КУМСАНГИРСКОЕ ЗЕМЛЕТРЯСЕНИЕ 29 июля 2006 г.

с K_P=13.4, Мw=5.4, I₀=6-7 (Таджикистан)

Р.У. Джураев

Институт геологии, сейсмостойкого строительства и сейсмологии АН Республики Таджикистан, г. Душанбе, anton ulubiev@mail.ru

На территории Таджикистана 29 июля 2006 г. в $10^{h}57^{m}$, в $155 \ \kappa m$ юго-западнее г. Душанбе произошло землетрясение с $K_{\rm P}$ =13.4 [1], Mw=5.4 [2], с интенсивностью в эпицентре I_0 =6–7 баллов. Макросейсмический эпицентр данного землетрясения определен в районе селения Замини Нав, координаты которого составили: φ =37.30 N, λ =68.66°E.

По инструментальным данным сейсмических станций Таджикистана его очаг находился вблизи южных границ Таджикистана с Афганистаном, южнее районного центра Дусти (Кумсангирский район). За $10^{h}45^{m}$ до основного толчка здесь же был зафиксирован форшок с $K_{\rm P}$ =12.1.

Параметры решений эпицентра форшока и главного толчка, полученных в региональном центре обработки – Институте геологии, сейсмостойкого строительства и сейсмологии (ИГССС) АН Республики Таджикистан, а также других агентств, приведены в табл. 1. Интересной особенностью является несогласованность двух магнитуд форшока: расчетной из энергетического класса $K_P - M^P = (K_P - 4)/1.8 = (12.1 - 4)/1.8 = 4.5$ [3] и моментной магнитудой Гарварда, равной Mw = 5.6 по данным 100 мировых станций [2], которая, к тому же, превысила Mw = 5.4 главного толчка (табл. 1).

Агентство	$t_0,$	δt_0 ,			Гипоце	нтр			Магнитуда	Источник		
	ч мин с	С	φ°, N	δø°	λ°, E	δλ°	h	δh ,				
					,		км	км				
Форшок												
ИГССС	00 11 48	0.6	37.35 _и		68.70 _и		10 _и		$K_{\rm P}=12.1, M^{\rm p}=4.5$	[1]		
ИГССС			37.30 _м		68.66 _M		32 _м		I_0 =4-5 баллов, $h=f(M^p)=32 \kappa M$	наст. ст.		
MOS	00 11 50.0	0.9	37.35		68.74		33 f		MS=5.1/41, MPSP=5.0/64	[4]		
ISC	00 11 52.8	0.1	37.37	0.02	68.67	0.02	37		$Ms=5.2/117, m_{\rm b}=4.7/142,$	[2]		
							37*	1.1*	$h_{\rm pP} = 37 \pm 1.1$			
NEIC	00 11 51.3	0.2	37.26		68.83				$M_{s}=5.2/53, m_{b}=4.8/80, Mw=5.4$	[2]		
HRVD	00 11 51.3	0.1	37.36		68.56		12		<i>Mw</i> =5.6/100	[2]		
NNC	00 11 52.3	1.5	37.63		68.40		33 f		$m_{\rm b}$ =5.0, $m_{\rm pv}$ =4.9	[2]		
BJI	00 11 54.4		37.83		69.06		34		$Ms=5.6, m_b=4.7, ML=5.3$			
IDC	00 11 46.4	0.5	37.24		68.76		0 f		$Ms=5.1/28, m_{\rm b}=4.4/24,$	[2]		
									<i>ML</i> =4.2/3			
CSEM	00 11 46.8		37.38		68.74		10 f		<i>ML</i> =5.5	[2]		
					Г	авнь	ій то.	лчок				
ИГССС	10 57 16	0.6	37.35 _и		68.70 _и		10 _и		$K_{\rm P}=13.4, M^{\rm p}=5.2$	[1]		
ИГССС			37.30 _м		68.66 _M		17 _м		$I_0=6-7$ баллов, $h=f(M^p)=17$ км	настоящая		
										статья		
MOS	10 57 18.0	0.9	37.27		68.74		33 f		MS=5.3/47, MPSP=5.5/80	[4]		
ISC	10 57 17.3	0.1	37.23	0.02	68.73	0.02	16		$Ms=5.3/90, m_b=5.2/190,$	[2]		
							16*	1.8*	$h_{\rm pP} = 16 \pm 1.8$			
NEIC	10 57 15.5	0.2	37.13		68.81		10 f		$m_{\rm b}$ =5.2/110, Mw =5.4	[2]		

Таблица 1. Основные параметры форшока Кумсангирского землетрясения 29 июля 2006 г. в 00^h11^m и главного толчка по данным Таджикистана в сопоставлении с определениями других агентств

Агентство	t_0 ,	δt_0 ,			Гипоце	нтр			Магнитуда	Источник
	ч мин с	С	φ°, N	δφ°	λ° , Ε	δλ°	<i>h</i> ,	δh ,		
							км	км		
HRVD	10 57 15.5	0.1	37.38		68.54		12		<i>Mw</i> =5.4/97	[2]
NNC	10 57 14.1	5.4	37.23		68.29		16	23	$m_{\rm b}$ =5.4, $m_{\rm pv}$ =5.4	[2]
BJI	10 57 16.4		37.39		68.95		10		$Ms=5.9, m_b=5.0$	
IDC	10 57 13.8	0.5	37.16		68.84		0 f		$Ms=5.2/29, m_b=4.9/29,$	[2]
									ML = 4.3/3	

Примечание. Индексами «и» и «м» отмечены инструментальный и макросейсмический эпицентры; ISC – Международный сейсмологический центр, г. Беркшир, Великобритания; MOS – Геофизическая служба РАН, г. Обнинск, Россия; GSR – Геофизическая служба РАН; NEIC – Национальный центр информации о землетрясениях Геологической службы США, г. Денвер, США; HRVD – Гарвардский университет, г. Кембридж, США; IDC – Международный центр данных, г. Вена, Австрия; CSEM – Европейский Средиземноморский центр, г. Брюерес-лё-Шатель, Франция; NNC – Казахстанский национальный центр данных, г. Алматы, Казахстан; ВJI – Сейсмологическое бюро, Институт геофизики, г. Пекин, Китай.

Разброс в оценке координат гипоцентра форшока в диапазоне $\varphi=37.24-37.83^{\circ}N$, $\lambda=68.40-69.06^{\circ}E$, $h=0-33 \ \kappa m$, т.е. $\Delta \varphi=0.59^{\circ}$, $\Delta \lambda=0.26^{\circ}$ и $\Delta h=33 \ \kappa m$. При этом наиболее «отскакивают» решения агентств NNC, и особенно ВЈІ (рис. 1 а). Если их отбросить, то все остальные решения размещены в плане компактно. Ближе всех к региональному эпицентру расположены решения MOS, ISC и CSEM. Отсюда следует важный вывод: несмотря на значительные трудности, обработка землетрясений в Таджикистане проводится хорошо.

Для главного толчка диапазон значений равен: φ =37.13–37.39°N, λ =68.29–68.95°E, h=0– 33 км, т.е. $\Delta \varphi$ =0.26°, $\Delta \lambda$ =0.66° и Δh =33 км, а значит, по широте он уменьшился на 0.33°, но по долготе возрос на 0.40°. И хотя больших «отскоков» международных решений от регионального нет (рис. 1 б), но все они расположены в плане менее компактно, чем для форшока. Ближе всех к региональному решению эпицентр MOS. Относительно глубин гипоцентров к реальной оценке можно отнести лишь глубину h^* =16 км, определенную в ISC по обменной волне pP–P, все остальные глубины фиксированные.

Макросейсмический эпицентр, описанный ниже, в силу временной близости форшока и афтершока разделить трудно, поэтому он одинаков для обоих толчков и расположен южнее инструментальных (рис. 1 а, б).

Рис. 1 а, б. Сопоставление решения эпицентра форшока Кумсангирского землетрясения 29 июля 2006 г. в 00^h11^m с *K*_P=12.1 и главного толчка в 10^h57^m с *K*_P=13.4 по данным Таджикистана (ИГССС) с решениями других агентств

1,2 – инструментальный и макросейсмический эпицентр соответственно; 3 – решение мировых агентств; 4 – населенный пункт; 5 – государтсвенная граница

Механизм очага как для форшока, так и для главного толчка определен агентствами HRVD и NEIC. Их параметры даны в табл. 2 из [5], а стереограммы показаны на рис. 2.

Таблица 2. Параметры механизмов очагов форшока и главного толчка Кумсангирского землетрясения 29 июля 2006 г. по данным HRVD и NEIC

Агент-	Дата,	<i>t</i> ₀ ,	h,	Ma	гнит	уды	K _P	Оси главных напряжений							Нодальные плоскости					Источ-
ство	д м	ч мин с	км	Mw	MS	Ms			Т		Ν		Р		NPI	!		NP.	2	ник
								PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
Форшок																				
HRVD	29.07	00 11 51.3	12	5.6	5.1	5.2	12.1	86	78	1	178	3	268	358	42	91	177	48	89	[2]
NEIC	29.07	00 11 51.3		5.4	5.1	5.2	12.1	78	184	11	345	4	76	336	50	75	178	42	107	[2]
Главный толчок																				
HRVD	29.07	10 57 15.5	12	5.4	5.3	5.3	13.4	82	26	7	172	5	263	166	50	81	0	41	10	[2]
NEIC	29.07	10 57 15.5	10	5.4	5.3	5.3	13.4	86	38	2	161	4	251	159	49	87	344	41	94	[2]

Рис. 2. Стереограммы механизмов очагов землетрясений 29 июля – форшока в $00^{h}11^{m}$ с K_{P} =12.1 и главного толчка в $10^{h}57^{m}$ с K_{P} =13.4 в проекции нижней полусферы

нодальные линии; 2, 3 – оси главных напряжений сжатия и растяжения соответственно; зачернена область волн сжатия.

Приведенные данные свидетельствуют о большом сходстве вида стереограмм, а значит, и в системе напряжений в очагах форшока и главного толчка: горизонтальные ($PL=3-5^{\circ}$) оси напряжений сжатия, близвертикальные ($PL=78-86^{\circ}$) – растяжения (табл. 2), правда, направление осей по HRVD и NEIC несколько различно.

Решение HRVD для форшока дает по обеим нодальным плоскостям чистый взброс, а по решению NEIC – «почти» чистый взброс с очень незначительными компонентами сдвига, правостороннего по плоскости NP1 и левостороннего – по NP2.

Для главного толчка движение типа чистый взброс получено для наклонной ($DP=49^{\circ}$) плоскости NP1 по NEIC, а по плоскости NP2 с наклоном $DP=41^{\circ}$ решения NEIC имеем надвиг с незначительными компонентами правостороннего сдвига. Для решения HRVD по плоскости NP1 с наклоном $DP=50^{\circ}$ получен взброс с незначительными компонентами левостороннего сдвига, а по плоскости NP2 меньшего наклона ($DP=41^{\circ}$) – надвиг, также с незначительными компонентами правостороннего сдвига.

Важным параметром является азимут простирания нодальных плоскостей главного толчка, который можно сопоставить с ориентацией геологических структур в зоне очага землетрясения. Вообще говоря, из четырех нодальных плоскостей в двух вариантах (HRVD, NEIC) решения механизма очага главного толчка лишь одна плоскость $NP2_{hrv}$ является меридиональной, т.к. $STK=0^{\circ}$ (табл. 2), а остальные три – близмеридиональны (для $NP2_{neic}$ $STK=344^{\circ}$, для $NP1_{hrv}$ – 166°, для $NP1_{neic}$ – 159°).

Макросейсмические последствия двух землетрясений разделить непросто, поэтому это совокупный макросейсмический эффект, обследованный в 18 населенных пунктах. Оценка балльности проведена по международной шкале балльности MSK-64 [6].

Интенсивность сотрясений от основного подземного толчка в эпицентре достигала I_0 =6– 7 баллов. В зоне наибольшего сотрясения оказались населенные пункты Замини Нав, Риссовхоз, Рудаки (участок № 8) и Пионерский (участок № 6). Жилые и общественные здания в этих селениях построены в основном до 1980 г., преимущественно из сырцового кирпича (похса) и из жженого кирпича с низким качеством цементирующего раствора, конструктивные особенности которого не соответствуют строительным нормам в сейсмических районах. Жилые дома возведены без соблюдения антисейсмических мероприятий. Следует отметить, что грунт, из которого изготовлен кирпич-сырец, в своем составе содержит большое количество песка, что снижает прочностные характеристики последних (рис. 3). Указанные особенности стали одной из причин значительных повреждений и разрушений строений в эпицентральной зоне. Наиболее сильно пострадало селение Замини Нав, где 40% жилых домов были частично разрушены (обрушение одной из несущих стен или части стены), остальные получили серьезные повреждения в виде многочисленных сквозных трещин в стенах с падением больших кусков штукатурки. Полностью разрушены многие ветхие глинобитные подсобные помещения (рис. 3) и частично – дувалы (глинобитный забор). На поверхности земли и асфальтовой автодороге в центре кишлака образовались трещины шириной раскрытия от 0.2 до 1.0 см, протяженностью от 4–5 до 50–60 м.

Рис. 3. Характерные повреждения глинобитных домов в эпицентральной зоне Кумсангирского землетрясения 29 июля 2006 г.

Аналогичные повреждения жилых домов, но в несколько меньшей степени наблюдались и в пос. Риссовхоз, на участках № 6 и № 8. В панельных и кирпичных одноэтажных домах Риссовхоза наблюдались тонкие трещины в штукатурке стен, на стыке стен с потолочным перекрытием. В некоторых домах произошло обрушение перегородочных стен, выложенных из кирпича-сырца, частичное разрушение дымовых труб. В глинобитных домах наблюдались трещины в стенах, в угловых сопряжениях стен, с обрушением кусков штукатурки. Были отдельные случаи обрушения части глинобитных дувалов. Частичные разрушения домов наблюдались в центральной и юго-западной части районного центра Дусти (рис. 4).

В километре юго-восточнее кишлака Замини Нав, на склонах высоких $(20-30 \ mm)$ надпойменных террас р. Пяндж на протяжении $800-900 \ mm$, произошли многочисленные оползниобвалы супесчаных грунтов. Нижняя часть склона была сильно обводнена. В результате землетрясения верхняя сухая часть склона обрушилась на нижнюю, обводненную и продвинулась на расстояние от 20-30 до 70 m в сторону реки, образуя своеобразный холмистый рельеф. Обвалы произошли в основном в средней части склона с глубиной захвата от 2-3 до $4-5 \ mm$ (рис. 5). Обвалы одновременно большого объема супесчаных отложений произошли мгновенно. Смещаясь на большой скорости, они вызывали сильный порыв ветра, о чем свидетельствует лежачее положение зарослей камыша напротив обвалившихся масс.

Рис. 4. Повреждение здания электроподстанции (жженый кирпич)

Рис. 5. Оползни на склонах высокой надпойменной террасы р. Пяндж

В зоне шестибалльного сотрясения, площадь которой составила около 104 км², землетрясение проявилось в виде резкого вертикального толчка, которому предшествовал громоподобный подземный гул. Люди в страхе выбегали из помещений.

В поселках Октябрьский, Первомайский, Пахтаабад и в санатории «Дусти», где интенсивность сотрясений достигала I=5-6 баллов, в отдельных жилых глинобитных постройках образовались тонкие трещины в угловых сопряжениях стен, на стенах. Наблюдались отдельные случаи обрушения частей глинобитных заборов (дувалов). В зоне 5-ти и 4–5-балльных сотрясений землетрясение не вызвало повреждений. Четырехбалльные колебания ощущались на расстоянии более 30 км от эпицентра в меридианальном направлении. Слабые колебания отдельные люди ощущали и в Душанбе (Δ =165 км).

Собранные при обследовании сведения представлены в совокупности в табл. 3, где впервые в практике макросейсмических обследований ощутимых землетрясений Таджикистана для населенных пунктов указаны не только эпицентральные расстояния, но и их географические координаты.

Карта изосейт составлена по данным макросейсмической табл. 3 и изображена на рис. 6.

Рис. 6. Карта изосейст Кумсангирского землетрясения 29 июля в $10^{h}57^{m}$ с K_{P} =13.4, Mw=5.4

1 – интенсивность сотрясений в баллах шкалы [6]; 2, 3 – инструментальный и макросейсмический эпицентр соответственно; 4 – изосейста; 5 – граница оползней; 6 – трещины в грунте.

Таблица 3. Макросейсмические данные о Кумсангирском землетрясении 29 июля 2006 г. в $10^{\rm h}57^{\rm m}$ с $K_{\rm P}$ =13.4

	Пункт	Δ, км	φ°, Ν	λ° , Ε		Пункт	Δ, км	φ°, Ν	λ°, Ε
	<u>6-7 баллов</u>				4	Пионерский (участок № 6)	4.5	37.35	68.67
1	Замини нав	1.0	37.30	68.66		<u>5-6 баллов</u>			
	<u>6 баллов</u>				5	Кумсангир (Дусти)	5.0	37.35	68.67
2	Риссовхоз	3.5	37.28	68.63	6	Октябрьский	5.5	37.32	68.71
3	Рудаки (участок № 8)	3.5	37.33	68.67	7	Пахтаабад	6.0	37.32	38.72

	Пункт	Δ, <i>км</i>	φ°, Ν	λ°, Ε		Пункт	Δ, <i>км</i>	φ°, N	λ°, Ε
8	Первомайский	6.5	37.30	68.72	14	Пункт 1	10	37.22	68.62
9 10 11	<u>5 баллов</u> Санаторий «Дусти» 10-летие Таджикистана Участок Вахшский	8 10 11	37.33 37.39 37.38	68.78 68.66 68.60	15 16	<u>4–5 баллов</u> Нижний Пяндж Насосная <u>4 балла</u>	13. 14.5	37.20 37.44	68.58 68.67
12	Комсомол	12.5	37.39	68.61	17	Кабодиён	22	37.54	68.48
13	Карадум	12	37.41	68.64	18	Колхозабад	32	37.59	68.66

Примечание. Расстояния даны от макросейсмического эпицентра.

Как видим, изосейсты землетрясения с интенсивностью с I=6 баллов и I=5 баллов имеют форму эллипсов, слегка вытянутых в субмеридианальном направлении согласно направлению простирания основных геологических структур района. Азимуты их продольных осей чуть расходятся: $AZM_{I=6}=20^\circ$, $AZM_{I=5}=10^\circ$, составляя в среднем 15°.

По карте изосейт можно измерить геометрические параметры макросейсмического поля Кумсангирского землетрясения. Результаты измерений приведены в табл. 4.

Таблица 4. Основные параметры макросейсмического поля Кумсангирского землетрясения 29 июля в 10^h57^m с *K*_P=13.4

<i>I</i> і, баллы	Геомет	Площадь S_i зоны, κM^2			
	ℓ_{a}	ℓ_{b}	$\overline{\ell}$	ℓ_{a}/ℓ_{b}	
6	12.4	10.4	11.4	1.2	104.4
5	29.5	22.6	25.8	1.3	523.3

Примечание. Среднее $\overline{\ell}$ является средним геометрическим.

Глубина очага Кумсангирского землетрясения по макросейсмическому уравнению типа

$$I_0 = b M - v \lg h + c$$

при $M_{\text{расч}}$ =5.2 (по формуле Т.Г. Раутиан K_P =4+1.8 M [3]), I_0 =6.5, b=1.5, v=3.5 и c=3.0 (для Средней Азии и Казахстана [7]) составляет $h_{\text{м}}(I_0)$ =17 κm , а если взять магнитуду землетрясения Mw_{hrv} =5.4 [2], то получим $h_{\text{м}}(I_0)$ =20.6 κm . Напомним, что по обменным pP-волнам h^* =16 κm . Тогда среднее из трех оценок равно $h\sim$ 18 κm .

Для форшока макросейсмическая глубина гипоцентра при M^{p} =4.5, I_{0} =4.5 равна h_{M} =32 км, что близко к оценке h^{*} =37 км по обменным волнам pP (табл. 1). Однако, если использовать моментную магнитуду форшока, равную Mw=5.6, то при I_{0} =4.5 глубина окажется равной h_{M} =93 км, которую принять абсолютно невозможно ввиду исключительно коровой сейсмичности в этом районе Нижнего Пянджа. Остается не выясненным вопрос, почему моментная магнитуда для форшока так велика.

Используя средние геометрические радиусы изосейт с $\ell_{I=6} = 11.4 \ \kappa M \ \ell_{I=5} = 25.8 \ \kappa M$ (табл. 4), можно получить макросейсмическую глубину главного толчка другим способом, по изосейстам:

$$I_0 - I_i = v \lg \sqrt{(1 + \ell^2/h^2)},$$

получается – $h_{\rm M}(I_{\rm i=6})$ =11.8 км и $h_{\rm M}(I_{\rm i=5})$ =10.4 км, что дает в среднем $h_{\rm I,M}$ =11.1 км. Вторая оценка оказалась меньше, что свидетельствует о наклонном положении плоскости разрыва. Это действительно так, ибо все четыре возможные плоскости разрыва в очаге, описанные выше, имеют наклоны DP=41, 41, 49, 50°.

Сравнивая все приведенные значения глубин гипоцентров, расчетных и по обменным волнам pP, можно утверждать о направленности снизу, с $h \sim 35 \ \kappa m$, вверх до $h = 17 \ \kappa m$ процессов разрушений в земной коре от форшока до главного толчка.

Форшоки, афтершоки. За период с 29 июля по 6 сентября 2006 г. было зарегистрировано 4 форшока с K_P =8–12 и более 40 афтершоков данного землетрясения с K_P =7.2–11.1 [8], которые

проявились в эпицентре с интенсивностью от 2 до 4–5 баллов. Карта эпицентров афтершоков изображена на рис. 7.

В геологическом плане данный район относится к южной части Таджикской депрессии, сложенной мезокайнозойскими образованиями большой мощности. Согласно геолого-геофизическим данным [9], консолидированный фундамент здесь находится на глубине $h=10-11 \ \kappa m$. Следовательно, очаг Кумсангирского землетрясения в пределах консолидированного фундамента, верхняя часть очага – на границе осадочного чехла с консолидированным фундаментом.

Эпицентральная зона землетрясения расположена в пределах восточного крыла Карадумской антиклинали, которая вытянута с севера на юг на расстоянии 10 км. К югу в направлении р. Пяндж происходит крутое погружение шарнира складки. На южном переклинальном окончании складки отмечены разрывные нарушения [10]. Вероятнее всего данное землетрясение своим происхождением связано с тектоническими подвижками, происходящими по этим разрывам.

В качестве действующей плоскости разрыва по всей совокупности данных об ориентации системы изосейст, геолого-геофизических данных и механизма очага Кумсангирского землетрясения следует, по-видимому, выбрать более пологую (*DP*=41°) нодальную плоскость *NP2*_{hrv} меридио-

1 – афтершок; 2, 3 – инструментальный и макросейсмический эпицентр соответсвенно; 4 – изосейста; 5 – граница оползней; 6 – трещины в грунте.

нального ($STK=0^{\circ}$) простирания, по которой верхнее крыло разрыва надвинулось вверх в восточном направлении и незначительно сдвинулось вправо.

В истории сейсмичности в южной части Таджикской депрессии землетрясения, подобные Кумсангирскому, не редкость. Примером этого являются Нижне-Пянджское землетрясение 13.10.1979 г. с K_P =11.0, I_0 =6 баллов (в пос. Окбай) [11], эпицентр которого был расположен в 8– 10 км западнее и в 25 км северо-западнее пос. Дусти, а также Кабодиёнское землетрясение 18.04.1991 г. с K_P =13.9, *MLH*=5.4, I_0 =7–8 баллов (в пос. Чупон), сопровождаемое форшоками и многочисленными афтершоками [12, 13]. Названные землетрясения имели происхождение, аналогичное Кумсангирскому [14, 15].

Литература

- 1. Улубиева Т.Р. (отв. сост.), Рислинг Л.И., Шараускас Л.М., Малюта Н.Б., Давлятова Р., Михайлова Р.С., Улубиев А.Н., Шараускас Н.В. Каталог землетрясений Таджикистана за 2006 год (*N*=2164). (См. Приложение к наст. сб. на CD).
- 2. Bulletin of the International Seismological Centre for 2006. Berkshire: ISC, 2008.
- 3. Раутиан Т.Г. Энергия землетрясений // Методы детального изучения сейсмичности. (Тр. ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 4. Сейсмологический бюллетень (ежедекадный) за 2006 год / Отв. ред. О.Е. Старовойт. Обнинск: ГС РАН, 2006–2007. – [Электронный ресурс]. – *ftp://ftp.gsras.ru/pub/Teleseismic_bulletin/2006*.
- 5. Михайлова Р.С. (сост.). Каталог механизмов очагов землетрясений Таджикистана за 2006 г. (*N*=10). (См. Приложение к наст. сб. на CD).
- 6. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.

- 7. Шебалин Н.В. Коэффициенты уравнения макросейсмического поля по регионам // Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука, 1977. С. 30.
- 8. Улубиева Т.Р., Джураев Р.Д. Основные параметры форшоков (*N*=4) и афтершоков (*N*=41) Кумсангирского землетрясения 29 июля в 10^h57^m с *K*_P=13.4, *Mw*=5.4. (См. Приложение к наст. сб. на CD).
- 9. Беккер А.Я., Кошлаков Г.В., Кузнецов Е.С. Глубинное строение Юго-Западного Таджикистана по геолого-геофизическим данным // Поиски предвестников землетрясений на прогностических полигонах. – М.: Наука, 1974 г. – С. 16–23.
- Бон-Нен Ким, Молчанов А.П. и др. Геологическое описание листа J-42-XXVII и юго-западной части листа J-42-XXI // Отчет Шаартузской и Бишкентской партии за 1956–1957гг. – Душанбе: Фонды ГУГ при Правительстве РТ, 1958. – 87 с.
- 11. Джураев Р.У. Схема изосейст Нижне-Пянджского землетрясения 13 октября 1979 г. // Землетрясения в СССР в 1979 году. М.: Наука, 1982. С. 43–44.
- 12. Джураев Р.У., Улубиева Т.Р. Кабодиёнское землетрясение 18 апреля 1991 г., его форшоки и афтершоки // Землетрясения в СССР в 1991 году. М.: Наука, 1997. С. 35.
- 13. Баринова А.Я. (отв. сост.) и др. Каталог землетрясений Средней Азии и Казахстана в 1991 г. // Землетрясения в СССР в 1991 году. М.: Наука, 1997. С. 102–131.
- 14. Джураев Р.У. Сильные землетрясения в сейсмически малоактивных зонах (Кабодиёнское землетрясение 1991 г.) // Современные аспекты развития сейсмостойкого строительства и сейсмологии (Тр. Международной научной конференции. Душанбе, 2005 г.). – Душанбе: Дониш, 2005. – С. 30–34.
- 15. Джураев Р.У., Саломов Н.Г., Каримов Ф.Х., Шварц А.В., Олимов Б.К. Макросейсмический эффект ощутимых землетрясений Таджикистана за период с 2001 по 2006 год. – Душанбе: Дониш, 2007. – 35 с.