## КАЗАХСТАН

## Н.А. Калмыкова<sup>1</sup>, Н.П. Неверова<sup>1</sup>, Н.Н. Михайлова<sup>2</sup>, И.Н. Соколова<sup>2</sup>

<sup>1</sup>Сейсмологическая опытно-методическая экспедиция Министерства образования и науки Республики Казахстан, г. Алматы, kalmykova@mail.kz
<sup>2</sup>Институт геофизических исследований Национального ядерного центра Министерства энергетики и минеральных ресурсов Республики Казахстан, г. Курчатов – г. Алматы, mikhailova@kndc.kz, sokolova@kndc.kz

Сейсмические наблюдения на территории Казахстана в 2007 г. проводились, как и ранее [1], силами двух организаций: Сейсмологической опытно-методической экспедиции (СОМЭ) КН МОН РК и Института геофизических исследований Национального ядерного центра (ИГИ НЯЦ) МЭМР РК. Каждая организация имеет свою сеть сейсмических наблюдений и центры обработки данных.

Сеть СОМЭ включала 29 цифровых сейсмических станций (рис. 1), список которых дан в [1]. Для более точной локализации гипоцентров землетрясений при обработке материалов СО-МЭ дополнительно привлекались бюллетени землетрясений восьми станций ОМСЭ ИС НАН Республики Кыргызстан: «Ала-Арча», «Ананьево», «Арал», «Бишкек», «Каджи-Сай», «Кен-Суу», «Пржевальск», «Эркин-Сай».

В состав сети сейсмических наблюдений НЯЦ РК входили пять трехкомпонентных станций («Актюбинск», «Боровое», «Курчатов», «Подгорное», «КNDC») и восемь сейсмических групп («Акбулак», «Маканчи», «Каратау», «Курчатов-Крест», «Чкалово», «Восточное», «Зеренда», «Боровое–АS057») (рис. 1).



Рис. 1. Схема размещения сейсмических станций на территории Казахстана в 2007 г.

1 – станции СОМЭ МОН РК; 2, 3 – трехкомпонентные станции и сейсмические группы НЯЦ РК; 4 – район «Северный Тянь-Шань». Цифрами обозначены следующие станции СОМЭ МОН РК: 1 – «Чимкент»-СНМ, 2 – «Боролдай»-BRL, 3 – «Южная»-YUG, 4 – «Жабаглы»-JBG, 5 – «Джамбул»-DJB, 6 – «Мерке»-МRК, 7 – «Капал-Арасан»-КРА, 8 – «Семипалатинск»-SEM, 9 – «Зайсан»-ZSN.

Коды станций и сейсмических групп (array) НЯЦ РК: пять станций – BRVK-«Боровое», АКТО-«Актюбинск», KURK-«Курчатов», PDG-«Подгорное», KNDC-«KNDC»; восемь array – ZRNK-«Зеренда», CHKZ-«Чкалово», VOS- «Восточное», KUR-«Курчатов-Крест», МКАR-«Маканчи», ККАR-«Каратау», BVAR-«Боровое», ABKAR- «Акбулак».

Уровень представительной регистрации землетрясений, по сравнению с таковым в 2006 г. [1], не изменился. По-прежнему на всей территории Северного Тянь-Шаня минимальный представительный энергетический класс  $K_{\min}$ =7.5, только в центральной части Северного Тянь-Шаня обеспечивается более низкий ( $K_{\min}$ =6.0) порог энергии представительно регистрируемых землетрясений. На всей территории Казахстана не могут быть пропущены землетрясения с  $K_{\min}$ =9 и более.

Методики определения основных параметров землетрясений в центрах обработки ИГИ НЯЦ и СОМЭ, по сравнению с таковой в [1], не изменились.

Сводный каталог землетрясений Казахстана, включая район «Северный Тянь-Шань», приведен в [2]. Всего в него включено 590 землетрясений с  $K_P$ =6.6–13.4, из них 122 толчка с  $K_P$ ≥8.6 представлены на карте эпицентров (рис. 2), на которой пронумерованы 10 событий с  $K_P$ ≥10.6 и рамкой выделен традиционно район «Северный Тянь-Шань».



Рис. 2. Карта эпицентров более сильных (К<sub>Р</sub>≥8.6) землетрясений Казахстана за 2007 г.

Пронумерованы сильные (K<sub>P</sub>≥10.6) землетрясения в соответствии с графой 2 каталога [2]; рамкой выделен район «Северный Тянь-Шань».

Максимальным в районе явилось землетрясение № 6, отмеченное 9 октября в  $16^{h}00^{m}$  с  $K_{P}=12.7$ ,  $M_{S}=4.2$  [2] у северо-западных границ оз. Иссык-Куль и вызвавшее в г. Алматы сотрясения с интенсивностью I=4 балла. Вне района, но на территории Казахстана, максимальное ( $K_{P}=10.8$ ) событие № 8 локализовано на востоке, у границ с Узбекистаном, которое ничем себя не проявило.

И, наконец, вне границ Казахстана реализовалось самое сильное ( $K_{\rm P}$ =13.4 [2], Mw=5.6<sub>GCMT</sub> [3]) землетрясение года в провинции Северный Синьцзян, Китай, зарегистрированное 20 июля в 10<sup>h</sup>06<sup>m</sup> с эпицентром в Синьцзян-Уйгурском автономном районе Китая (№ 4 на рис. 2). Землетрясение вызвало многочисленные разрушения в населенном пункте Китая Текес («повреждены, по меньшей мере, 2120 домов и 4 моста» [3-NEIC]), ощущалось на территории Казахстана в пос. Нарынкол ( $\Delta$ =184 км) с интенсивностью *I*=4 балла, в г. Алматы ( $\Delta$ =448 км) – 2–3 балла и в г. Талдыкурган ( $\Delta$ =392 км) – 2 балла. Имеется решение механизма его очага по данным агентств GCMT и NEIC, приведенное в табл. 1.

*Таблица 1.* Параметры механизма очага землетрясения 20 июля 2007 г. в 10<sup>h</sup>06<sup>m</sup> с *Mw*=5.6

| Агент- | Дата, | $t_0,$     | h*, | Маг | ниту | уды | Ks   | К <sub>S</sub> Оси главных напряжений |     |    |     | Н  | ода. | пьныс | е пло | скос | ти  | Ис- |      |      |
|--------|-------|------------|-----|-----|------|-----|------|---------------------------------------|-----|----|-----|----|------|-------|-------|------|-----|-----|------|------|
| ство   | д м   | ч мин с    | км  | Mw  | MS   | Ms  |      |                                       | Т   |    | Ν   |    | Р    |       | NP    | !    |     | NP2 | 2    | точ- |
|        |       |            |     |     |      |     |      | PL                                    | AZM | PL | AZM | PL | AZM  | STK   | DP    | SLIP | STK | DP  | SLIP | ник  |
| 1      | 2     | 3          | 4   | 5   | 6    | 7   | 8    | 9                                     | 10  | 11 | 12  | 13 | 14   | 15    | 16    | 17   | 18  | 19  | 20   | 21   |
| NEIC   | 20.07 | 10 06 53.9 | 10* | 5.5 | 5.4  | 5.3 | 13.4 | 43                                    | 294 | 41 | 78  | 19 | 185  | 320   | 45    | 160  | 65  | 76  | 47   | [3]  |
| HRVD   | 20.07 | 10 06 53.9 | 25* | 5.6 | 5.4  | 5.3 | 13.4 | 20                                    | 282 | 65 | 65  | 14 | 187  | 324   | 66    | 175  | 55  | 86  | 24   | [3]  |

Примечание. В графе 4 даны глубины гипоцентра, заложенные в расчет механизмов.

Стереограммы этих двух решений представлены на рис. 3. Как видим, решения достаточно близки между собой – в обоих случаях превалируют почти меридиональные напряжения сжатия, имеющие меньший наклон к горизонту, по сравнению с близширотно направленными напряжениями растяжения. Тип движения в очаге по решению GCMT – почти чистый сдвиг, правосторонний – по *NP1* и левосторонний – по *NP2*. В решении NEIC также правосторонний сдвиг по плоскости *NP1*, несколько осложненный компонентами взброса, а по крутой плоскости *NP2* – взброс с компонентами левостороннего сдвига.



Рассмотрим более детально сейсмичность района Северный Тянь-Шань (с координатами φ=41.8–45.0°N, λ=73.0–80.0°E) и всего Казахстана в отдельности.

За 2007 г. в районе «Северный Тянь-Шань» было зарегистрировано и локализовано 516 землетрясений с *К*<sub>Р</sub>≥6.6. Карта их эпицентров представлена на рис. 4. Распределение землетрясений по энергетическим классам *К*<sub>Р</sub> для Северного Тянь-Шаня дано в табл. 2.

*Таблица* 2. Распределение землетрясений по энергетическим классам и суммарная выделившаяся сейсмическая энергия Σ*E* на Северном Тянь-Шане

| K | 7   | 8  | 9  | 10 | 11 | 12 | 13 | $N_{\Sigma}$ | ΣΕ, Дж                |
|---|-----|----|----|----|----|----|----|--------------|-----------------------|
| Ν | 363 | 95 | 37 | 15 | 3  | 2  | 1  | 516          | $12.46 \cdot 10^{12}$ |

Величина выделившейся суммарной сейсмической энергии землетрясений, зарегистрированных на территории Северного Тянь-Шаня в 2007 г. (табл. 2), понизилась, по сравнению с тем же параметром за 2006 г. [1], почти на порядок.



Рис. 4. Карта эпицентров землетрясений Северного Тянь-Шаня за 2007 г.

1 – энергетический класс *К*<sub>P</sub>; 2, 3 – сейсмическая станция Казахстана и Кыргызстана соответственно.

Сейсмическая активность  $A_{10}$ , приведенная в изолиниях на рис. 5, в среднем по району снизилась с величины  $A_{10}=0.089$  в 2006 г. [1] до отметки  $A_{10}=0.070$  в 2007 г., но остается выше уровня последних лет (табл. 3).

| Год      | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | Среднее |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
| $A_{10}$ | 0.050 | 0.045 | 0.032 | 0.045 | 0.045 | 0.084 | 0.089 | 0.070 | 0.062   |
| γ        | 0.43  | 0.43  | 0.54  | 0.48  | 0.48  | 0.44  | 0.44  | 0.47  | 0.46    |
| Источник | [4]   | [5]   | [6]   | [7]   | [8]   | [9]   | [1]   |       |         |

*Таблица 3.* Значения  $A_{10}$  = и  $\gamma$  на Северном Тянь-Шане в 2000–2007 гг.



Рис. 5. Карта сейсмической активности A<sub>10</sub> территории Северного Тянь-Шаня за 2007 г.

Наиболее активной областью Северного Тянь-Шаня является центральная и восточная часть региона, где высокая сейсмичность наблюдается в хребтах Кунгей и Заилийского Алатау. Именно здесь, на границе Казахстана и Кыргызстана, 9 октября в  $16^{h}00^{m}$  произошло самое сильное ( $K_{\rm P}$ =12.7, MS=4.2) землетрясение (6) на Северном Тянь-Шане. Характерной особенностью данного землетрясения является слабая афтершоковая активность: всего четыре толчка 6–7 класса в течение 16 дней. Если учесть повышенную сейсмоактивность этой зоны, то, кроме землетрясения 6-го класса, последующего через  $14^{m}$  после «главного», остальные события (одно – 13 октября и два – 25 октября), условно являясь афтершоками, вполне можно отнести к естественной сейсмичности (табл. 4).

*Таблица* 4. Основные параметры главного толчка и афтершоков землетрясения 9 октября в 16<sup>h</sup>00<sup>m</sup> с K<sub>P</sub>=12.7

| №   | Дата,<br>дм | t <sub>0</sub> ,<br>ч мин с | Ги<br>ф°, N | поцентр<br>λ°, Е | )<br>h, км | K <sub>P</sub> | N⁰ | Дата,<br>дм | t <sub>0</sub> ,<br>ч мин с | Ги<br>φ°, N | поцент<br>λ°, Е | р<br>h, км | $K_{ m P}$ |
|-----|-------------|-----------------------------|-------------|------------------|------------|----------------|----|-------------|-----------------------------|-------------|-----------------|------------|------------|
|     |             | Основно                     | ой толчс    | ж                |            |                | 2  | 13.10       | 20 57 50.4                  | 42.93       | 77.78           | 5          | 6.2        |
| (4) | 09.10       | 16 00 41.1                  | 42.88       | 77.78            | 15         | 12.7           | 3  | 25.10       | 08 05 09.6                  | 42.83       | 77.80           | 0          | 5.6        |
|     |             | Афте                        | ршоки       |                  |            |                | 4  | 25.10       | 13 06 25.2                  | 42.92       | //./8           | 10         | 6.7        |
| 1   | 09.10       | 16 14 57.2                  | 42.95       | 77.80            | 5          | 6.3            |    |             |                             |             |                 |            |            |

Примечание. Здесь и в аналогичных таблицах ниже номер главного толчка типа (4) совпадает с каталогом [2].

Землетрясения (3) и (5) на рис. 2 зарегистрированы 6 июня в  $11^{h}09^{m}$  (Кыргызстан, № 3 на рис. 2) и 2 сентября в  $15^{h}30^{m}$ . Эпицентр землетрясения 6 июня с  $K_{P}=12.3$ , MS=4.7 [2] находился в горной области Киргизского хребта на расстоянии  $145 \kappa m$  от г. Алматы, где интенсивность сотрясений достигала 3 баллов. Землетрясение имело 22 афтершока с  $K_{P}=5.4-9.3$ , причем восемь из них произошли в течение первых суток (табл. 5).

| N⁰ | Дата, | <i>t</i> <sub>0</sub> , | Гипоцен       | тр    | $K_{ m P}$ | N⁰ | Дата, | $t_0,$     | Гипо      | оцентр       | $K_{ m P}$ |
|----|-------|-------------------------|---------------|-------|------------|----|-------|------------|-----------|--------------|------------|
|    | дм    | ч мин с                 | φ°, Ν   λ°, Ε | һ, км |            |    | дм    | ч мин с    | φ°, N   λ | .°, Е   h, к | м          |
|    |       | Основн                  | ой толчок     |       |            | 10 | 07.06 | 17 50 10.0 | 42.58 73  | 5.40 5       | 9.3        |
| 3  | 06.06 | 11 09 26.1              | 42.55 75.45   | 5     | 12.3       | 11 | 08.06 | 04 44 10.5 | 42.60 73  | 5.37 10      | 6.9        |
|    |       | A dam                   | nuoru         |       | I          | 12 | 08.06 | 09 53 02.1 | 42.62 73  | 5.32 10      | 6          |
|    | 1     | Αψι                     | ершоки        |       |            | 13 | 09.06 | 17 29 33.9 | 42.57 7   | 5.35 5       | 6.4        |
| 1  | 06.06 | 11 29 51.9              | 42.53 75.35   | 20    | 7.7        | 14 | 12.06 | 20 24 22.5 | 42.65 7   | 5.33 10      | 6.7        |
| 2  | 06.06 | 11 34 22.8              | 42.58 75.30   | 10    | 6.6        | 15 | 14.06 | 22 16 28.3 | 42.70 7   | 5.22 15      | 6.9        |
| 3  | 06.06 | 15 09 19.3              | 42.57 75.38   | 15    | 6.8        | 16 | 14.06 | 22 46 19.5 | 42.60 7   | 5.40 10      | 6.4        |
| 4  | 06.06 | 15 41 30.3              | 42.58 75.48   | 0     | 7.6        | 17 | 22.06 | 02 50 40.5 | 42.60 7   | 5.25 15      | 8.2        |
| 5  | 06.06 | 16 08 56.0              | 42.58 75.37   | 10    | 6.8        | 18 | 23.06 | 02 50 00.8 | 42.57 7   | 5.40 15      | 6.5        |
| 6  | 06.06 | 17 13 07.0              | 42.58 75.30   | 15    | 6.6        | 19 | 24.06 | 17 04 12.7 | 42.60 7   | 5.33 5       | 6.5        |
| 7  | 06.06 | 18 30 08.8              | 42.62 75.55   | 0     | 5.4        | 20 | 25.06 | 00 34 35.8 | 42.57 7   | 5.40 5       | 8.0        |
| 8  | 06.06 | 18 37 03.0              | 42.58 75.32   | 15    | 6.2        | 21 | 30.06 | 12 48 35 1 | 42.57 7   | 5 35 10      | 6.6        |
| 9  | 07.06 | 07 47 37.4              | 42.62 75.18   | 20    | 6.6        | 22 | 30.06 | 18 34 35.3 | 42.52 7   | 5.33 15      | 6.0        |

*Таблица* 5. Основные параметры главного толчка и афтершоков землетрясения 6 июня в 11<sup>h</sup>09<sup>m</sup> с K<sub>P</sub>=12.3

Максимальный афтершок, зарегистрированный 7 июня в  $17^{h}50^{m}$ , т.е. через  $30^{h}$  после главного толчка, имел  $K_{P}$ =9.3, тогда энергетическая ступень между главным толчком и максимальным афтершоком в этой серии составила

$$\Delta K_{\rm a} = K_0 - K_{\rm a} = 12.3 - 9.3 = 3.0.$$

Землетрясение (5) 2 сентября с  $K_P$ =12.4, MS=4.1 произошло в отрогах Джунгарского Алатау и ощущалось в г. Талдыкурган с интенсивностью I=3–4 балла на расстоянии 9 км, в г. Алматы (200 км) – 3 балла. В течение первых суток зарегистрировано 17 афтершоков 5–8-х энергетических классов, всего последовало 29 толчков с энергией, не превышающей  $K_P$ =8 (табл. 6).

*Таблица 6.* Основные параметры главного толчка и афтершоков землетрясения 2 сентября в 15<sup>h</sup>30<sup>m</sup> с *K*<sub>P</sub>=12.3

| N⁰  | Дата, | $t_0,$     | Ги      | поцент | р     | $K_{ m P}$ |
|-----|-------|------------|---------|--------|-------|------------|
|     | д м   | ч мин с    | φ°, Ν   | λ°, Ε  | һ, км |            |
|     |       | Основн     | юй толч | юк     |       |            |
| (5) | 02.09 | 15 30 36.6 | 44.65   | 78.17  | 15    | 12.4       |
|     |       | Афт        | ершоки  |        |       |            |
| 1   | 02.09 | 15 46 13.6 | 44.58   | 78.37  | 10    | 7.3        |
| 2   | 02.09 | 16 02 01.4 | 44.57   | 78.28  | 10    | 5.5        |
| 3   | 02.09 | 16 12 19.6 | 44.60   | 78.28  | 20    | 6.6        |
| 4   | 02.09 | 16 36 33.0 | 44.63   | 78.28  | 20    | 6.3        |
| 5   | 02.09 | 18 34 02.3 | 44.60   | 78.30  | 15    | 6.3        |
| 6   | 02.09 | 19 30 49.4 | 44.63   | 78.25  | 20    | 6.3        |
| 7   | 02.09 | 20 19 09.3 | 44.60   | 78.33  | 15    | 5.9        |
| 8   | 02.09 | 20 37 02.8 | 44.62   | 78.30  | 15    | 6.0        |
| 9   | 02.09 | 22 03 16.3 | 44.62   | 78.32  | 15    | 5.8        |
| 10  | 03.09 | 00 10 56.9 | 44.58   | 78.25  | 15    | 6.6        |
| 11  | 03.09 | 00 25 10.0 | 44.60   | 78.30  | 5     | 5.1        |
| 12  | 03.09 | 00 54 54.1 | 44.60   | 78.28  | 20    | 6.5        |
| 13  | 03.09 | 05 51 57.1 | 44.65   | 78.27  | 20    | 6.0        |

| N⁰ | Дата, | $t_0,$     | Ги    | поцентј | 0     | $K_{\rm P}$ |
|----|-------|------------|-------|---------|-------|-------------|
|    | д м   | ч мин с    | φ°, N | λ°, Ε   | һ, км |             |
| 14 | 03.09 | 13 19 58.4 | 44.63 | 78.30   | 20    | 6.3         |
| 15 | 03.09 | 13 30 57.4 | 44.62 | 78.27   | 20    | 7.1         |
| 16 | 04.09 | 06 43 52.2 | 44.60 | 78.33   | 5     | 5.8         |
| 17 | 04.09 | 07 12 17.7 | 44.58 | 78.27   | 20    | 6.3         |
| 18 | 04.09 | 13 55 35.2 | 44.62 | 78.27   | 10    | 7.6         |
| 19 | 05.09 | 05 43 17.6 | 44.57 | 78.35   | 20    | 6.0         |
| 20 | 05.09 | 22 12 42.0 | 44.63 | 78.28   | 20    | 6.8         |
| 21 | 09.09 | 21 20 18.0 | 44.65 | 78.35   | 10    | 6.9         |
| 22 | 10.09 | 05 02 52.2 | 44.58 | 78.33   | 20    | 6.0         |
| 23 | 16.09 | 22 21 56.6 | 44.65 | 78.33   | 15    | 5.9         |
| 24 | 18.09 | 08 08 51.8 | 44.63 | 78.28   | 20    | 7.0         |
| 25 | 22.09 | 20 44 49.3 | 44.62 | 78.3    | 20    | 6.8         |
| 26 | 23.09 | 08 09 41.5 | 44.60 | 78.23   | 15    | 7.6         |
| 27 | 27.09 | 22 36 48.7 | 44.62 | 78.23   | 20    | 7.0         |
| 28 | 15.10 | 21 21 52.2 | 44.62 | 78.28   | 20    | 6.2         |
| 29 | 24.10 | 09 05 18.4 | 44.55 | 78.23   | 20    | 6.0         |
|    |       | 1          |       |         | 1     |             |

В этой серии афтершоков максимальный из них, отмеченный почти двое суток спустя – 4 сентября в  $13^{h}55^{m}$  – был почти на два порядка слабее такового в предыдущей серии и равен  $K_{P}$ =7.6, тогда энергетическая ступень между главным толчком и максимальным афтершоком в этой серии составила

$$\Delta K_{\rm a} = K_0 - K_{\rm a} = 12.4 - 7.6 = 4.8.$$

Чем выше энергетическая ступень, тем меньшая доля накопленной в очаговой зоне упругой энергии высвободилась в ходе афтершокового процесса.

Землетрясения (1) и (2) были зарегистрированы в пределах горной системы Терскей-Алатау на территории Кыргызстана – 25 января в  $15^{h}36^{m}$  с  $K_{p}=10.6$ , MS=2.5 и 7 марта в  $20^{h}13^{m}$  с  $K_{p}=10.8$ , MS=3.1 (рис. 2).

Для землетрясения (1) 25 января представляет интерес развитие событий в области его очага ( $\varphi$ =42.13°,  $\lambda$ =78.00°). Ранее, а именно 2 января в 04<sup>h</sup>06<sup>m</sup>, произошло землетрясение с  $K_P$ =10.0, его эпицентр находился  $\cong$  в 5 км на север от эпицентра землетрясения 25 января. За ним последовало 13 афтершоков с  $K_P$ =5.8–7.8, которые следует считать форшоками перед событием 25 января, после которого зарегистрированы 24 афтершока (табл. 7).

*Таблица* 7. Основные параметры форшоков, главного толчка и афтершоков землетрясения 25 января в 15<sup>h</sup>36<sup>m</sup> с *K*<sub>P</sub>=10.6

| N⁰  | Дата, | $t_0,$     | Ги      | поцентр       | )     | $K_{ m P}$ | N⁰ | Дата, | <i>t</i> <sub>0</sub> , | Ги    | поцент        | р     | $K_{ m P}$ |
|-----|-------|------------|---------|---------------|-------|------------|----|-------|-------------------------|-------|---------------|-------|------------|
|     | д м   | ч мин с    | φ°, N   | <b>λ°</b> , Ε | h, км |            |    | д м   | ч мин с                 | φ°, N | <b>λ°</b> , Ε | һ, км |            |
|     |       | Φ0         | ршоки   |               |       |            | 4  | 25.01 | 20 12 52.6              | 42.23 | 78.02         | 0     | 5.8        |
| 1   | 02.01 | 01 06 54.7 | 42.28   | 78.00         | 10    | 10.0       | 5  | 26.01 | 00 42 20.4              | 42.15 | 77.98         | 20    | 7.2        |
| 2   | 06.01 | 05 43 59.1 | 42.15   | 78.02         | 10    | 7.2        | 6  | 26.01 | 00 44 46.4              | 42.22 | 77.93         | 20    | 7.5        |
| 3   | 06.01 | 06 33 30 3 | 42.3    | 77 98         | 0     | 6.5        | 7  | 26.01 | 04 12 22.6              | 42.22 | 77.98         | 10    | 6.5        |
| 4   | 06.01 | 15 49 57 3 | 42.18   | 78.02         | 10    | 7.6        | 8  | 26.01 | 10 03 14.4              | 42.15 | 77.97         | 15    | 8.7        |
| 5   | 07.01 | 05 24 11 7 | 42.20   | 78.00         | 5     | 67         | 9  | 26.01 | 21 30 19.9              | 42.23 | 77.97         | 10    | 8.1        |
| 6   | 07.01 | 07 44 16 9 | 42 27   | 77.98         | 10    | 5.8        | 10 | 27.01 | 04 50 19.8              | 42.22 | 77.97         | 10    | 7.2        |
| 7   | 07.01 | 16 20 53 9 | 42.13   | 77.93         | 20    | 73         | 11 | 27.01 | 21 52 26.6              | 42.22 | 78.05         | 10    | 5.8        |
| 8   | 08.01 | 02 56 37 5 | 42.23   | 77 97         | 5     | 7.8        | 12 | 28.01 | 22 22 28.5              | 42.25 | 78.00         | 10    | 6.3        |
| 9   | 08.01 | 03 52 13 0 | 42.25   | 77 97         | 10    | 6.6        | 13 | 29.01 | 11 21 19.7              | 42.25 | 78.00         | 10    | 6.6        |
| 10  | 08.01 | 22 08 05 3 | 42.3    | 77 97         | 0     | 6.6        | 14 | 01.02 | 17 10 31.2              | 42.20 | 77.98         | 20    | 6.5        |
| 11  | 15.01 | 06 11 41 1 | 42.20   | 77.98         | Õ     | 6.1        | 15 | 01.02 | 20 55 14.1              | 42.25 | 78.05         | 20    | 7.0        |
| 12  | 22.01 | 04 11 22 4 | 42.27   | 78.03         | 5     | 7.8        | 16 | 04.02 | 11 36 29.8              | 42.17 | 77.93         | 10    | 6.1        |
| 12  | 22.01 | 05 28 01 2 | 42.17   | 77.98         | 15    | 6.8        | 17 | 04.02 | 19 28 56.8              | 42.08 | 78.02         | 10    | 8.2        |
| 14  | 23.01 | 15 29 16 8 | 42.20   | 77.92         | 0     | 6.2        | 18 | 04.02 | 22 54 39.4              | 42.20 | 78.00         | 10    | 8.9        |
| 17  | 24.01 | 15 27 10.0 |         | 11.92         | 0     | 0.2        | 19 | 24.02 | 06 53 02.6              | 42.18 | 77.98         | 5     | 6.3        |
|     | 1     | Основн     | юи толч | юк            |       |            | 20 | 24.02 | 14 25 25.9              | 42.17 | 78.03         | 20    | 8.6        |
| (1) | 25.01 | 15 36 22.1 | 42.13   | 78.00         | 10    | 10.6       | 21 | 26.02 | 21 19 10.0              | 42.18 | 78.03         | 10    | 7.2        |
|     |       | Афт        | ершоки  |               |       |            | 22 | 01.03 | 00 51 45.3              | 42.20 | 78.03         | 5     | 6.8        |
| 1   | 25.01 | 15 45 57.8 | 42.18   | 78.02         | 10    | 6.5        | 23 | 02.03 | 05 33 59.6              | 42.17 | 78.03         | 15    | 6.6        |
| 2   | 25.01 | 15 54 38.1 | 42.17   | 77.98         | 15    | 8.4        | 24 | 04.03 | 16 29 59.1              | 42.22 | 78.05         | 10    | 6.4        |
| 3   | 25.01 | 18 36 42.0 | 42.25   | 77.98         | 5     | 5.9        |    |       |                         |       |               |       |            |

В этой серии различие в энергетических классах максимального форшока, главного толчка и максимального афтершока составляет

$$\Delta K_{\rm \phi} = K_0 - K_{\rm \phi} = 10.6 - 10.0 = 0.6.$$

$$\Delta K_{\rm a} = K_0 - K_{\rm a} = 10.6 - 8.7 = 1.9.$$

Столь малое значение первой ступени  $\Delta K_{\phi} = 0.6$  и небольшой перевес во второй –  $\Delta K_{a} = 1.9$  и невысокое положение главного толчка свидетельствует о том, что вся совокупность носит, скорее всего, роевый характер. Действительно, энергетические всплески на уровнях  $K_{\rm P} = 10.0, 10.6, 8.7,$  достаточно близкими в совокупности, являются явными чертами роя землетрясений.

Землетрясение (2) 7 марта в  $20^{h}13^{m}$  с  $K_{P}$ =10.8, *MS*=3.1 локализовано на востоке оз. Иссык-Куль. Немногочисленные его афтершоки приведены в табл. 8.

| № | Дата,<br>∂ м | t <sub>0</sub> ,<br>ч мин с | Ги<br>φ°, N | поцентј<br>λ°, Е | о<br>h, км | $\mathcal{K}_{\mathrm{P}}$ | N⁰ | Дата,<br>∂ м | t <sub>0</sub> ,<br>ч мин с | <u></u><br>Γи<br>φ°, N | поцентр<br>λ°, Е | )<br>h, км | $K_{ m P}$ |
|---|--------------|-----------------------------|-------------|------------------|------------|----------------------------|----|--------------|-----------------------------|------------------------|------------------|------------|------------|
|   |              | Основ                       | вной тол    | ічок             |            |                            | 2  | 09.03        | 09 40 30.7                  | 42.78                  | 78.48            | 0          | 6.6        |
| 3 | 07.03        | 20 13 33.7                  | 42.65       | 78.43            | 5          | 10.8                       | 3  | 12.03        | 20 18 44.6                  | 42.72                  | 78.48            | 5          | 5.8        |
|   |              | Аф                          | тершок      | И                |            |                            | 45 | 16.03        | 18 44 56.5                  | 42.67                  | 78.4<br>78.37    | 5<br>10    | 7.9<br>4 9 |
| 1 | 07.03        | 22 43 48.8                  | 42.67       | 78.47            | 20         | 8.2                        |    | 00.01        | 25 15 01.5                  | 12:02                  | 10.57            | 10         | 1.5        |

*Таблица 8.* Основные параметры главного толчка и афтершоков землетрясения 7 марта в 20<sup>h</sup>13<sup>m</sup> с K<sub>P</sub>=10.8

Для этой серии первый афтершок, возникший через  $2^{h}30^{m}$ , является максимальным с  $K_{P}$ =8.2, со ступенью, равной

$$\Delta K_{\rm a} = K_0 - K_{\rm a} = 10.8 - 8.2 = 2.6.$$

В общем, эта величина близка к средней для этого района.

Третье землетрясение (10) такой же энергии ( $K_P$ =11.5, MS=3.7 на рис. 2) произошло 29 декабря в 21<sup>h</sup>27<sup>m</sup> на границе Казахстана и Кыргызстана в горной местности Заилийского Алатау в 40 км от г. Алматы, где оно ощущалось с интенсивностью *I*=3 балла. Большая часть его афтершоков, зарегистрированная уже в 2008 г., характеризуются слабой энергией с  $K_P$ <6.0 (табл. 9).

*Таблица 9.* Основные параметры главного толчка и афтершоков землетрясения 29 декабря в 21<sup>h</sup>27<sup>m</sup> с *K*<sub>P</sub>=11.5

| _    |              |                             |             |                 |                   |                |    |              |                             |             |                 |                   |                |
|------|--------------|-----------------------------|-------------|-----------------|-------------------|----------------|----|--------------|-----------------------------|-------------|-----------------|-------------------|----------------|
| №    | Дата,<br>д м | t <sub>0</sub> ,<br>ч мин с | Γι<br>φ°, Ν | поцент<br>λ°, Е | р<br><i>h, км</i> | K <sub>P</sub> | N⁰ | Дата,<br>д м | t <sub>0</sub> ,<br>ч мин с | Γι<br>φ°, Ν | поцент<br>λ°, Е | р<br><i>h, км</i> | К <sub>Р</sub> |
|      |              | Основ                       | вной тол    | чок             |                   |                | 6  | 31.01        | 15 41 22.3                  | 42.93       | 76.85           | 20                | 7.1            |
| (10) | 29.12        | 21 27 22.0                  | 42.90       | 76.85           | 20                | 11.5           | 7  | 02.02        | 16 05 02.2                  | 42.88       | 77.00           | 15                | 4.2            |
|      |              | 1 demonstra                 |             | 000 -           |                   | I              | 8  | 04.02        | 18 52 00.9                  | 43.05       | 76.78           | 10                | 5.6            |
|      |              | Афтерп                      | юки в 2     | 008 F.          | r                 |                | 9  | 06.02        | 22 45 47.5                  | 42.90       | 76.93           | 5                 | 5.3            |
| 1    | 02.01        | 06 32 28.4                  | 42.88       | 76.85           | 15                | 4.0            | 10 | 06.02        | 22 49 16.5                  | 42.88       | 76.90           | 5                 | 4.3            |
| 2    | 04.01        | 11 05 08.4                  | 42.77       | 76.93           | 0                 | 5.3            | 11 | 14.02        | 21 24 26.0                  | 42.95       | 76.97           | 20                | 7.5            |
| 3    | 04.01        | 19 03 36.5                  | 42.80       | 76.92           | 5                 | 5.5            | 12 | 21.02        | 03 36 51.4                  | 42.92       | 76.92           | 10                | 6.9            |
| 4    | 04.01        | 22 52 18.2                  | 42.80       | 76.92           | 5                 | 5.4            | 13 | 22.02        | 16 20 14.6                  | 42.98       | 77.02           | 10                | 6.5            |
| 5    | 30.01        | 07 10 08.7                  | 42.80       | 76.78           | 15                | 8.4            |    |              | 10 20 1 1.0                 |             |                 | 10                | 0.0            |
|      |              |                             |             |                 |                   |                | •  |              |                             |             |                 |                   |                |

Как следует из табл. 9, максимальный афтершок возник почти через двое суток после главного толчка и отличается по энергии на величину

$$\Delta K_{\rm a} = K_0 - K_{\rm a} = 11.5 - 8.4 = 3.1$$

Землетрясение 29 декабря было зарегистрировано сетью станций сильных движений на территории г. Алматы. Были получены самые большие величины пиковых ускорений грунта на территории города после Суусамырского землетрясения 19.08.1992 г. с MS=7.5, I<sub>0</sub>=9-10 баллов [10]. Цифровая сеть акселерографов сильных движений на территории г. Алма-Аты была развернута Институтом сейсмологии МОН РК совместно с Японским агентством по международному сотрудничеству (ЛСА) в 2000 г. Первоначально сеть сильных движений состояла из 16 станший. *укомплектованных* акселерографом «Altus», тип датчика «EpiSensor» [11]. Начиная с 2005 г. начала регистрацию сейсмическая станция ИГИ НЯЦ «KNDC», укомплектованная акселерографом FBA-23, расположенная также в г. Алматы [9]. Расположение станций сильных движений на территории г. Алматы показано на рис. 6.



*Рис. 6.* Расположение станций сильных движений на территории г. Алматы

На рис. 7 представлена акселерограмма землетрясения 29 декабря в  $21^{h}27^{m}$  2007 г., полученная станцией «KNDC», максимальное значение  $a^{r}_{max}$  из [11] наблюдалось на канале северюг и составило 33.9 *см/с*<sup>2</sup>, длительность очень незначительная и составляет в области больших амплитуд всего лишь 1<sup>s</sup>.



*Рис.* 7. Акселерограммы по станции «KNDC» для землетрясения 29 декабря 2007 г. в 21<sup>h</sup>27<sup>m</sup> с *K*<sub>P</sub>=11.5 [2], *Ms*=3.6 [3]

В табл. 10 представлены параметры записей ускорений грунта при землетрясении 29 декабря, зарегистрированного сетью станций сильных движений на территории г. Алматы.

*Таблица* 10. Параметры ускорений грунта на территории г. Алматы при землетрясении 29 декабря 2007 г. с *К*<sub>P</sub>=11.5 [2], *Ms*=3.6 [3]

| Сточния |    | Vouro  | Парамот          |           | Столица |    | Vouro   | Парамот        |        |
|---------|----|--------|------------------|-----------|---------|----|---------|----------------|--------|
| Станция | Δ, | Компо- | парамец          | лы записи | Станция | Δ, | KOMIIO- | парамет        | записи |
|         | КМ | нента  | $a'_{\rm max_2}$ | Τ,        |         | КМ | нента   | $a'_{\rm max}$ | Τ,     |
|         |    |        | $cM/c^2$         | С         |         |    |         | $cM/c^2$       | С      |
| 8MR     | 32 | N      | 13.834           | 0.476     | KRS     | 36 | N       | 15.504         | 0.273  |
|         |    | E      | 10.626           | 0.200     |         |    | E       | 9.115          | 0.233  |
|         |    | Z      | 6.475            | 0.147     |         |    | Z       | 6.797          | 0.172  |
| ARZ     | 46 | N      | 25.924           | 0.163     | MDO     | 29 | N       | 9.064          | 0.233  |
|         |    | Е      | 19.709           | 0.221     |         |    | E       | 10.338         | 0.212  |
|         |    | Z      | 5.861            | 0.119     |         |    | Z       | 7.252          | 0.115  |
| BGL     | 35 | N      | 21.806           | 0.292     | MRV     | 32 | N       | 9.750          | 0.263  |
|         |    | E      | 16.271           | 0.253     |         |    | E       | 17.444         | 0.167  |
|         |    | Z      | 17.759           | 0.181     |         |    | Z       | 7.988          | 0.295  |
| CSO     | 30 | N      | 14.129           | 0.238     | MTR     | 32 | N       | 10.687         | 0.328  |
|         |    | Е      | 11.972           | 0.117     |         |    | E       | 7.456          | 0.151  |
|         |    | Z      | 10.732           | 0.188     |         |    | Z       | 10.209         | 0.238  |
| KNDC    | 36 | N      | 33.900           | 0.333     | NKM     | 32 | Ν       | 9.114          | 0.167  |
|         |    | Е      | 32.100           | 0.250     |         |    | E       | 6.962          | 0.130  |
|         |    | Z      | 17.000           | 0.200     |         |    | Z       | 11.862         | 0.108  |
| KRP     | 38 | N      | 19.751           | 0.291     | VRG     | 40 | N       | 54.890         | 0.201  |
|         |    | Е      | 24.140           | 0.175     |         |    | Е       | 24.748         | 0.207  |
|         |    | Z      | 9.614            | 0.109     |         |    | Z       | 9.544          | 0.109  |

## Литература

- 1. Бейсенбаев Р.Т., Ли А.Н., Калмыкова Н.А., Неверова Н.П., Михайлова Н.Н., Соколова И.Н. Казахстан // Землетрясения Северной Евразии, 2006 год. ГС РАН, 2011. С. 147–154.
- 2. Калмыкова Н.А., Неверова Н.П., Михайлова Н.Н. (отв. сост.), Бектурганова Б.Б., Гайшук Л.Н., Досайбекова С.К., Проскурина Л.П., Смирнова Е.Ю., Ульянина И.А., Мукамбаев А.С. (от СОМЭ МОН РК); Соколова И.Н. (от ИГИ НЯЦ РК). Каталог землетрясений Казахстана за 2007 г. (*N*=587). (См. Приложение к наст. сб. на CD).

3. Bulletin of the International Seismological Centre for 2007. - Thatcham, United Kingdom: ISC, 2009.

4. Бейсенбаев Р.Т., Ли А.Н., Калмыкова Н.А., Неверова Н.П. Северный Тянь-Шань // Землетрясения Северной Евразии в 2000 году. – Обнинск: ГС РАН, 2006. – С. 122–125.

- 5. Бейсенбаев Р.Т., Ли А.Н., Калмыкова Н.А., Михайлова Н.Н., Неверова Н.П., Соколова И.Н. Казахстан // Землетрясения Северной Евразии в 2001 году. Обнинск: ГС РАН, 2007. С. 155–164.
- 6. Бейсенбаев Р.Т., Ли А.Н., Калмыкова Н.А., Неверова Н.П., Михайлова Н.Н., Соколова И.Н. Казахстан // Землетрясения Северной Евразии в 2002 году. Обнинск: ГС РАН, 2008. С. 168–174.
- 7. Бейсенбаев Р.Т., Ли А.Н., Калмыкова Н.А., Неверова Н.П., Полешко Н.Н., Михайлова Н.Н., Соколова И.Н., Силачёва Н.В. Казахстан // Землетрясения Северной Евразии, 2003 год. Обнинск: ГС РАН, 2009. С. 127–138.
- 8. Бейсенбаев Р.Т., Ли А.Н., Калмыкова Н.А., Неверова Н.П., Михайлова Н.Н., Соколова И.Н. Казахстан // Землетрясения Северной Евразии, 2004 год. Обнинск: ГС РАН, 2010. С. 130–141.
- 9. Бейсенбаев Р.Т., Ли А.Н., Калмыкова Н.А., Неверова Н.П., Михайлова Н.Н., Соколова И.Н. Казахстан // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 147–153.
- Джанузаков К.Д., Ильясов Б.И., Муралиев А.М., Юдахин Ф.Н. Суусамырское землетрясение 19 августа 1992 года с *MS*=7.5, *I*<sub>0</sub>=9–10 (Кыргызстан) // Землетрясения Северной Евразии в 1992 году. – М.: ГС РАН, 1997. – С. 49–54.
- 11. Абаканов Т. (ред.) Каталог параметров движений грунта по данным цифровой сети станций сильных движений на территории г. Алматы за 2000–2010 гг. // Алматы: ИС МОН РК, 2011. 136 с.