КАЗАХСТАН

Н.А. Калмыкова¹, Н.П. Неверова¹, Н.Н. Михайлова², И.Н. Соколова²

¹Сейсмологическая опытно-методическая экспедиция Министерства образования и науки Республики Казахстан, г. Алматы, kalmykova@mail.kz

²Институт геофизических исследований Национального ядерного центра Министерства энергетики и минеральных ресурсов Республики Казахстан, г. Курчатов – г. Алматы, mikhailova@kndc.kz, sokolova@kndc.kz

Сейсмические наблюдения на территории Казахстана в 2007 г. проводились, как и ранее [1], силами двух организаций: Сейсмологической опытно-методической экспедиции (СОМЭ) КН МОН РК и Института геофизических исследований Национального ядерного центра (ИГИ НЯЦ) МЭМР РК. Каждая организация имеет свою сеть сейсмических наблюдений и центры обработки данных.

Сеть СОМЭ включала 29 цифровых сейсмических станций (рис. 1), список которых дан в [1]. Для более точной локализации гипоцентров землетрясений при обработке материалов СО-МЭ дополнительно привлекались бюллетени землетрясений восьми станций ОМСЭ ИС НАН Республики Кыргызстан: «Ала-Арча», «Ананьево», «Арал», «Бишкек», «Каджи-Сай», «Кен-Суу», «Пржевальск», «Эркин-Сай».

В состав сети сейсмических наблюдений НЯЦ РК входили пять трехкомпонентных станций («Актюбинск», «Боровое», «Курчатов», «Подгорное», «КNDC») и восемь сейсмических групп («Акбулак», «Маканчи», «Каратау», «Курчатов-Крест», «Чкалово», «Восточное», «Зеренда», «Боровое–АS057») (рис. 1).

Рис. 1. Схема размещения сейсмических станций на территории Казахстана в 2007 г.

1 – станции СОМЭ МОН РК; 2, 3 – трехкомпонентные станции и сейсмические группы НЯЦ РК; 4 – район «Северный Тянь-Шань». Цифрами обозначены следующие станции СОМЭ МОН РК: 1 – «Чимкент»-СНМ, 2 – «Боролдай»-ВRL, 3 – «Южная»-YUG, 4 – «Жабаглы»-ЈВG, 5 – «Джамбул»-DJB, 6 – «Мерке»-МRК, 7 – «Капал-Арасан»-КРА, 8 – «Семипалатинск»-SEM, 9 – «Зайсан»-ZSN.

Коды станций и сейсмических групп (аггау) НЯЦ РК: пять станций – BRVK-«Боровое», АКТО-«Актюбинск», KURK-«Курчатов», PDG-«Подгорное», KNDC-«KNDC»; восемь аггау – ZRNK-«Зеренда», CHKZ-«Чкалово», VOS-«Восточное», KUR-«Курчатов-Крест», МКАR-«Маканчи», ККАR-«Каратау», BVAR-«Боровое», АВКАR-«Акбулак».

Уровень представительной регистрации землетрясений, по сравнению с таковым в 2006 г. [1], не изменился. По-прежнему на всей территории Северного Тянь-Шаня минимальный представительный энергетический класс K_{\min} =7.5, только в центральной части Северного Тянь-Шаня обеспечивается более низкий (K_{\min} =6.0) порог энергии представительно регистрируемых землетрясений. На всей территории Казахстана не могут быть пропущены землетрясения с K_{\min} =9 и более.

Методики определения основных параметров землетрясений в центрах обработки ИГИ НЯЦ и СОМЭ, по сравнению с таковой в [1], не изменились.

Сводный каталог землетрясений Казахстана, включая район «Северный Тянь-Шань», приведен в [2]. Всего в него включено 590 землетрясений с K_P =6.6–13.4, из них 122 толчка с K_P ≥8.6 представлены на карте эпицентров (рис. 2), на которой пронумерованы 10 событий с K_P ≥10.6 и рамкой выделен традиционно район «Северный Тянь-Шань».

Рис. 2. Карта эпицентров более сильных (K_P ≥8.6) землетрясений Казахстана за 2007 г.

Пронумерованы сильные ($K_P \ge 10.6$) землетрясения в соответствии с графой 2 каталога [2]; рамкой выделен район «Северный Тянь-Шань».

Максимальным в районе явилось землетрясение № 6, отмеченное 9 октября в $16^{\rm h}00^{\rm m}$ с $K_{\rm P}$ =12.7, Ms=4.2 [2] у северо-западных границ оз. Иссык-Куль и вызвавшее в г. Алматы сотрясения с интенсивностью I=4 балла. Вне района, но на территории Казахстана, максимальное ($K_{\rm P}$ =10.8) событие № 8 локализовано на востоке, у границ с Узбекистаном, которое ничем себя не проявило.

И, наконец, вне границ Казахстана реализовалось самое сильное (K_P =13.4 [2], Mw=5.6 $_{\rm GCMT}$ [3]) землетрясение года в провинции Северный Синьцзян, Китай, зарегистрированное 20 июля в $10^{\rm h}06^{\rm m}$ с эпицентром в Синьцзян-Уйгурском автономном районе Китая (№ 4 на рис. 2). Землетрясение вызвало многочисленные разрушения в населенном пункте Китая Текес («повреждены, по меньшей мере, 2120 домов и 4 моста» [3-NEIC]), ощущалось на территории Казахстана в пос. Нарынкол (Δ =184 κM) с интенсивностью I=4 балла, в г. Алматы (Δ =448 κM) – 2–3 балла и в г. Талдыкурган (Δ =392 κM) – 2 балла. Имеется решение механизма его очага по данным агентств GCMT и NEIC, приведенное в табл. 1.

Таблица 1. Параметры механизма очага землетрясения 20 июля 2007 г. в $10^{\rm h}06^{\rm m}$ с $M_{\rm w}$ =5.6

Агент-	Дата,	t_0 ,	h*,	Маг	ниту	/ды	K_{S}	O	си глаг	вны	х напр	жкс	ений	Н	ода.	тьные	е пло	скос	ти	Ис-
ство	д м	ч мин с	км	Mw	MS	Ms			T		N		P		NPI	!		NP	2	точ-
								PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	ник
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
NEIC	20.07	10 06 53.9	10*	5.5	5.4	5.3	13.4	43	294	41	78	19	185	320	45	160	65	76	47	[3]
HRVD	20.07	10 06 53.9	25*	5.6	5.4	5.3	13.4	20	282	65	65	14	187	324	66	175	55	86	24	[3]

Примечание. В графе 4 даны глубины гипоцентра, заложенные в расчет механизмов.

Стереограммы этих двух решений представлены на рис. 3. Как видим, решения достаточно близки между собой — в обоих случаях превалируют почти меридиональные напряжения сжатия, имеющие меньший наклон к горизонту, по сравнению с близширотно направленными напряжениями растяжения. Тип движения в очаге по решению GCMT — почти чистый сдвиг, правосторонний — по NP1 и левосторонний — по NP2. В решении NEIC также правосторонний сдвиг по плоскости NP1, несколько осложненный компонентами взброса, а по крутой плоскости NP2 — взброс с компонентами левостороннего сдвига.

Puc. 3. Стереограмма механизма очага землетрясения 20 июля 2007 г. с *Mw*=5.4 в проекции нижней полусферы

1 — нодальные линии; 2, 3 — оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Рассмотрим более детально сейсмичность района Северный Тянь-Шань (с координатами ϕ =41.8–45.0°N, λ =73.0–80.0°E) и всего Казахстана в отдельности.

За 2007 г. в районе «Северный Тянь-Шань» было зарегистрировано и локализовано 516 землетрясений с $K_P \ge 6.6$. Карта их эпицентров представлена на рис. 4. Распределение землетрясений по энергетическим классам K_P для Северного Тянь-Шаня дано в табл. 2.

Таблица 2. Распределение землетрясений по энергетическим классам и суммарная выделившаяся сейсмическая энергия ΣE на Северном Тянь-Шане

К	7	8	9	10	11	12	13	N_{Σ}	ΣΕ, Дж
N	363	95	37	15	3	2	1	516	12.46·10 ¹²

Величина выделившейся суммарной сейсмической энергии землетрясений, зарегистрированных на территории Северного Тянь-Шаня в 2007 г. (табл. 2), понизилась, по сравнению с тем же параметром за 2006 г. [1], почти на порядок.

Рис. 4. Карта эпицентров землетрясений Северного Тянь-Шаня за 2007 г.

1 – энергетический класс $K_{\rm P}$; 2, 3 – сейсмическая станция Казахстана и Кыргызстана соответственно.

Сейсмическая активность A_{10} , приведенная в изолиниях на рис. 5, в среднем по району снизилась с величины A_{10} =0.089 в 2006 г. [1] до отметки A_{10} =0.070 в 2007 г., но остается выше уровня последних лет (табл. 3).

		1							
Год	2000	2001	2002	2003	2004	2005	2006	2007	Среднее
$\overline{A_{10}}$	0.050	0.045	0.032	0.045	0.045	0.084	0.089	0.070	0.062
γ	0.43	0.43	0.54	0.48	0.48	0.44	0.44	0.47	0.46
Источник	[4]	[5]	[6]	[7]	[8]	[9]	[1]		

Таблица 3. Значения A_{10} = и γ на Северном Тянь-Шане в 2000–2007 гг.

Рис. 5. Карта сейсмической активности A_{10} территории Северного Тянь-Шаня за 2007 г.

Наиболее активной областью Северного Тянь-Шаня является центральная и восточная часть региона, где высокая сейсмичность наблюдается в хребтах Кунгей и Заилийского Алатау. Именно здесь, на границе Казахстана и Кыргызстана, 9 октября в $16^{\rm h}00^{\rm m}$ произошло самое сильное ($K_{\rm P}$ =12.7, MS=4.2) землетрясение (6) на Северном Тянь-Шане. Характерной особенностью данного землетрясения является слабая афтершоковая активность: всего четыре толчка 6–7 класса в течение 16 дней. Если учесть повышенную сейсмоактивность этой зоны, то, кроме землетрясения 6-го класса, последующего через $14^{\rm m}$ после «главного», остальные события (одно – 13 октября и два – 25 октября), условно являясь афтершоками, вполне можно отнести к естественной сейсмичности (табл. 4).

Таблица 4. Основные параметры главного толчка и афтершоков землетрясения 9 октября в $16^{\rm h}00^{\rm m}$ с $K_{\rm P}{=}12.7$

$N_{\underline{0}}$	Дата,	t_0 ,	Ги)	$K_{ m P}$				
	д м	ч мин с	φ°, N	λ°, E	h, км				
		Основно	ой толчс	Ж					
(4)	09.10	16 00 41.1	42.88	77.78	15	12.7			
	Афтершоки								
1	09.10	16 14 57.2	42.95	77.80	5	6.3			

No	Дата,	t_0 ,	Гипоцентр			K_{P}
	д м	ч мин с	φ°, N	λ°, E	h, км	
2	13.10	20 57 50.4	42.93	77.78	5	6.2
3	25.10	08 05 09.6	42.83	77.80	0	5.6
4	25.10	13 06 25.2	42.92	77.78	10	6.7

Примечание. Здесь и в аналогичных таблицах ниже номер главного толчка типа (4) совпадает с каталогом [2].

Землетрясения (3) и (5) на рис. 2 зарегистрированы 6 июня в 11^h09^m (Кыргызстан, № 3 на рис. 2) и 2 сентября в 15^h30^m . Эпицентр землетрясения 6 июня с $K_P = 12.3$, MS = 4.7 [2] находился в горной области Киргизского хребта на расстоянии $145 \ \kappa m$ от г. Алматы, где интенсивность сотрясений достигала 3 баллов. Землетрясение имело 22 афтершока с $K_P = 5.4 - 9.3$, причем восемь из них произошли в течение первых суток (табл. 5).

Таблица 5. Основные параметры главного толчка и афтершоков землетрясения 6 июня в $11^{\rm h}09^{\rm m}$ с $K_{\rm P}{=}12.3$

No	Дата,	t_0 ,	Гипоцен		$K_{ m P}$	No	Дата,	t_0 ,		тоцент	гр	K_{P}
	д м	ч мин с	φ°, N λ°, Ε	h, км			д м	ч мин с	φ°, N 2	λ°, E	h, км	
		Основн	ой толчок			10	07.06	17 50 10.0	42.58 7	75.40	5	9.3
3	06.06	11 09 26.1	42.55 75.45	5	12.3	11	08.06	04 44 10.5	42.60 7	75.37	10	6.9
	00.00				12.0	12	08.06	09 53 02.1	42.62 7	75.32	10	6
	1	Афте	ершоки			13	09.06	17 29 33.9	42.57	75.35	5	6.4
1	06.06	11 29 51.9	42.53 75.35	20	7.7	14	12.06	20 24 22.5	42.65	75.33	10	6.7
2	06.06	11 34 22.8	42.58 75.30	10	6.6	15	14.06	22 16 28.3	42.70 7	75.22	15	6.9
3	06.06	15 09 19.3	42.57 75.38	15	6.8	16	14.06	22 46 19.5	42.60 7	75.40	10	6.4
4	06.06	15 41 30.3	42.58 75.48	0	7.6	17	22.06	02 50 40.5	42.60 7	75.25	15	8.2
5	06.06	16 08 56.0	42.58 75.37	10	6.8	18	23.06	02 50 00.8	42.57 7	75.40	15	6.5
6	06.06	17 13 07.0	42.58 75.30	15	6.6	19	24.06	17 04 12.7	42.60 7	75.33	5	6.5
7	06.06	18 30 08.8	42.62 75.55	0	5.4	20	25.06	00 34 35.8		75.40	5	8.0
8	06.06	18 37 03.0	42.58 75.32	15	6.2	21	30.06	12 48 35.1	1=10 /	75.35	10	6.6
9	07.06	07 47 37.4	42.62 75.18	20	6.6	22	30.06	18 34 35.3	1=10 /	75.33	15	6.0

Максимальный афтершок, зарегистрированный 7 июня в $17^{\rm h}50^{\rm m}$, т.е. через $30^{\rm h}$ после главного толчка, имел $K_{\rm P}$ =9.3, тогда энергетическая ступень между главным толчком и максимальным афтершоком в этой серии составила

$$\Delta K_a = K_0 - K_a = 12.3 - 9.3 = 3.0.$$

Землетрясение (5) 2 сентября с K_P =12.4, MS=4.1 произошло в отрогах Джунгарского Алатау и ощущалось в г. Талдыкурган с интенсивностью I=3–4 балла на расстоянии 9 κM , в г. Алматы (200 κM) – 3 балла. В течение первых суток зарегистрировано 17 афтершоков 5–8-х энергетических классов, всего последовало 29 толчков с энергией, не превышающей K_P =8 (табл. 6).

Таблица 6. Основные параметры главного толчка и афтершоков землетрясения 2 сентября в $15^{\rm h}30^{\rm m}$ с $K_{\rm P}{=}12.3$

№	Дата,	t_0 ,	Ги	поцентр)	K_{P}	№	Дата,	t_0 ,	Ги	поцент	p	$K_{ m P}$
	д м	ч мин с	φ°, N	λ°, E	h, км			д м	ч мин с	φ°, N	λ°, E	h, км	
		Основн	юй толч	юк			14	03.09	13 19 58.4	44.63	78.30	20	6.3
(5)	02.09	15 30 36.6	44.65	78.17	15	12.4	15	03.09	13 30 57.4	44.62	78.27	20	7.1
	I.	Афт	ершоки			·	16	04.09	06 43 52.2	44.60	78.33	5	5.8
1	02.00				10	7.2	17	04.09	07 12 17.7	44.58	78.27	20	6.3
1	02.09	15 46 13.6	44.58	78.37	10	7.3	18	04.09	13 55 35.2	44.62	78.27	10	7.6
2	02.09	16 02 01.4	44.57	78.28	10	5.5	19	05.09	05 43 17.6	44.57	78.35	20	6.0
3	02.09	16 12 19.6	44.60	78.28	20	6.6	20	05.09	22 12 42.0	44.63	78.28	20	6.8
4	02.09	16 36 33.0	44.63	78.28	20	6.3	21	09.09	21 20 18.0	44.65	78.35	10	6.9
5	02.09	18 34 02.3	44.60	78.30	15	6.3	22	10.09	05 02 52.2	44.58	78.33	20	6.0
6	02.09	19 30 49.4	44.63	78.25	20	6.3	23	16.09	22 21 56.6	44.65	78.33	15	5.9
7	02.09	20 19 09.3	44.60	78.33	15	5.9	24	18.09	08 08 51.8	44.63	78.28	20	7.0
8	02.09	20 37 02.8	44.62	78.30	15	6.0	25	22.09	20 44 49.3	44.62	78.3	20	6.8
9	02.09	22 03 16.3	44.62	78.32	15	5.8	26	23.09	08 09 41.5	44.60	78.23	15	7.6
10	03.09	00 10 56.9	44.58	78.25	15	6.6	27	27.09	22 36 48.7	44.62	78.23	20	7.0
11	03.09	00 25 10.0	44.60	78.30	5	5.1	28	15.10	21 21 52.2	44.62	78.28	20	6.2
12	03.09	00 54 54.1	44.60	78.28	20	6.5	29	24.10	09 05 18.4	44.55	78.23	20	6.0
13	03.09	05 51 57.1	44.65	78.27	20	6.0		21.10	07 03 10.4	11.55	70.23	20	0.0

В этой серии афтершоков максимальный из них, отмеченный почти двое суток спустя — 4 сентября в $13^{\rm h}55^{\rm m}$ — был почти на два порядка слабее такового в предыдущей серии и равен $K_{\rm P}$ =7.6, тогда энергетическая ступень между главным толчком и максимальным афтершоком в этой серии составила

$$\Delta K_a = K_0 - K_a = 12.4 - 7.6 = 4.8.$$

Чем выше энергетическая ступень, тем меньшая доля накопленной в очаговой зоне упругой энергии высвободилась в ходе афтершокового процесса.

Землетрясения (1) и (2) были зарегистрированы в пределах горной системы Терскей-Алатау на территории Кыргызстана – 25 января в $15^{\rm h}36^{\rm m}$ с $K_{\rm P}$ =10.6, MS=2.5 и 7 марта в $20^{\rm h}13^{\rm m}$ с $K_{\rm P}$ =10.8, MS=3.1 (рис. 2).

Для землетрясения (1) 25 января представляет интерес развитие событий в области его очага (ϕ =42.13°, λ =78.00°). Ранее, а именно 2 января в 04^h06^m, произошло землетрясение с K_P =10.0, его эпицентр находился \cong в 5 κM на север от эпицентра землетрясения 25 января. За ним последовало 13 афтершоков с K_P =5.8–7.8, которые следует считать форшоками перед событием 25 января, после которого зарегистрированы 24 афтершока (табл. 7).

Таблица 7. Основные параметры форшоков, главного толчка и афтершоков землетрясения 25 января в $15^{\rm h}36^{\rm m}$ с $K_{\rm P}{=}10.6$

	1						. —	I				1	
$N_{\underline{0}}$	Дата,	t_0 ,	Ги	поцентр)	$K_{ m P}$	$N_{\underline{0}}$	Дата,	t_0 ,	Ги	поцент	р	K_{P}
	д м	ч мин с	φ°, N	λ°, E	h, км			д м	ч мин с	φ°, N	λ°, E	h, км	
		Фо	ршоки				4	25.01	20 12 52.6	42.23	78.02	0	5.8
1	02.01	01 06 54.7		78.00	10	10.0	5	26.01	00 42 20.4	42.15	77.98	20	7.2
2	06.01	05 43 59.1	42.26	78.02	10	7.2	6	26.01	00 44 46.4	42.22	77.93	20	7.5
3							7	26.01	04 12 22.6	42.22	77.98	10	6.5
	06.01	06 33 30.3	42.3	77.98	0	6.5	8	26.01	10 03 14.4	42.15	77.97	15	8.7
4	06.01	15 49 57.3	42.18	78.02	10	7.6	9	26.01	21 30 19.9	42.23	77.97	10	8.1
5	07.01	05 24 11.7	42.20	78.00	5	6.7	10	27.01	04 50 19.8	42.22	77.97	10	7.2
6	07.01	07 44 16.9	42.27	77.98	10	5.8	11	27.01	21 52 26.6	42.22	78.05	10	5.8
7	07.01	16 20 53.9	42.13	77.93	20	7.3	12	28.01	22 22 28.5	42.25	78.00	10	6.3
8	08.01	02 56 37.5	42.23	77.97	5	7.8	13	29.01	11 21 19.7	42.25	78.00	10	6.6
9	08.01	03 52 13.0	42.3	77.97	10	6.6							
10	08.01	22 08 05.3	42.28	77.97	0	6.6	14	01.02	17 10 31.2	42.20	77.98	20	6.5
11	15.01	06 11 41.1	42.27	77.98	0	6.1	15	01.02	20 55 14.1	42.25	78.05	20	7.0
12	22.01	04 11 22.4	42.17	78.03	5	7.8	16	04.02	11 36 29.8	42.17	77.93	10	6.1
13	23.01	05 28 01.2	42.28	77.98	15	6.8	17	04.02	19 28 56.8	42.08	78.02	10	8.2
14	24.01	15 29 16.8		77.92	0	6.2	18	04.02	22 54 39.4	42.20	78.00	10	8.9
			юй толч	!		0.2	19	24.02	06 53 02.6	42.18	77.98	5	6.3
							20	24.02	14 25 25.9	42.17	78.03	20	8.6
(1)	25.01	15 36 22.1	42.13	78.00	10	10.6	21	26.02	21 19 10.0	42.18	78.03	10	7.2
		Афт	ершоки				22	01.03	00 51 45.3	42.20	78.03	5	6.8
1	25.01	15 45 57.8	42.18	78.02	10	6.5	23	02.03	05 33 59.6	42.17	78.03	15	6.6
2	25.01	15 54 38.1	42.17	77.98	15	8.4	24	04.03	16 29 59.1	42.22	78.05	10	6.4
3	25.01	18 36 42.0		77.98	5	5.9							

В этой серии различие в энергетических классах максимального форшока, главного толчка и максимального афтершока составляет

$$\Delta K_{\Phi} = K_0 - K_{\Phi} = 10.6 - 10.0 = 0.6.$$

$$\Delta K_a = K_0 - K_a = 10.6 - 8.7 = 1.9.$$

Столь малое значение первой ступени ΔK_{Φ} = 0.6 и небольшой перевес во второй – ΔK_{a} = 1.9 и невысокое положение главного толчка свидетельствует о том, что вся совокупность носит, скорее всего, роевый характер. Действительно, энергетические всплески на уровнях K_{P} = 10.0, 10.6, 8.7, достаточно близкими в совокупности, являются явными чертами роя землетрясений.

Землетрясение (2) 7 марта в $20^{\rm h}13^{\rm m}$ с $K_{\rm P}$ =10.8, MS=3.1 локализовано на востоке оз. Иссык-Куль. Немногочисленные его афтершоки приведены в табл. 8.

Таблица 8. Основные параметры главного толчка и афтершоков землетрясения 7 марта в $20^{\rm h}13^{\rm m}$ с $K_{\rm P}{=}10.8$

№	Дата,	t_0 ,	Ги)	K_{P}	
	д м	ч мин с	φ°, N	λ°, E	h, км	
3	07.03	20 13 33.7	42.65	78.43	5	10.8
		22 43 48.8	42.67	78.47		

$N_{\underline{0}}$	Дата,	t_0 ,	Ги)	$K_{ m P}$	
	д м	ч мин с	φ°, N	λ°, E	h, км	
2	09.03	09 40 30.7	42.78	78.48	0	6.6
3	12.03	20 18 44.6	42.72	78.48	5	5.8
4	16.03	18 44 56.5	42.67	78.4	5	7.9
5	05.04	23 15 04.9	42.82	78.37	10	4.9

Для этой серии первый афтершок, возникший через 2^h30^m , является максимальным с K_P =8.2, со ступенью, равной

$$\Delta K_a = K_0 - K_a = 10.8 - 8.2 = 2.6.$$

В общем, эта величина близка к средней для этого района.

Третье землетрясение (10) такой же энергии (K_P =11.5, MS=3.7 на рис. 2) произошло 29 декабря в 21^h27^m на границе Казахстана и Кыргызстана в горной местности Заилийского Алатау в 40 км от г. Алматы, где оно ощущалось с интенсивностью I=3 балла. Большая часть его афтершоков, зарегистрированная уже в 2008 г., характеризуются слабой энергией с K_P <6.0 (табл. 9).

Таблица 9. Основные параметры главного толчка и афтершоков землетрясения 29 декабря в 21^h27^m с $K_P=11.5$

№	Дата, д м	t ₀ , ч мин с	Γι φ°, Ν	ипоцент λ°, Е	р <i>h, км</i>	K_{P}				
Основной толчок										
(10)	29.12	21 27 22.0	42.90	76.85	20	11.5				
	Афтершоки в 2008 г.									
1	02.01	06 32 28.4	42.88	76.85	15	4.0				
2	04.01	11 05 08.4	42.77	76.93	0	5.3				
3	04.01	19 03 36.5	42.80	76.92	5	5.5				
4	04.01	22 52 18.2	42.80	76.92	5	5.4				
5	30.01	07 10 08.7	42.80	76.78	15	8.4				

$N_{\underline{0}}$	Дата,	t_0 ,	Гипоцентр		$K_{ m P}$	
	д м	ч мин с	φ°, N	λ°, E	h, км	
6	31.01	15 41 22.3	42.93	76.85	20	7.1
7	02.02	16 05 02.2	42.88	77.00	15	4.2
8	04.02	18 52 00.9	43.05	76.78	10	5.6
9	06.02	22 45 47.5	42.90	76.93	5	5.3
10	06.02	22 49 16.5	42.88	76.90	5	4.3
11	14.02	21 24 26.0	42.95	76.97	20	7.5
12	21.02	03 36 51.4	42.92	76.92	10	6.9
13	22.02	16 20 14.6	42.98	77.02	10	6.5

Как следует из табл. 9, максимальный афтершок возник почти через двое суток после главного толчка и отличается по энергии на величину

$$\Delta K_a = K_0 - K_a = 11.5 - 8.4 = 3.1.$$

Землетрясение 29 декабря было зарегистрировано сетью станций сильных движений на территории г. Алматы. Были получены самые большие величины пиковых ускорений грунта на территории города после Суусамырского землетрясения 19.08.1992 г. с MS=7.5, $I_0=9-10$ баллов [10]. Цифровая сеть акселерографов сильных движений на территории г. Алма-Аты была развернута Институтом сейсмологии МОН РК совместно с Японским агентством по международному сотрудничеству (ЈІСА) в 2000 г. Первоначально сеть сильных движений состояла из 16 станций. **укомплектованных** акселерографом «Altus», тип датчика «EpiSensor» [11]. Начиная с 2005 г. начала регистрацию сейсмическая станция ИГИ НЯЦ «KNDC», укомплектованная акселерографом FBA-23, расположенная также в г. Алматы [9]. Расположение станций сильных движений на территории г. Алматы показано на рис. 6.

Puc. 6. Расположение станций сильных движений на территории г. Алматы

На рис. 7 представлена акселерограмма землетрясения 29 декабря в $21^{\rm h}27^{\rm m}$ 2007 г., полученная станцией «KNDC», максимальное значение $a^{\rm r}_{\rm max}$ из [11] наблюдалось на канале северюг и составило 33.9 $c\text{M}/c^2$, длительность очень незначительная и составляет в области больших амплитуд всего лишь $1^{\rm s}$.

Рис. 7. Акселерограммы по станции «KNDC» для землетрясения 29 декабря 2007 г. в 21^h27^m с $K_P=11.5$ [2], Ms=3.6 [3]

В табл. 10 представлены параметры записей ускорений грунта при землетрясении 29 декабря, зарегистрированного сетью станций сильных движений на территории г. Алматы.

<i>Таблица 10</i> . Параметры	ускорений	грунта і	на терр	итории	г. Алматы	при	землетрясении
29 декабря 20	07 г. с $K_{\rm P}$ =1	1.5[2], N	$I_S = 3.6$ [3]			

Станция	Δ,	Компо-	· · · · · · · · · · · · · · · · · · ·	
	км	нента	$a^{\rm r}_{\rm max}$	Τ,
			c_M/c^2	С
8MR	32	N	13.834	0.476
		E	10.626	0.200
		Z	6.475	0.147
ARZ	46	N	25.924	0.163
		Е	19.709	0.221
		Z	5.861	0.119
BGL	35	N	21.806	0.292
		Е	16.271	0.253
		Z	17.759	0.181
CSO	30	N	14.129	0.238
		Е	11.972	0.117
		Z	10.732	0.188
KNDC	36	N	33.900	0.333
		Е	32.100	0.250
		Z	17.000	0.200
KRP	38	N	19.751	0.291
		Е	24.140	0.175
		Z	9.614	0.109

Станция	Δ,	Компо-		ы записи
	км	нента	$a^{\rm r}_{\rm max}$	Τ,
			c_M/c^2	С
KRS	36	N	15.504	0.273
		Е	9.115	0.233
		Z	6.797	0.172
MDO	29	N	9.064	0.233
		Е	10.338	0.212
		Z	7.252	0.115
MRV	32	N	9.750	0.263
		Е	17.444	0.167
		Z	7.988	0.295
MTR	32	N	10.687	0.328
		Е	7.456	0.151
		Z	10.209	0.238
NKM	32	N	9.114	0.167
		Е	6.962	0.130
		Z	11.862	0.108
VRG	40	N	54.890	0.201
		Е	24.748	0.207
		Z	9.544	0.109

Литература

- 1. **Бейсенбаев Р.Т., Ли А.Н., Калмыкова Н.А., Неверова Н.П., Михайлова Н.Н., Соколова И.Н.** Казахстан // Землетрясения Северной Евразии, 2006 год. ГС РАН, 2011. С. 147–154.
- 2. Калмыкова Н.А., Неверова Н.П., Михайлова Н.Н. (отв. сост.), Бектурганова Б.Б., Гайшук Л.Н., Досайбекова С.К., Проскурина Л.П., Смирнова Е.Ю., Ульянина И.А., Мукамбаев А.С. (от СОМЭ МОН РК); Соколова И.Н. (от ИГИ НЯЦ РК). Каталог землетрясений Казахстана за 2007 г. (*N*=587). (См. Приложение к наст. сб. на CD).
- 3. Bulletin of the International Seismological Centre for 2007. Thatcham, United Kingdom: ISC, 2009.
- 4. **Бейсенбаев Р.Т., Ли А.Н., Калмыкова Н.А., Неверова Н.П.** Северный Тянь-Шань // Землетрясения Северной Евразии в 2000 году. Обнинск: ГС РАН, 2006. С. 122–125.

- 5. **Бейсенбаев Р.Т., Ли А.Н., Калмыкова Н.А., Михайлова Н.Н., Неверова Н.П., Соколова И.Н.** Казахстан // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 155–164.
- 6. **Бейсенбаев Р.Т.**, **Ли А.Н.**, **Калмыкова Н.А.**, **Неверова Н.П.**, **Михайлова Н.Н.**, **Соколова И.Н.** Казахстан // Землетрясения Северной Евразии в 2002 году. Обнинск: ГС РАН, 2008. С. 168–174.
- 7. **Бейсенбаев Р.Т.**, **Ли А.Н.**, **Калмыкова Н.А.**, **Неверова Н.П.**, **Полешко Н.Н.**, **Михайлова Н.Н.**, **Соколова И.Н.**, **Силачёва Н.В.** Казахстан // Землетрясения Северной Евразии, 2003 год. Обнинск: ГС РАН, 2009. С. 127–138.
- 8. **Бейсенбаев Р.Т., Ли А.Н., Калмыкова Н.А., Неверова Н.П., Михайлова Н.Н., Соколова И.Н.** Казахстан // Землетрясения Северной Евразии, 2004 год. Обнинск: ГС РАН, 2010. С. 130–141.
- 9. **Бейсенбаев Р.Т., Ли А.Н., Калмыкова Н.А., Неверова Н.П., Михайлова Н.Н., Соколова И.Н.** Казахстан // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 147–153.
- 10. Джанузаков К.Д., Ильясов Б.И., Муралиев А.М., Юдахин Ф.Н. Суусамырское землетрясение 19 августа 1992 года с *MS*=7.5, I_0 =9–10 (Кыргызстан) // Землетрясения Северной Евразии в 1992 году. М.: ГС РАН, 1997. С. 49–54.
- 11. **Абаканов Т. (ред.)** Каталог параметров движений грунта по данным цифровой сети станций сильных движений на территории г. Алматы за 2000–2010 гг. // Алматы: ИС МОН РК, 2011. 136 с.