достигла величины $\Sigma E=3.07 \cdot 10^{15} \ Дж$, что в 14 тыс. раз превышает таковое значение в 2006 г. (табл. 5). Основная часть эпицентров концентрируется в акватории Японского моря (рис. 3), вдоль побережья юга Приморского края. Все глубокофокусные землетрясения региона в 2007 г. относительно равномерно распределены во времени, что хорошо видно на рис. 10.

Рис. 10. Пространственно-временное распределение глубокофокусных землетрясений Приамурья и Приморья в 2007 г.

Для четырех глубокофокусных землетрясений удалось определить механизм очага [16], их стереограммы изображены на рис. 3. Самое сильное (МРVА=6.5) землетрясение (3) произошло 9 марта в $03^{h}22^{m}$ на юге Приморского края под Партизанским хребтом на глубине *h*=445±6 км. В его очапревалировали напряжения сжатия ге $(PL_P=25^\circ$ против $PL_T=65^\circ)$ север-северовосточной (AZM_P=28°) ориентации. Обе нодальные плоскости близмеридиональны (*STK*₁=10°, *STK*₂=190°) (рис. 3), но существенно разного наклона – $DP_1=20^\circ$, $DP_2=70^\circ$. Подвижка по крутой плоскости NP2 – чистый взброс, по пологой – надвиг. В июне примерно в этой же очаговой области (чуть северо-восточнее) зарегистрирова-

ны еще два землетрясения на глубинах h=421 и 436 км (19 июня в $21^{h}13^{m}$ с MPVA=4.2 и 26 июня в $23^{h}11^{m}$ с MPVA=4.3).

Землетрясение (6) с *MPVA*=4.7, зарегистрированное 29 апреля в $13^{h}40^{m}$ восточнее пос. Терней на глубине $h=323\pm10 \ \kappa m$, самое северное событие. Его очаг находился под воздействием близгоризонтально ориентированных напряжений растяжения ($PL_{T}=15^{\circ}$) и крутых ($PL_{P}=75^{\circ}$) напряжений сжатия. Ось промежуточного напряжения горизонтальна ($PL_{N}=0^{\circ}$) и ориентирована на восток-северо-восток ($PL_{N}=74^{\circ}$). Одна из возможных плоскостей (*NP1*) разрыва простирается в запад-юго-западном направлении с падением под углом ($DP_{1}=30^{\circ}$) на север. Вторая возможная плоскость разрыва простирается на восток-северо-восток и более круто ($DP2=60^{\circ}$) падает на юг. Подвижка в очаге – чистый сброс.

Два землетрясения зарегистрированы в Японском море, южнее бухты Преображения. Первое из них с MPVA=4.9 произошло 27 октября на глубине $h=450\pm10$ км, а второе (13) – более сильное с MPVA=5.1-4 декабря в $00^{h}14^{m}$ на глубине $h=437\pm10$ км. Очаг землетрясения (13) реализовался под воздействием близгоризонтального напряжения растяжения и крутого напряжения сжатия. Ось промежуточного напряжения близгоризонтальна и простирается субширотно. Обе плоскости разрыва имеют субширотное простирание. Одна из плоскостей круто падает на север–северо-восток, другая – менее круто – на юг. Тип подвижки в очаге землетрясения – сброс [16].

В Приграничном районе (№ 6) общий уровень сейсмической активности несколько повысился, по сравнению с таковым в 2006 г. Число коровых землетрясений увеличилось на 23% и составило N=22, суммарная сейсмическая энергия равна $\Sigma E=0.15 \cdot 10^{12} \ Dmullipsilon$ (табл. 5, рис. 6, 7), что в 8.5 раз выше такового значения в 2006 г. Самое сильное ($MLH=4.1, K_P=11.6$) коровое землетрясение (4) зарегистрировано на территории Китая, западнее о. Ханка 22 марта в $12^{h}28^{m}$ на глубине $h=25\pm2 \ \kappa M$. Эпицентры десяти землетрясений с $K_P=7.8-9.8$ сгруппировались к югу от Еврейской автономной области, характеризуя немного повышенную сейсмическую активность китайской части системы разломов Тан-Лу (рис. 3, 8). В 2006 г. здесь регистрировались землетрясения в диапазоне энергетических классов $K_P=7.4-8.5$. Четыре землетрясения с $K_P=8.3-9.0$ зарегистрированы в западной части района (рис. 3) в течение 28–29 декабря. Три очага из четырех располагались на глубине $h=24-30 \ \kappa M$ [14]. Единственное глубокофокусное землетрясение (12) на территории Китая, северо-западнее Владивостока, было зарегистрировано 5 октября в $14^{h}24^{m}$ с *MPVA*=4.8 на глубине *h*=563±12 *км* (рис. 3), в результате чего выделилась сейсмическая энергия, равная *E*=0.06·10¹² Дж (табл. 5). Движение в его очаге реализовалось под воздействием близгоризонтально ориентированных напряжений сжатия, направленных на северо-запад, и более крутых напряжений растяжения, направленных на северо-восток. Одна из плоскостей разрыва субмеридиональна и круто падает на запад. Вторая плоскость, имеющая субширотное простирание и менее крутая, падает на юг. Тип подвижки в очаге – взбросо-сдвиг [16].

В заключение можно отметить, что и коровая ($h \le 30 \ \kappa m$), и глубокофокусная сейсмичность ($h \ge 300 \ \kappa m$) Приамурья и Приморья в 2007 г. значительно возросла по сравнению с таковой в 2006 г. Причем увеличение сейсмической активности наблюдалось во всех районах региона (рис. 7), кроме района \mathbb{N} 1, охватывающего территорию Станового хребта.

Литература

- 1. Коваленко Н.С., Фокина Т.А., Сафонов Д.А. Приамурье и Приморье // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. С. 163–174.
- 2. Фокина Т.А., Кислицына И.П., Сафонов Д.А. Сахалин. (См. раздел (Обзор сейсмичности) в наст. сб.).
- 3. Фокина Т.А., Дорошкевич Е.Н., Сафонов Д.А. Курило-Охотский регион. (См. раздел (Обзор сейсмичности) в наст. сб.).
- 4. Сейсмологический бюллетень (ежедекадный) за 2007 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2007–2008. URL: ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2007.
- 5. Bulletin of the International Seismological Centre for 2007. Thatcham, United Kingdom: ISC, 2009. URL: *http://www.isc.ac.uk/iscbulletin/search/bulletin/*
- 6. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР. Методические работы ЕССН. – М.: Наука, 1989. – С. 32–51.
- 7. Оскорбин Л.С., Бобков А.О. Сейсмический режим сейсмогенных зон юга Дальнего Востока // Геодинамика тектоносферы зоны сочленения Тихого океана с Евразией. Т.VI. (Проблемы сейсмической опасности Дальневосточного региона). – Южно-Сахалинск: ИМГиГ, 1997. – С. 179–197.
- 8. Шолохова А.А., Оскорбин Л.С., Рудик М.И. Землетрясения Приамурья и Приморья // Землетрясения в СССР в 1985 году. М.: Наука, 1987. С. 135–139.
- 9. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности. (Труды ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология. Вып. 12). – М.: Наука, 1979. – С. 45–58.
- Поплавская Л.Н., Нагорных Т.В., Рудик М.И. Методика и первые результаты массовых определений механизмов очагов коровых землетрясений Дальнего Востока // Землетрясения Северной Евразии в 1995 году. – М.: ГС РАН, 2001. – С. 95–99.
- 12. Балакина Л.М., Введенская А.В., Голубева Н.В., Мишарина Л.А., Широкова Е.И. Поле упругих напряжений Земли и механизм очагов землетрясений. М.: Наука, 1972. 192 с.
- 13. Габсатарова И.П. Границы сейсмоактивных регионов России с 2004 г. // Землетрясения России в 2004 году. Обнинск: ГС РАН, 2007. С. 139.
- 14. Коваленко Н.С. (отв. сост.), Величко Л.Ф., Донова Т.Я., Федоркова Г.В. Каталог землетрясений (*N*=462) и взрывов (*N*=316) Приамурья и Приморья за 2007 г. (См. Приложение к наст. сб. на CD).
- 15.Коваленко Н.С. (отв. сост.). Макросейсмический эффект ощутимых землетрясений в населенных пунктах (*n*=31) Приамурья и Приморья в 2007 г. (См. Приложение к наст. сб. на CD).
- 16. Коваленко Н.С. (отв. сост.), Гладырь Ж.В. Каталог механизмов очагов землетрясений Приамурья и Приморья за 2007 г. (*N*=5). (См. Приложение к наст. сб. на CD).

- 17. Годзиковская А.А. Местные взрывы и землетрясения. Личный архив, 2000. 108 с.
- 18. Коваленко Н.С., Поплавская Л.Н. (отв. сост.), Величко Л.Ф., Сычаева Н.А., Садчикова А.А. Приамурье и Приморье // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. (На СD).
- 19. Коваленко Н.С. (отв. сост.), Крючкова О.В., Величко Л.Ф. Приамурье и Приморье // Землетрясения Северной Евразии в 2001 году. – Обнинск: ГС РАН, 2007. – (На СD).
- 20. Коваленко Н.С. (отв. сост.), Крючкова О.В., Величко Л.Ф. Каталог землетрясений Приамурья и Приморья, 2002 год. // Землетрясения Северной Евразии, 2002 год. Обнинск: ГС РАН, 2008. (На СD).
- 21. Коваленко Н.С. (отв. сост.), Величко Л.Ф., Крючкова О.В. Каталог землетрясений Приамурья и Приморья за 2003 год // Землетрясения Северной Евразии, 2003 год. Обнинск: ГС РАН, 2009. (На CD).
- 22. Коваленко Н.С. (отв. сост.), Величко Л.Ф. Каталог землетрясений (*N*=729) Приамурья и Приморья за 2004 год // Землетрясения Северной Евразии, 2004 год. Обнинск: ГС РАН, 2010. (На СD).
- 23. Коваленко Н.С. (отв. сост.), Величко Л.Ф., Донова Т.Я. Каталог землетрясений (*N*=423) и взрывов (*N*=204) Приамурья и Приморья за 2005 год // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. (На СD).
- 24. Коваленко Н.С. (отв. сост.), Величко Л.Ф., Донова Т.Я. Каталог землетрясений (*N*=380) и взрывов (*N*=207) Приамурья и Приморья за 2006 год // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. (На СD).
- 25. Каталоги землетрясений по различным регионам России // Землетрясения России в 2005 году. Обнинск: ГС РАН, 2007. С. 52–53.
- 26. Фокина Т.А., Коваленко Н.С., Рудик М.И., Сафонов Д.А. Приамурье и Приморье // Землетрясения Северной Евразии в 2004 году. Обнинск: ГС РАН, 2010. С. 164–172.
- 27. Тектоника, глубинное строение и минерагения Приамурья и сопредельных территорий / Отв. ред. Г.А. Шатков, А.С. Вольский – СПб.: ВСЕГЕИ, 2004. – 190 с.
- 28. Николаев В.В., Семенов Р.М., Оскорбин Л.С. и др. Сейсмотектоника и сейсмическое районирование Приамурья. – Новосибирск: Наука (СО), 1989. – 128 с.
- 29. Медведев С.В. Международная шкала сейсмической интенсивности // Сейсмическое районирование СССР. М.: Наука, 1968. С. 151–162.