ВОСТОЧНО-ЕВРОПЕЙСКАЯ ПЛАТФОРМА, УРАЛ и ЗАПАДНАЯ СИБИРЬ:

УДК 550.348.098.64 (470.21)

Восточная часть Балтийского Щита С.В. Баранов, С.И. Петров

Кольский филиал ГС РАН, г. Апатиты, bars@krsc.ru, serg@krsc.ru

В 2007 г. сеть сейсмических станций КФ ГС РАН состояла из сейсмической группы АР0 (Апатитский ARRAY), расположенной в 17 км от г. Апатиты, аналоговой трехкомпонентной сейсмической станции АРА в г. Апатиты, цифровой трехкомпонентной широкополосной станции АРА в г. Апатиты, а также двух сейсмических станций «Баренцбург А» и «Баренцбург Б» на архипелаге Шпицберген. Кроме того, использовались данные четырех временных станций, установленных в рамках международного проекта POLENET/LAPNET («Tuloma» и «Lotta» КФ ГС РАН и «Ena» и «Allakurty» ИДГ РАН). Для расширения собственной сети наблюдений и контроля сейсмического режима в районе строительства опасных инженерных сооружений (завод СПГ в пос. Териберка) в декабре 2007 г. была установлена еще одна цифровая станция «Туманный» в одноименном поселке. Помимо указанных выше временных станций для изучения техногенной сейсмичности, обусловленной взрывными работами ОАО «ОЛКОН» (Оленегорский ГОК), с 13 сентября по 6 декабря была введена в эксплуатацию сейсмическая станция «Оленегорск» (рис. 1, табл. 1). Сведения и технические характеристики цифровой аппаратуры приведены в табл. 1, 2.

Рис. 1. Сейсмическая сеть Кольского филиала ГС РАН в 2007 г.

За 2007 г. обработано 1095 сейсмограмм, составлено 276 бюллетеней, зарегистрировано и обработано 1490 телесейсмических событий, из них 656 с M>5, в том числе 25 событий с M>7. В ближней зоне в качестве тектонических событий идентифицировано 44 землетрясения [1], из которых 29 произошли на Кольском полуострове.

N⁰	Станция		Дата	Координаты станции			Тип грунтов
	Название	Код	открытия	φ°, Ν	$\lambda^{\circ}, E \qquad h,$		
			(закрытия)	•	-	м	
1	Апатиты	APA	01.07.1956	67°34'08"	33°24'18"	182	Мета-габбро-диабазы
	(Apatity)			67.569	33.405		_
2	Апатитская группа	APAO	01.10.1992	67.606	32.992	240	Мета-габбро
	(Apatity Array)						_
3	Баренцбург А	BRBA	01.01.2001	78°03'32"	14°13'05"	58	Скальные метаосадочные
	(Barentsburg A)			78.059	14.217		породы
4	Баренцбург Б	BRBB	01.01.2001	78°05'38"	14°12'29"	80	Скальные метаосадочные
	(Barentsburg B)			78.094	14.208		породы
5	Тулома	TUL	26.11.2007	68°48'11"	32°34'27"		Аллювиальные
	(Tuloma)			68.803	32.574		отложения
6	Лота	SVET	17.12.2007	68°32'52"	28°55'44"		Аллювиальные
	(Lotta), п. Светлый			68.548	28.929		отложения
7	Туманный	TUM	25.12.2007	69°06'46"	35°42'27"		Магматические
	(Tumannyi)			69.013	35.708		скальные породы (граниты)
8	Оленегорск	OLEN	13.09.2007	68.143	33.223		Скальные метаморфические
			(06.12.2007)				породы (гнейсы)

Таблица 1. Сейсмические станции КФ ГС РАН, работавшие в 2007 г. (код сети – KORS)

Таблица 2 . Д	анные об апп	аратуре цифровых	станций Кольского	филиала Г	С РАН в 2007 г.
----------------------	--------------	------------------	-------------------	-----------	-----------------

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Гц	Разряд- ность АЦП	Чувствительность, велосиграф, отсчет/(<i>м/c</i>)
Апатиты	Guralp+CMG-3T	BH (N, E, Z) v	0.01-16	40	16	$3.28 \cdot 10^8$
Апатитская группа	GEOTECH+S-500	9*S (Z) v	1–16	40	16	$1.47 \cdot 10^{10}$
		BH (N, E, Z) v	1–32	80	16	$1.47 \cdot 10^{10}$
Баренцбург А	GeoSIG+GBV-316W	SH (N, E, Z) v	1–50	100	16	$3.6 \cdot 10^{6}$
Баренцбург В	GeoSIG+GBV-316W	SH (N, E, Z) v	1-50	100	16	$3.6 \cdot 10^{6}$
Тулома	Geospace+KS-2000	H (N, Z, E) v	1–20	40	16	$4.0 \cdot 10^{11}$
Лота (пос. Светлый)	Geospace+KS-2000	H (N, Z, E) v	1–20	40	16	$4.0 \cdot 10^{11}$
Туманный	Guralp+CMG-3T	BH (N, E, Z) v	1-20	40	24	$1.26 \cdot 10^9$
Оленегорск	GeoSIG+GBV-316B	H (N, Z, E) v	1–20	50	16	$3.57 \cdot 10^5$

Рис. 2. Карта эпицентров землетрясений, зарегистрированных сетью КФ ГС РАН в 2007 г.

Распределение всех землетрясений по энергетическим классам K [2] сгруппировано в соответствии с картой эпицентров в трех территориальных блоках: Кольский полуостров, Скандинавский полуостров и Атлантический район (рис. 2, табл. 3). По уровню высвобожденной в очагах сейсмической энергии оба полуострова близки – ΣE_1 =8.87·10⁸ Дж и ΣE_2 =6.77·10⁸ Дж, но по числу землетрясений отличаются почти в 10 раз ($N_{\Sigma 1}$ =29 и $N_{\Sigma 2}$ =3). Максимальные классы в этих районах также близки – K_{max} =8.9 и 8.6 соответственно [2].

N⁰	Район	K					N_{Σ}	ΣΕ,	
		4	5	6	7	8	9		Дж
1	Кольский полуостров	5	10	8	4	1	1	29	$8.87 \cdot 10^8$
2	Скандинавский полуостров					2	1	3	$6.77 \cdot 10^8$
3	Атлантический район					7	5	12	$5.31 \cdot 10^{9}$
	Всего	5	19	8	4	10	7	44	6.88·10 ⁹

Таблица 3. Распределение числа землетрясений по энергетическим классам *K* по [2] и суммарная сейсмическая энергия Σ*E* по районам за 2007 г.

Анализ пространственно-временного распределения эпицентров землетрясений на территории северо-восточной части Балтийского щита за время 1956–2007 гг. выявил периодическое затухание сейсмической активности в главных сейсмогенных зонах 1–6 по [3]: Мурманской, Кадалакшской, Хибинско-Ловозерской, Куусамо-Порьегубской, Кандалакшско-Варангерской, Ботний-Финнмаркской соответственно (рис. 3). Наиболее отчетливо это выражено в Мурманской и Карельской зонах, где в 1992–2007 гг. отсутствовали даже слабые землетрясения (M_L =3). Обширная Ботний-Финнмаркская суперзона «выродилась» в этот период до узкой полосы, в которой зарегистрировано всего 13 событий с M_L >3. Сохранили свои контуры и плотность насыщения событиями еще три зоны: Кандалакшская, Хибинско-Ловозерская и Куусамо-Порьегубская (рис. 3).

Рис. 3. Сейсмогенные зоны Восточной части Балтийского щита и распределение эпицентров землетрясений за период 1992–2007 гг. (черными кружками обозначены землетрясения за 2007 г.).

Цифрами обозначены следующие зоны: 1 – Мурманская (пассивная на данном отрезке времени); 2 – Кандалакшская; 3 – Хибинско-Ловозерская; 4 – Куусамо-Порьегубская; 5 – Кандалакшско-Варангерская; 6 – Ботний-Финмаркская.

Оценка активности сейсмогенных зон в более ранние геологические временные отрезки, проведенная по палеосейсмическим данным [3, 4], выявила неравномерность выделения сейс-

мической энергии в различные временные интервалы геологической истории. В частности, находящаяся сейчас в режиме покоя Мурманская зона в голоцене проявляла максимальную сейсмическую активность.

На основе дешифрирования крупномасштабных аэрофотоснимков и с учетом результатов полевых наблюдений была составлена уточненная схема плотностей остаточных деформаций в северо-западной части Кольского региона [5]. На рис. 4 показаны области концентрации сейсмодеформаций, которые отражают наиболее нарушенные блоки земной поверхности и место-положение эпицентральных областей древних землетрясений.

Рис. 4. Схема размещения палеосейсмодеформаций и зоны вероятных очагов землетрясений на северо-западе Кольского региона по [5]

1–3 – плотность остаточных деформаций на единицу площади размером 15х15 км в количествах (0–2), (2–4), (4–6) соответственно; 4 – то же, в количествах: а→(4–6), б→>8; 5 – сдвиги; 6 – надвиги (а), взбросы и сбросы (б); 7 – осевые зоны рифейских палеорифтов; 8 – возраст палеосейсмических событий по ¹⁴ С; 9 – площадки вероятных очагов землетрясений.

Совокупный анализ древнего структурного плана региона и распространения областей концентрации палеосейсмодеформаций свидетельствует, что последние тяготеют к крупным тектоническим зонам северо-западного простирания (зонам сочленения геоблоков и зонам, ограничивающим Кольский полуостров с севера и юга), а также к узлам пересечения разломов, в основном, северо-западного и северо-восточного простираний. В северо-западной части Кольского региона к сейсмически активным зонам относятся обновленные в новейшее время разломы древнего заложения разных рангов. Основным является северный разлом Карпинского северо-западного простирания, а подчиненными – Печенгский разлом северо-восточного простирания и система субмеридиональных сдвигов района Кольского фиорда, где возможны проявления землетрясений интенсивностью $I_0=8$ и более баллов по шкале MSK-64 [6].

Литература

- 1. Баранов С.В., Петров С.И., Нахшина Л.П. Каталог землетрясений Восточной части Балтийского щита за 2007 г. (*N*=44). (См. Приложение к наст. сб. на CD).
- 2. Коломиец А.С., Петров С.И. Восточная часть Балтийского щита // Землетрясения Северной Евразии в 1995 году. – Обнинск: ГС РАН, 2001. – С. 140–142.
- 3. Николаева С.Б., Евзеров В.Я. Сейсмоопасные зоны Кольского полуострова (экологические аспекты) // Перспективные информационные технологии и проблемы управления рисками на пороге нового тысячелетия. Материалы докладов. – Т. 1, Ч. 2. – Санкт-Петербург: МАНЭБ, 2000. – С. 568–571.

- 4. Николаева С.Б., Евзеров В.Я., Петров С.И. Сейсмичность Кольского региона в голоцене // Проблемы современной сейсмогеологии и геодинамики Центральной и Восточной Азии. Материалы Всероссийского совещания 18–24 сентября 2007 г. с международным участием. Т. 2. Иркутск: ИЗК СО РАН, 2007.– С. 44–48.
- 5. Николаева С.Б., Евзеров В.Я., Петров С.И. Сейсмические проявления в рельефе северо-запада Мурманской области. Научное обеспечение развития технобиосферы Заполярья: база знаний и пакет инновационных предложений (мультимедийный информационный диск) / Отв. ред. А.Н. Виноградов. – Апатиты: КНЦ РАН, 2007. – С. 353–366.
- 6. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. М.: МГК АН СССР, 1965. 11 с.