КУРИЛО-ОХОТСКИЙ РЕГИОН

Т.А. Фокина, Д.А. Сафонов, Е.Н. Дорошкевич

Сахалинский филиал ГС РАН, г. Южно-Сахалинск, fokina@seismo.sakhalin.ru

Сеть сейсмических станций на территории Курило-Охотского региона в 2007 г., как и в предыдущие двенадцать лет, состояла из трех станций: «Северо-Курильск» (SKR), «Курильск» (KUR) и «Южно-Курильск» (YUK) (рис. 1). Параметры и местоположение сейсмических станций региона в 2007 г. относительно [1] не изменились. Сейсмические станции Курило-Охотского региона входят в состав общей сети Сахалинского филиала ГС РАН (SKHL), представленной на рис. 1 из [2]. На этом же рисунке приведена карта магнитудной представительности землетрясений за 2007 г., рассчитанная с учетом всех станций СФ ГС РАН, участвующих в обработке. Из нее следует, что на большей части территории Курило-Охотского региона представительными являются землетрясения с $M_{\min}=4$ ($K_{C\min}=9.2$), а на территории Онекотан-Матуанского района ($\mathbb{N} 2$) и северо-восточной части Охотского моря (район $\mathbb{N} 8$) без пропусков могут регистрироваться лишь события с $M_{\min}\geq4.5$ ($K_{C\min}\geq10.2$). И только на небольшом участке юго-западной части Охотского моря, находящемся в окружении станций «Южно-Сахалинск», «Курильск» и «Южно-Курильск» (рис. 1), представительными являются землетрясения с $M_{\min}\geq2.5$ ($K_{C\min}\geq3.5$). Пересчет из M_{\min} в $K_{C\min}$ выполнен по формуле $K_C=2\cdot M+1.2$ из [3].

Рис. 1. Карта магнитудной представительности землетрясений M_{\min} Приморья и Приамурья, Сахалина и Курило-Охотского регионов в 2007 г. из [2]

1 – опорная сейсмическая станция; 2, 3 – цифровая и аналоговая сейсмическая станции сети SKHL соответственно; 4 – аналоговая сейсмическая станция ГС РАН «Кульдур»; 5 – граница региона; 6 – изолиния M_{\min} .

Для определения параметров землетрясений региона привлекались инструментальные данные сейсмических станций Приамурья и Приморья [2], Сахалина [4], а также бюллетени ГС РАН [5], JMA, ISC [6]. Методика обработки данных [3, 7–14], границы региона [15] и сейсмоактивных районов остались такими же, как в 2006 г. [1]. В качестве оценки величины землетрясений использована расчетная магнитуда M^p , значения которой определены по формулам связи магнитуд по объемным и поверхностным волнам С.Л. Соловьёва и О.Н. Соловьёвой из [3, 12, 13]: – для событий с глубиной *h*≤80 *км*: $M^p = MLH$; $M^p = (K_C - 1.2)/2$; $M^p = (MSH - 1.71)/0.75$; $M^p = (MPV - 2.5)/0.65$; $M^p = (MSHA - 1.71)/0.75$; $M^p = (MPVA - 2.5)/0.65$;

– для событий с $h>80 \ \kappa m$: $M^p = (MSH-1.71)/0.75$; $M^p = (MPV-2.5)/0.65$; $M^p = (K_C-1.2)/2$; $M^p = (MSHA-1.71)/0.75$; $M^p = MLH$; $M^p = (MPVA-2.5)/0.65$.

В региональный каталог [16], публикуемый в наст. сб., включены параметры 1015 землетрясений с $M^p = 2.6 - 8.1$, что лишь на 6 событий больше, чем в 2006 г. [17]. Карта эпицентров землетрясений Курило-Охотского региона в 2007 г. приведена на рис. 2, а их распределение по глубине – на рис. 3. Основная часть землетрясений располагается на западном склоне Курило-Камчатского глубоководного желоба, углубляясь в северо-западном направлении. Эпицентры глубоких ($h > 300 \ \kappa m$) землетрясений расположены в акватории Охотского моря. Гипоцентры 891 землетрясения (88% от общего числа) расположились в верхнем глубинном интервале с $h \le 80 \ \kappa m$ (рис. 3), 11% событий зарегистрировано в промежуточном интервале $h=81-300 \ \kappa m$, а в нижнем интервале ($h>300 \ \kappa m$) глубины находится менее 2% землетрясений. Самое глубокофокусное ($h=609\pm12 \ \kappa m$) землетрясение региона произошло в акватории Охотского моря 23 марта в 16^h59^m с магнитудой MSH=4.1, $M^p=3.2$.

Рис. 2. Сейсмическая сеть и карта эпицентров землетрясений Курило-Охотского региона в 2007 г.

1 – магнитуда M^p ; 2 – глубина *h* гипоцентра, *км*; 3 – сейсмическая станция; 4 – граница и номер района соответственно; 5 – граница зоны ответственности сети СФ ГС РАН; 6 – ось глубоководного Курило-Камчатского желоба.

Рис. 3. Распределение землетрясений Курило-Охотского региона по глубине гипоцентра h

В табл. 1 и 2 даны распределения землетрясений по магнитудам M^p в поверхностном и глубоком слоях сейсмоактивного объема в 2001–2007 гг.

Таблица 1. Число мелкофокусных (*h*≤80 км) землетрясений разных магнитуд *N*(*M*) и суммарная сейсмическая энергия Σ*E* в Курило-Охотском регионе в 2001–2007 гг.

Год				M^{p}			N_{Σ}	N_{Σ}	ΣE	ΣE		
	≤4	4.5	5	5.5	6	6.5	7	8	-	$(M^{p}>4)$	10 ¹² Дж	10 ¹² Дж
												$(M^{p}>4)$
2001	239	108	26	5	4		1		383	144	4362.23	4343.75
2002	217	85	10	2	3	1			318	101	734.72	717.02
2003	256	140	33	15	9	2			455	199	1959.97	1937.82
2004	173	155	24	8	2	2	2		366	193	3887.31	3874.87
2005	150	79	16	2	2				249	99	242.22	230.36
2006	405	371	75	21	7	5	1	1	886	481	66766.49	66730.70
Сумма	1440	938	184	53	27	10	4	1	2657	1217	77952.94	77834.52
Среднее	240	156.3	30.7	8.8	4.5	1.7	0.7	0.2	442.8	202.8	12992.16	12972.42
2007	545	283	49	8	4	1		1	891	346	89918.32	89877.22

Примечание. Распределение землетрясений по магнитудам построено для $M^{p}=4$ (3.8–4.2); $M^{p}=4.5$ (4.3–4.7); $M^{p}=5.5$ (5.3–5.7) и т.д.

Таблица 2.	Число	глубокофокусных	(h>80 км)	землетрясений	разных	магнитуд	$N(M^p)$	И
	суммар	ная сейсмическая э	нергия ΣЕ	в Курило-Охотси	ком реги	оне в 2001-	-2007 гг	•

Год				M^{p}		N_{Σ}	N_{Σ}	ΣE	ΣE			
	≤4	4.5	5	5.5	6	6.5	7	8		$(M^{p}>4)$	10 ¹² Дж	10 ¹² Дж
												(M>4)
2001	64	53	25	8	4	3	1		158	94	6087.98	6083.70
2002	64	53	32	11	3	2	1	1	167	103	65492.03	65487.96
2003	54	55	31	19	4		1		164	110	1479.57	1476.04
2004	25	21	24	13	3		1		87	62	1852.69	1851.02
2005	24	17	20	17	3	1			82	58	741.38	739.79
2006	16	22	48	31	4	2			123	107	1241.02	1240.30
Сумма	247	221	180	99	21	8	4	1	781	534	76894.67	76878.81
Среднее	41.2	36.8	30	16.5	3.5	1.3	0.7	0.2	130.2	89	12815.78	12813.14
2007	38	41	23	13	5	3	1		124	86	3851.16	3848.15

По совокупности данных за 2007 г. построены графики повторяемости (рис. 4), из которых следует, что в 2007 г. магнитуду M^{p} =4.5 можно считать представительной как для поверхностных, так и для глубоких землетрясений всего региона. Исходя из этого дальнейший сравнительный анализ сейсмичности региона в 2007 г. проведен для землетрясений с M^{p} ≥4.5.

Рис. 4. Графики повторяемости для землетрясений из поверхностного (а) и глубокого (б) слоев по данным каталога Курило-Охотского региона [16] за 2007 г.

Мелкофокусная сейсмическая активность в 2007 г. была столь же высока, как и в 2006 г., и намного превосходила наблюдаемую в течение 2001–2005 гг. (табл. 1 и рис. 5 а). Число землетрясений с $M^{p}>4$ (N=346) в 2007 г. более чем в полтора раза превышает среднее значение за предыдущие шесть лет ($N_{cp}=202$). Сейсмическая энергия, высвобожденная поверхностными очагами в 2007 г. ($E_{\Sigma}=89.88\cdot10^{15}$ Дж), сравнима с таковой в 2006 г. ($E_{\Sigma}=66.73\cdot10^{15}$ Дж [1]), что связано с продолжающейся активизацией очага Симуширского-I землетрясения [1] и новым Симуширским-II землетрясением с MLH=8.1 (1 на рис. 2), которое произошло 13 января 2007 г. в 04^h23^m восточнее о. Симушир. Курильские острова – малонаселенная территория региона и максимальная интенсивность сотрясений, сведения о которой поступили из населенных пунктов Курильских островов, достигла 5 баллов (на о. Парамушир, в г. Северо-Курильск ($\Delta=511$ км), на о. Итуруп – в пос. Горячие Ключи ($\Delta=539$ км) и пос. Горный ($\Delta=557$ км) [18]).

Глубокофокусная (*h*>80 км) сейсмическая активность в регионе в 2007 г. была чуть выше среднего уровня по числу землетрясений и заметно ниже по величине высвобожденной энергии (табл. 2, рис. 5 б). Самое сильное (*MSH*=7.0, M^{p} =7.1) глубокофокусное землетрясение (14) было зафиксировано 3 сентября в 16^h 14^m юго-западнее о. Уруп, на глубине *h*=106 км. Максимальный макросейсмический эффект (*I*=4 балла) глубокофокусных землетрясений отмечен в населенных пунктах о. Итуруп – пос. Рейдово (Δ =217 км), пос. Китовый (Δ =226 км) и г. Курильск (Δ =228 км).

1 – число землетрясений N; 2 – среднегодовое число землетрясений по данным за 2001–2006 гг.; 3 – ΣE; 4 – среднегодовое значение высвобожденной энергии за период 2001–2006 гг.

Всего в регионе отмечено 20 ощутимых землетрясений [16]. Наибольшее число событий (N=12) произошло в Кунашир-Шикотанском районе ($N \le 5$), по два зарегистрировано в районах: Онекотан-Матуанском ($N \ge 2$), Симушир-Урупском ($N \ge 3$) и о. Хоккайдо ($N \ge 6$). В Парамуширском районе ($N \ge 1$) и Охотском море ($N \ge 8$) в 2007 г. ощутимых землетрясений не отмечено (табл. 3).

Таблица 3.	Распреде	еление	землетря	сений	по	интерв	алам	глубины	h,	макси	імальнь	ые
	значения	интен	сивности	сотря	сений	$I_{\rm max}$,	энері	етическог	0 1	класса	K _{Cmax}	И
	магнитуд	MLH, 1	<i>MSH, M</i> ^p e	в район	ax №	№ 1–8						

N⁰	Район	һ км	N_{Σ}	N _{omvt.}	I _{max}	$K_{\rm C max}$	M_{max}			
			_	•			MLH	MSH	M^{p}	
1	Парамуширский	0–30	1			10.0	4.3		4.3	
		31-80	2			10.8	4.3	4.9	4.3	
		≥81								
2	Онекотан-Матуанский	0–30	106			12.4	5.9	6.2	5.9	
		31-80	242	2	5	12.9	8.1	7.5	8.1	
		81-145	17			10.3		5.8	6.1	
3	Симушир-Урупский	0–30	73			13.5	6.1	6.5	6.1	
		31-80	271	1	4	12.6	5.4	6.1	5.4	
		81-161	45	1	4	11.5	5.7	7.0	7.1	
4	Северо-Итурупский	0–30	16	1	3–4	10.5	4.4		4.4	
		31-80	78			12.3	5.2	6.4	5.2	
		81-192	7	1	3	11.5	3.2	6.4	6.3	
5	Кунашир-Шикотанский	0–30	10			11.0	3.7		4.6	
		31-80	77	6	IV(6–7)	11.6	5.5	5.9	5.5	
		81-175	30	6	5	12.0	5.4	6.4	6.3	
6	О. Хоккайдо	0–30								
		31-80	12	2	2	12.0	5.4	5.9	5.4	
		81-140	5			10.3		5.3	5.7	
8	Охотское море	0–30								
	_	31-80	3			10.9	4.6		4.6	
		81-609	20			9.7	4.0	5.8	5.5	

Максимальный макросейсмический эффект (*I*=5 баллов) на территории региона был зафиксирован при Симуширском-II землетрясении, а также при двух землетрясениях Кунашир-Шикотанского района (№ 5), произошедших 11 марта в $07^{h}09^{m}$ с M^{p} =6.0 и 26 августа в $05^{h}31^{m}$ с M^{p} =4.8 [16, 18]. Наибольшее число ощутимых землетрясений зафиксировано в диапазоне глубин *h*=31–80 км (табл. 3).

В табл. 4 представлено распределение землетрясений по магнитудам M^p и суммарная сейсмическая энергия ΣE по районам Курило-Охотского региона в 2007 г. Графики повторяемости, построенные для наиболее активных районов, приведены на рис. 4. Как видно из рис. 4 а, для районов №№ 2, 3, 5 представительными также являются землетрясения с $M^p \ge 4.5$.

N⁰	Район				M	^p					ΣN	ΣΕ,
		<4	4	4.5	5	5.5	6	6.5	7	8		10 ¹² Дж
				h≤	≦80 км	ı						
1	Парамуширский		1	2							3	0.48
2	Онекотан-Матуанский	21	197	104	19	3	2	1		1	348	89587.97
3	Симушир-Урупский	8	193	120	18	3	2				344	256.39
4	Северо-Итурупский	12	50	25	7						94	31.07
5	Кунашир-Шикотанский	8	47	27	4	1					87	31.44
6	О. Хоккайдо		6	4	1	1					12	10.46
8	Охотское море	2		1							3	0.51
	Всего	51	494	283	49	8	4	1		1	891	89918.32
				h>	•80 км	ı						
1	Парамуширский											
2	Онекотан-Матуанский		11	3	2	1					17	18.44
3	Симушир-Урупский	1	11	17	7	5	2	1	1		45	3207.22
4	4 Северо-Итурупский		2	2		2		1			7	192.50

Таблица 4. Распределение землетрясений по магнитудам *M*^p и суммарная сейсмическая энергия Σ*E* по районам Курило-Охотского региона в 2007 г.

N₂	Район			ΣN	ΣΕ,							
		<4	4	4.5	5	5.5	6	6.5	7	8		10 ¹² Дж
5	Кунашир-Шикотанский		3	9	10	4	3	1			30	411.22
6	О. Хоккайдо		3	1	1						5	1.76
8	Охотское море	3	4	9	3	1					20	20.03
	Всего	4	34	41	23	13	5	3	1		124	3851.17

Как следует из табл. 4, в поверхностном слое наиболее активны были Онекотан-Матуанский (\mathbb{N} 2) и Симушир-Урупский (\mathbb{N} 3) районы, где располагались очаги Симуширских землетрясений 13 января 2007 г. и 15 ноября 2006 г. с *MLH*=8.1 и *MLH*=8.0 соответственно. Инструментальный эпицентр Симуширского-II землетрясения 2007 г. локализован в районе \mathbb{N} 2, поэтому кривая распределения энергии имеет максимум в этом районе, а в районе \mathbb{N} 3 продолжался активный афтершоковый процесс Симуширского-I землетрясения 2006 г. Активность районов \mathbb{N} 1 и \mathbb{N} 6, границы которых сильно изменены в 2004 г. [15], в 2007 г. была незначительна.

В глубокофокусном слое наибольшее количество сейсмической энергии высвобождено в Симушир-Урупском районе (N_{23}), где произошло упомянутое выше сильное (*MSH*=7.0, M^{p} =7.1) землетрясение (14) 3 сентября в 16^h14^m [16].

В 2007 г. по знакам первых смещений определены механизмы очагов семи землетрясений Курило-Охотского региона [19]: 13 января в $04^{h}23^{m}$ (1 на рис. 2), в $09^{h}18^{m}$ (5), в $17^{h}37^{m}$ (6); 12 марта в $18^{h}59^{m}$ (9) 1 июля в $04^{h}12^{m}$ (12); 3 сентября в $16^{h}14^{m}$ (14) и 25 октября в $13^{h}50^{m}$ (18). Их диаграммы представлены на рис. 6.

Представление о вариациях сейсмического режима в отдельных районах Курило-Охотского региона можно получить из анализа табл. 5 и рис. 7, где приведены ежегодные числа землетрясений и величина сейсмической энергии в каждом из районов за 2001–2007 гг. Сопоставление параметров сейсмичности проведено для землетрясений с магнитудой $M^p \ge 4.5$.

Год					Pa	айон				
	J	<u>№</u> 2	J	<u>№</u> 3	J	<u>∿</u> 4	J	№ 5		Nº 8
	N_{Σ}	ΣE	N_{Σ}	ΣE	N_{Σ}	ΣE	N_{Σ}	ΣE	N_{Σ}	ΣE
				h <u><</u>	<u>≤</u> 80 км					
2001	12	50.19	21	79.76	38	4078.94	35	69.10	1	0.25
2002	12	40.79	16	5.98	21	510.43	26	95.72		
2003	17	101.79	15	13.08	31	89.03	28	50.75		
2004	23	416.02	28	21.47	32	147.53	65	2047.56		
2005	12	87.63	20	18.18	17	6.89	25	13.42		
2006	220	1084.34	199	65584.81	18	16.97	38	1.58		
Сумма	296	1780.76	299	65723.28	157	4849.79	217	2278.13	1	0.25
Среднее	49.3	296.79	49.8	10953.88	26.17	808.3	36.2	379.69	0.2	0.04
2007	130	89572.74	143	238.91	32	26.96	32	27.88	1	0.50
				h>	>80 км					
2001	5	710.14	17	357.56	10	12.79	13	4005.37	27	880.33
2002	13	1426.10	10	89.16	17	19.09	17	435.59	21	63315.52
2003	11	17.76	20	67.88	5	15.29	21	75.60	13	55.21
2004	5	32.49	13	1508.37	10	88.04	16	66.29	13	119.44
2005	1	0.7	12	213.06	8	50.72	18	346.75	15	123.81
2006	21	161.78	35	195.34	10	374.35	24	118.5	12	360.32
Сумма	56	2348.97	107	2431.37	60	560.28	109	5048.1	101	64854.63
Среднее	9.3	391.5	17.8	405.23	10	93.38	18.2	841.35	16.8	10809.11
2007	6	17.50	33	3206.19	5	192.28	27	410.94	13	19.73

Таблица 5. Число землетрясений с *М*^р≥4.5 и их суммарная сейсмическая энергия по некоторым районам Курило-Охотского региона за 2001–2007 гг.

Примечание. Суммарная энергия в табл. 5 дана в единицах *E*, 10¹² Дж.

Рис. 6. Эпицентры сильнейших землетрясений Курило-Охотского региона в 2007 г. и диаграммы механизмов их очагов

1 – магнитуда M^p ; 2 – глубина *h* гипоцентра, *км*; 3 – сейсмическая станция; 4 – диаграмма механизма очага землетрясения в проекции на нижнюю полусферу, зачернены области сжатия; 5 – граница и номер района; 6 – граница зоны ответственности сети СФ ГС РАН; 7 – ось глубоководного Курило-Камчатского желоба.

Рис. 7. Распределение ежегодных чисел землетрясений с *M*^p≥4.5 и величины суммарной сейсмической энергии Σ*E* в поверхностном (а) и глубоком (б) слое по районам Курило-Охотского региона в 2001–2007 гг.

1 – число землетрясений N; 2 – сейсмическая энергия ΣE; 3, 4 – среднее значение числа землетрясений и сейсмической энергии по данным за 2001–2006 гг.

В Парамуширском районе (\mathbb{N} 1) зарегистрировано три мелкофокусных землетрясения, два из которых произошли 18 января (в 17^h51^m с K_C =10.8 и в 22^h20^m с K_C =9.6) и одно – 27 июля в 05^h45^m с K_C =10.0. Ни одно из них не ощущалось [16].

Характер сейсмичности Онекотан-Матуанского (№ 2) и Симушир-Урупского (№ 3) районов в значительной степени определялся процессами, происходящими в очагах Симуширских землетрясений. В 2007 г. продолжался афтершоковый процесс после Симуширского-I землетрясения (15 ноября 2006 г. с MLH=8.0), который, возможно, слился с форшоковым и афтершоковым процессом Симуширского-II землетрясения (1), произошедшего 13 января в $04^{h}23^{m}$ на глубине h=45±5 км с MLH=8.1, MSH=7.5. Инструментальные эпицентры этих двух землетрясений располагались на границе районов № 2 и № 3 и область афтершоков распространилась на значительный объем двух смежных районов. Именно с этим связано значительное увеличение числа землетрясений и величины сейсмической энергии этих районов в 2006–2007 гг. (рис. 7 а). Как уже было упомянуто выше, макросейсмический эффект столь сильного землетрясения был зафиксирован лишь на значительном удалении от эпицентра (Δ >500 км) и достиг интенсивности *I*=5 баллов (в г. Северо-Курильск (Δ =511 км), пос. Горячие Ключи (539 км) и на материке в пос. Горный (557 км) [18]).

Как отмечено выше, для землетрясений (1, 5, 18) из очага Симуширских землетрясений определены механизмы их очагов (рис. 6). В очагах первых двух с *MLH*=8.1 и 6.1 произошла подвижка сбросового типа в условиях горизонтального растяжения в направлении, перпендикулярном простиранию островной дуги. Присутствует также незначительная сдвиговая компонента, правосторонняя для нодальной плоскости северо-восточного простирания. В очаге третьего землетрясения с магнитудой *MLH*=6.0 возник почти чистый сдвиг, правосторонний вдоль плоскости, параллельной глубоководному желобу, и левосторонний – вдоль секущей его плоскости.

Подробному описанию сейсмичности очага Симуширских землетрясений в наст. сб. посвящена отдельная статья [20].

Кроме Симуширского-II землетрясения в **Онекотан-Матуанском районе** зарегистрировано еще пять сильных землетрясений (2–4, 6, 11): 13 января в $04^{h}39^{m}$ ($M^{p}=5.8$), $04^{h}45^{m}$ ($M^{p}=6.4$), $15^{h}45^{m}$ ($M^{p}=5.7$), $17^{h}37^{m}$ ($M^{p}=5.9$) и 9 апреля в $10^{h}18^{m}$ ($M^{p}=5.7$). Для одного из них (6) определен механизм очага. Это событие произошло 13 января в $17^{h}37^{m}$ с MLH=5.9 на глубине $h=14 \ \kappa m$ к северо-востоку от Симуширского-II землетрясения и имеет в очаге подвижку надвигового типа с субвертикальной нодальной плоскостью, расположенной вкрест простиранию дуги, что несколько необычно для этого района (рис. 6). При этом вторая нодальная плоскость – субгоризонтальная – фиксируется довольно плохо ввиду дефицита знаков близких станций, ее простирание может изменяться в широких пределах, изменяя тип дислокации от чисто надвигового до сдвигового.

Активность глубокого слоя Онекотан-Матуанского района в 2007 г. была несколько снижена – число землетрясений и величина сейсмической энергии были ниже средних значений за период 2001–2006 гг. (рис. 7).

Симушир-Урупский район № 3. Кроме двух афтершоков (5 и 18) Симуширского-II землетрясения в поверхностном слое других сильных землетрясений зарегистрировано не было. В глубоком слое района № 3 наблюдался самый высокий уровень сейсмической активности за период 2001–2007 гг. (рис. 7). Здесь произошло шесть сильных землетрясений (9, 13–15, 17, 19), для двух из них определены механизмы очагов (рис. 6) [19].

Самое сильное (MLH=5.7, MSH=7.0, $M^{p}=7.1$) землетрясение (14) произошло 3 сентября в 16^h14^m на глубине $h=106\pm4 \ \kappa m$ с эпицентром вблизи о. Уруп. Макросейсмический эффект составил 4 балла на о. Итуруп – в пос. Рейдово ($\Delta=217 \ \kappa m$), Китовый ($\Delta=226 \ \kappa m$), а также в г. Курильск ($\Delta=228 \ \kappa m$); на о. Кунашир, в пос. Южно-Курильск ($\Delta=436 \ \kappa m$) интенсивность сотрясений составила I=2 балла. Механизм очага – сдвиг [19]. Одна из возможных плоскостей разрыва простиранием совпадает с направлением островной дуги, вдоль нее реализовалась правосторонняя подвижка, другая идет вкрест дуге, соответственно, с левосторонним движением вдоль плоскости.

Второе по величине (*MLH*=5.1, *MSH*=6.4, *M*^p=6.3) землетрясение (9) произошло 12 марта в 18^h59^m на глубине *h*=138±6 *км* с эпицентром под центральной частью Курильской островной

дуги. Подвижка в его очаге – пологий сброс, при этом более вертикальная плоскость падает под Охотское море, а близгоризонтальная – в направлении Тихого океана.

Макросейсмический эффект отмечен всего для двух землетрясений района: упомянутого выше землетрясения (14) и события, произошедшего 5 июля в $14^{h}51^{m}$ на глубине $h=38\pm5 \ \kappa m$ с *MLH*=4.2 и ощущавшегося с интенсивностью 4 балла в г. Курильске ($\Delta=432 \ \kappa m$).

Такое небольшое число сведений о макросейсмических проявлениях землетрясений при всплеске сейсмической активности объясняется удаленностью населенных пунктов, расположенных на флангах Курильской гряды, от эпицентральной зоны района. На Средних Курилах в настоящее время населения нет.

В Северо-Итурупском районе (\mathbb{N} 4) мелкофокусная сейсмическая активность продолжала оставаться на невысоком уровне: 32 землетрясения произошло на глубине $h \le 80 \ \kappa m$, их число сопоставимо со среднегодовым значением за период 2001–2006 гг., сейсмическая энергия в 30 раз меньше среднегодового значения (табл. 5, рис. 7). Максимальная магнитуда не превышала M=5.2. В интервале глубины $h=81-192 \ \kappa m$ зарегистрировано пять землетрясений, что в два раза меньше среднегодового числа за 2001–2006 гг., однако суммарная сейсмическая энергия вдвое превышает свое среднегодовое значение (табл. 5, рис. 7). Самое сильное (MSH=6.4, $M^p=6.3$) землетрясение (7) произошло 4 марта в 11^h22^m на глубине $h=91\pm3 \ \kappa m$. Ощутимыми были два землетрясения, интенсивность сотрясений не превышала 3-4 баллов [18].

В Кунашир-Шикотанском районе (№ 5) сейсмическая активность также оставалась на невысоком уровне как в поверхностном, так и в глубоком слое. Число мелкофокусных землетрясений (N=32) и величина сейсмической энергии ($\Sigma E=27.88 \cdot 10^{12} \ \square \infty$) в 2007 г. ниже средних показателей за 2001–2006 гг. (табл. 5, рис. 7). В глубоком слое число (N=27) землетрясений больше среднегодового ($\overline{N}=18$). Среди них имеется пять сильных – (8, 10, 12, 16, 20), но величина сейсмической энергии меньше среднего значения за указанный период ($\Sigma E=410.94 \cdot 10^{12} \ \square \infty$ вместо $\Sigma E=841.35 \cdot 10^{12} \ \square \infty$, табл. 5).

Самое сильное (MSH=6.4, $M^{p}=6.3$) землетрясение района (12) произошло 1 июля в $04^{h}12^{m}$ на глубине $h=126\pm4$ км. Землетрясение ощущалось в пос. Южно-Курильск ($\Delta=100$ км) с интенсивностью I=3 балла, механизм его очага имеет субвертикальную нодальную плоскость югозападного простирания и северо-западного падения, при этом вторая близгоризонтальная нодальная плоскость падает на юго-запад, создавая, таким образом, сдвиговую компоненту, левостороннюю для подвижки по этой плоскости [19].

Всего макросейсмический эффект наблюдался в населенных пунктах Японии и Курильских островов для 12 землетрясений района (табл. 3). Максимальная интенсивность сотрясений достигла *I*=IV [6] по шкале JMA [21] или *I*=6–7 баллов по шкале MSK-64 [22] на востоке о. Хоккайдо от землетрясения 8 октября в $17^{h}10^{m}$, $h=55\pm5 \kappa m$, *MLH*=5.5. На территории России землетрясение ощущалось в пос. Малокурильское (Δ =19 κm) с интенсивностью до 4 баллов, в пос. Южно-Курильск (Δ =84 κm) – до 3 баллов. Более слабое землетрясение, произошедшее 26 августа в $05^{h}31^{m}$, $h=49\pm8 \kappa m$, *MLH*=4.8, также вызвало на востоке о. Хоккайдо сотрясения с интенсивностью *I*=IV [6] по шкале JMA. На территории России макросейсмичесий эффект этого землетрясения достиг 5 баллов в пос. Малокурильское (Δ =8 κm).

Интенсивность сотрясений в 5 баллов также зафиксирована в пос. Горный (Δ =5 км) при упомянутом выше землетрясении 11 марта в 07^h09^m с M^{p} =6.0 (8) [18].

Макросейсмический эффект остальных землетрясений района не превышал *I*=3 баллов.

Большая часть территории **района о. Хоккайдо** (\mathbb{N} 6) была в 2004 г. исключена из зоны ответственности СФ ГС РАН, осталась лишь небольшая часть восточнее λ =144°E (рис. 2). В связи с этим сопоставления параметров сейсмического режима с данными 2001–2006 гг. не производится. Здесь в верхнем интервале глубины $h \leq 80 \ \kappa m$ было зарегистрировано 12 землетрясений с магнитудой $M \leq 5.4$, в интервале глубины $h=81-140 \ \kappa m$ – пять землетрясений с $M^{\rm p} \leq 5.7$.

Для двух землетрясений наблюдался макросейсмический эффект в 2 балла в пос. Южно-Курильск (Δ =130 и 256 км соответственно).

В Охотском море (№ 8) отмечено одно мелкофокусное землетрясение с $M^p = 4.6$, в глубоком слое ($h > 80 \ \kappa m$) зарегистрировано 20 землетрясений. Параметры сейсмического режима района были существенно ниже средних значений, рассчитанных по данным за 2001–2006 гг. (табл. 5, рис. 7).

Самое сильное (*MSH*=5.8, M^{p} =5.5) землетрясение района произошло под акваторией Охотского моря 23 апреля в 10^h10^m на глубине *h*=491±34 *км*.

В целом в 2007 г., согласно механизмам очагов сильнейших землетрясений, на Курильских островах сложилась нетипичная тектоническая обстановка. Большинство землетрясений произошли в условиях растяжения, либо имели сдвиговый тип механизма. Единственный пологий надвиг с очень неуверенной фиксацией одной из нодальных плоскостей развернут относительно основных тектонических структур региона на 90°. Наиболее распространенный для Курильской островной дуги тип сейсмодислокаций – взброс – не зафиксирован ни разу. Возможно, подобная обстановка является реакцией региона на сильные Симуширские землетрясения 15 ноября 2006 г. и 13 января 2007 г.

От редакции. Следует отметить, что редкая сеть сейсмических станций Курило-Охотского региона и аналоговая аппаратура, установленная на них, не позволяют составить полноценный каталог землетрясений региона в силу загруженности сейсмограмм в моменты значительной сейсмической активизации. В связи с этим обзор сейсмичности, проведенный по данным регионального каталога, отражающий обстановку в регионе в целом, может не соответствовать ей в деталях. Для более полного анализа сейсмичности региона можно воспользоваться дополнительным каталогом землетрясений Курило-Охотского региона [23], составленным ред. по данным международных агентств [6] и Сейсмологического бюллетеня [5]. Представление о напряженно-деформированном состоянии региона, полученное по данным регионального каталога механизмов, также может не соответствовать действительности в силу ограниченности данных (в распоряжении авторов имеются определения лишь для семи очагов землетрясений). Более полное представление о типичных напряжениях, присутствующих в очагах землетрясений региона в 2007 г., можно получить, используя материалы дополнительного каталога землетрясений [24], составленного ред. по данным, имеющимся в каталоге ISC [6].

Литература

- 1. Фокина Т.А., Дорошкевич Е.Н., Сафонов Д.А. Курило-Охотский регион // Землетрясения Северной Евразии, 2006 год. Обнинск: ГС РАН, 2012. С. 185–194.
- 2. Коваленко Н.С., Фокина Т.А., Сафонов Д.А. Приамурье и Приморье. (См. раздел (Обзор сейсмичности) в наст. сб.).
- 3. Соловьёв С.Л., Соловьёва О.Н. Соотношение между энергетическим классом и магнитудой Курильских землетрясений // Физика Земли. – 1967. – № 2. – С. 13–23.
- 4. Фокина Т.А., Кислицына И.П., Сафонов Д.А., Михайлов В.И. Сахалин. (См. раздел I (Обзор сейсмичности) в наст. сб.).
- 5. Сейсмологический бюллетень (ежедекадный) за 2007 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2007–2008. – URL: *ftp://ftp.gsras.ru/pub/Teleseismic bulletin/2007*.
- 6. Bulletin of the International Seismological Centre for 2007. Thatcham, United Kingdom: ISC, 2009. URL: http://www.isc.ac.uk/iscbulletin/search/bulletin/
- 7. Поплавская Л.Н., Бобков А.О., Кузнецова В.Н., Нагорных Т.В., Рудик М.И. Принципы формирования и состав алгоритмического обеспечения регионального центра обработки сейсмологических наблюдений (на примере Дальнего Востока) // Сейсмологические наблюдения на Дальнем Востоке СССР (Методические работы ЕССН). – М.: Наука, 1989. – С. 32–51.
- 8. Миталёва Н.А., Бойчук А.Н. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1985 году. М.: Наука, 1988. С. 144–154.
- 9. Поплавская Л.Н., Миталёва Н.А., Бобков А.О., Бойчук А.Н., Рудик М.И. Землетрясения Курило-Охотского региона // Землетрясения в СССР в 1990 году. – М.: Наука, 1996. – С. 91–100.
- Аптекман Ж.Я., Желанкина Т.С., Кейлис-Борок В.И., Писаренко В.Ф., Поплавская Л.Н., Рудик М.И., Соловьёв С.Л. Массовое определение механизмов очагов землетрясений на ЭВМ // Теория и анализ сейсмологических наблюдений (Вычислительная сейсмология; Вып. 12). – М.: Наука, 1979. – С. 45–58.

- Тараканов Р.З., Ким Чун Ун, Сухомлинова Р.И. Закономерности пространственного распределения гипоцентров Курило-Камчатского и Японского регионов и их связь с особенностями геофизических полей // Геофизические исследования зоны перехода от Азиатского континента к Тихому океану. – М.: Наука, 1977. – С. 67–75.
- 12. Соловьёв С.Л., Соловьёва О.Н. Скорость колебания земной поверхности в объемных волнах неглубокофокусных Курило-Камчатских землетрясений на расстояниях до 17° // Физика Земли. – 1967. – № 1. – С. 37–60.
- 13. Соловьёва О.Н., Соловьёв С.Л. Новые данные о динамике сейсмических волн неглубокофокусных Курило-Камчатских землетрясений // Проблемы цунами. М.: Наука, 1968. С. 75–97.
- 14. Вермишева Л.Ю., Гангнус А.А. Применение типизации подвижек в очагах землетрясений для решения сейсмотектонических задач // Физика Земли. 1977. № 3. С. 103–109.
- 15. Габсатарова И.П. Границы сейсмоактивных регионов с 2004 г. // Землетрясения России в 2004 году. Обнинск: ГС РАН, 2007. С. 139.
- 16. Дорошкевич Е.Н. (отв. сост.), Брагина Г.И., Гладырь Ж.В., Пиневич М.В. Каталог землетрясений Курило-Охотского региона за 2007 год (*N*=1015). (См. Приложение к наст. сб. на CD).
- 17. Дорошкевич Е.Н. (отв. сост.), Пиневич М.В., Гладырь Ж.В., Швидская С.В. Каталог землетрясений Курило-Охотского региона за 2006 г. (*N*=1009) // Землетрясения Северной Евразии, 2006 год. – Обнинск: ГС РАН, 2012. – (Ha CD).
- 18. Фокина Т.А., Дорошкевич Е.Н. Макросейсмический эффект ощутимых землетрясений в населенных пунктах (*n*=54) Курило-Охотского региона в 2007 г. (См. Приложение к наст. сб. на CD).
- 19. Сафонов Д.А. (отв. сост.) Каталог механизмов очагов землетрясений Курило-Охотского региона за 2007 г. (*N*=7). (См. Приложение к наст. сб. на CD).
- 20. Рогожин Е.А., Левина В.И. Симуширские землетрясения 15 ноября 2006 г. (I) и 13 января 2007 г. (II) с *Mw*=8.3 и *Mw*=8.1 (Средние Курилы). (См. раздел III (Сильные и ощутимые землетрясения) в наст. сб.).
- 21. Hisada T., Nakagawa K. Present Japanese Development in Engincering Seismology and their Application to Buildinge. Japan, 1958.
- 22. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- 23. Артёмова Е.В., Левина В.И. (сост.). Дополнение к каталогу землетрясений Курило-Охотского региона за 2007 г. (*N*=825). (См. Приложение к наст. сб. на CD).
- 24. **Левина В.И. (сост.).** Дополнение к каталогу механизмов очагов землетрясений Курило-Охотского региона за 2007 г. (*N*=401). (См. Приложение к наст. сб. на CD).