СПЕКТРАЛЬНЫЕ и ОЧАГОВЫЕ ПАРАМЕТРЫ ЗЕМЛЕТРЯСЕНИЙ

СЕВЕРНОГО КАВКАЗА

И.П. Габсатарова, Л.С. Малянова

Геофизическая служба РАН, г. Обнинск, ira@gsras.ru

Для восьми землетрясений Северного Кавказа (табл. 1, рис. 1) построены спектры по записям станций «Сочи» и «Анапа» с использованием методики [1], примененной ранее для Пшехского землетрясения 15 ноября 2004 г. [2] и землетрясений западной зоны Северного Кавказа в 2005 г. [3]. По записям станции «Анапа» построены спектры только для одного события с K_P =8.7, зарегистрированного 15 марта в 23^h00^m.

Таблица 1. Список землетрясений Северного Кавказа, для которых рассчитаны спектры в 2006 г.

N⁰	Дата,	<i>t</i> ₀ ,	Эпицентр		h,	K_{P}	MPVA	$m_{\rm b}$	Ms	Район
	дм	ч мин с	φ°, N	КМ	КМ		[4]	[5]	[5]	
1	15.03	23 00 50.2	44.48	37.47	13	8.7	3.8			Черное море
2	22.03	15 39 42.4	43.84	40.34	3	9.0	3.6			Краснодарский край
3	04.04	01 35 43.3	43.57	40.42	9	9.6	4.1			Краснодарский край
4	12.05	22 20 25.2	44.15	39.75	18	8.9	3.9			Краснодарский край
5	02.06	09 46 09.3	44.15	40.47	4	8.5	3.6			Краснодарский край
6	22.07	07 55 57.0	44.04	42.70	10	11.3	5.5	3.8	3.1	Ставропольский край
7	03.08	06 32 18.9	43.62	40.31	10	9.1	4.0			Краснодарский край
8	01.09	00 48 26.9	44.21	39.49	15	8.6	4.1			Краснодарский край

Рис. 1. Карта эпицентров землетрясений Северного Кавказа, для которых проводился в 2006 г. спектральный анализ

1- энергетический класс *К*_P; 2 – сейсмическая станция.

Так как спектр записи реального землетрясения в точке наблюдения является суперпозицией эффектов самого источника, амплитудно-частотной характеристики регистрирующего прибора, среды на пути очаг-станция и направленности излучения, то была применена методика учета всех этих факторов при переходе от станционного спектра к спектру источника, которая подробно изложена в [6-8]. Значение сейсмического момента в очаге землетрясения M_0 получено по формуле:

$$M_0 = \Omega_0(4\pi\rho \,\upsilon^3) / R_{\theta\phi} \cdot G(\Delta, h) \cdot C(\omega), \qquad (1)$$

где Ω_0 – максимальное значение спектральной плотности при $\omega \rightarrow 0$; υ и ρ – скорость распространения волны и плотность пород в окрестности очага; $R_{0\phi}$ – функция, характеризующая направленность излучения из очага на станцию; $G(\Delta, h)$ – поправка за геомет-

рическое расхождение; *C*(ω) – частотная характеристика земной коры под станцией. Для относительно слабых по магнитуде землетрясений при неизвестном механизме очага

обычно принимается среднее значение $R_{\theta\phi}=0.4$ [6, 7].

Функция геометрического расхождения $G(\Delta, h)$ для близких землетрясений на расстояниях от станции регистрации $r < 1000 \ \kappa m$ может быть оценена как 1/r, где r – гипоцентральное расстояние [9]. Частотная характеристика земной коры под станцией принимается в среднем равной $C(\omega)=2$ в случае отсутствия данных конкретных исследований.

Кроме того, в станционный спектр введена поправка S(f) за неупругое затухание волны в мантии, которая рассчитывается по формуле:

$$S_{\rm m}(f) = e^{-t_{\rm S}^* \pi f},\tag{2}$$

где t_s^* – отношение времени t_s пробега *S*-волны до станции регистрации к средней добротности Q_{cp} среды вдоль луча по [10]. Значение Q_{cp} для *S*-волн Северо-Западного Кавказа по записям станций «Сочи» и «Анапа» определено О.В. Павленко [11] и находится из зависимости $Q(f) \sim 80 f^{0.9}$ для полосы 1–8 Γu для «Сочи» и $Q(f) \sim 130 f^{0.7}$ для полосы 1–8 Γu – для «Анапы».

Для построения спектров выбирался фрагмент записи *S*-волны (рис. 2) от начала вступления до момента, когда амплитуда этой группы волн достигла примерно $1/3 A_{S max}$ – максимальной амплитуды *S*-волны [8]. Длительность т записи выбранных фрагментов изменялась в диапазне $\tau=20-70 c$ от вступления *S*-волны, в зависимости от удаленности станции от очага землетрясения.

Рис. 2. Записи землетрясения 22 июля 2006 г. в 07^h55^m на горизонтальных компонентах широкополосного сейсмометра СМ-3-ОС станции «Сочи»

Спектры S-волн восьми землетрясений приводятся на рис. 3 и 4 для двух горизонтальных компонент. Замеры спектральной амплитуды A_0 осуществлялись также для обеих горизонтальных компонент и приведены в табл. 2 вместе с вычисленными по ним сейсмическими моментами M_0 и магнитудами Mw по формуле Канамори [12]:

$$Mw = 2/3 \cdot \lg M_0 - 10.7. \tag{3}$$

Дата,	$K_{\rm P}$	Стан-	Δ°	Компо-	A_0 ,	M_0 ,	Mw	Дата,	$K_{\rm P}$	Стан-	Δ°	Компо-	A_0 ,	M_0 ,	Mw
д м		ция		нента	см/с	дн∙см		дм		ция		нента	см/с	дн∙см	
15.03	8.7	ANN	0.41	BHN	0.000122	$1.0 \cdot 10^{21}$	3.3	02.06	8.5	SOC	0.82	BHN	0.0000357	$5.8 \cdot 10^{20}$	3.1
				BHE	0.0000854	$7.1 \cdot 10^{20}$	3.2					BHE	0.0000210	$3.4 \cdot 10^{20}$	3.0
		SOC	1.85	BHN	0.0000185	$6.9 \cdot 10^{20}$	3.2	22.07	11.3	SOC	2.04	BHN	0.00130	$5.4 \cdot 10^{22}$	4.4
				BHE	0.0000167	$6.2 \cdot 10^{20}$	3.2					BHE	0.00267	$1.11 \cdot 10^{23}$	4.7
22.03	9.0	SOC	0.52	BHN	0.000177	$1.9 \cdot 10^{21}$	3.5	03.08	9.1	SOC	0.42	BLN	0.0000228	$2.1 \cdot 10^{20}$	2.8
				BHE	0.000141	$1.5 \cdot 10^{21}$	3.4					BLE	0.0000214	$1.9 \cdot 10^{20}$	2.8
04.04	9.6	SOC	0.51	BLN	0.0000683	$7.1 \cdot 10^{20}$	3.2	01.09	8.6	SOC	0.66	BHN	0.0000116	$1.5 \cdot 10^{20}$	2.7
				BLE	0.0000557	$5.8 \cdot 10^{20}$	3.1					BHE	0.0000107	$1.4 \cdot 10^{20}$	2.7
12.05	8.9	SOC	0.60	BHN	0.0000219	$2.7 \cdot 10^{20}$	2.9								
				BHE	0.0000444	$5.4 \cdot 10^{20}$	3.1								

Таблица 2. Значения спектральных амплитуд A_0 , скалярного сейсмического момента M_0 и магнитуды Канамори *Мw* для восьми землетрясений Северного Кавказа в 2006 г.

Рис. 3. Станционные спектры на горизонтальных составляющих (BHN, BHE) станций «Сочи» и «Анапа» для землетрясений из табл. 2

Характеристики амплитудного спектра f_0 и Ω_0 использованы для расчета динамических параметров очага землетрясения 22 июля 2006 г. В табл. 3 представлены следующие параметры очагов землетрясений: Δ – эпицентральное расстояние, Ω_0 – спектральная плотность, f_0 – угловая частота, M_0 – сейсмический момент, L – длина разрыва, $\Delta \sigma$ – сброшенное напряжение, $\eta \sigma$ – кажущееся напряжение, \overline{u} – средняя подвижка по разрыву.

L, 10³ м № Дата, Стан-Компо- \overline{u} . ۸° f_0 , M_0 , Mw ησ, Ω_0 , Δσ, Γц $10^{6} H/m^{2}$ д м $10^{15} H \cdot M$ $10^{6} H/M^{2}$ ция нента $10^{-5} \,\mathrm{M}{\cdot}c$ м 22.07. SOC BHN 2.04 1.30 2.2 5.4 4.4 1.2 10.9 4.4 0.16 1 BHE 2.67 1.7 11.1 4.7 1.6 9.4 2.2 0.18

Таблица 3. Спектральные и динамические параметры землетрясения 22 июля 2006 г. по записям станции «Сочи»

Анализ полученных результатов. За 2004–2006 гг. были получены спектральные и динамические параметры для 16 землетрясений на Северо-Западном Кавказе. Они приводятся в [1, 14] и в настоящей статье, а также сведены в табл. 4. Для них всех по единой методике получено значение сейсмического момента M_0 и моментной магнитуды Канамори Mw.

Таблица 4. Энергетические и динамические параметры землетрясений Северо-Западного Кавказа за 2004–2006 гг.

№	Дата,	<i>t</i> ₀ ,	Эпицентр		h,	K _P	MPVA	M_0	$\lg M_0$	Mw	M^{p}	Район
	дмг	ч мин с	φ°, N	λ°, Ν	км							
1	15.11.2004	10 21 07.5	44.18	39.71	15	12.9	4.9	7.5E+22	22.9	4.6	4.9	Краснодарский край
2	20.02.2005	02 41 54.0	44.60	36.96	19	8.6	3.7	1.1E+21	21.0	3.3	2.6	Анапский
3	11.03.2005	00 10 07.7	43.98	39.05	9	8.2	3.3	1.4E+20	20.1	2.7	2.4	Сочинский
4	13.03.2005	01 31 19.7	44.71	37.18	22	11.9	5.1	8.0E+22	22.9	4.6	4.3	Черное море
5	18.03.2005	07 34 51.2	44.48	42.24	4	10.3	4.6	9.0E+21	22.0	3.9	3.4	Ставропольский край
6	21.09.2005	19 08 02.0	45.36	37.26	33	10.0	4.8	7.0E+21	21.8	3.9	3.3	Побережье Азовского моря
7	06.10.2005	17 57 27.1	42.77	42.15	11	11.8	5.3	2.2E+22	22.3	4.2	4.7	Грузия
8	24.10.2005	12 03 53.9	44.61	37.81	5	8.0	3.5	1.9E+20	20.3	2.8	2.2	Черное море
9	15.03.2006	23 00 50.2	44.48	37.47	13	8.7	3.8	7.1E+20	20.9	3.2	2.7	Черное море
10	22.03.2006	15 39 42.4	43.84	40.34	3	9.0	3.6	1.5E+21	21.2	3.4	2.9	Краснодарский край
11	04.04.2006	01 35 43.3	43.57	40.42	9	9.6	3.8	3.1E+20	20.9	3.1	3.1	Краснодарский край
12	12.05.2006	22 20 25.2	44.15	39.75	18	8.9	3.9	2.7E+20	20.4	2.9	2.7	Краснодарский край
13	02.06.2006	09 46 09.3	44.15	40.47	4	8.5	3.6	3.4E+20	20.5	3.0	2.5	Краснодарский край
14	22.07.2006	07 55 57.0	44.04	42.70	10	11.3	5.5	5.4E+22	22.7	4.4	4.2	Ставропольский край
15	03.08.2006	06 32 18.9	43.62	40.31	10	9.1	4.0	1.9E+20	20.3	2.8	2.6	Краснодарский край
16	01.09.2006	00 48 26.9	44.21	39.49	15	8.6	4.1	1.4E+20	20.1	2.7	2.6	Краснодарский край

Примечание. Значения *MS*^p – расчетные из формулы Т.Г. Раутиан (*K*=4+1.8*M*) [15].

Несмотря на небольшую статистику, проведем исследование зависимости сейсмического момента от энергетического уровня землетрясений в исследуемом регионе. Это имеет конкретный физический смысл, т. К. с ростом энергии землетрясения увеличивается произведенная в очаге работа, т.е. сейсмический момент. Подобные исследования ранее произведены во многих регионах: Крыму, Закарпатье, Средней Азии, Кавказе в целом, в Дагестане, Джавахетском нагорье, Камчатке и др., зависимости для которых опубликованы в [8]. Полученная в [9] взаимосвязь $\lg M_0 = f(MS)$ для землетрясений Кавказа в пределах $\varphi = 34^\circ - 46^\circ N$, $\lambda = 33^\circ - 58^\circ E$ и в интервале магнитуд $3.8 \le MS \le 7.7$:

Lg
$$M_0$$
=(0.95±0.04) MS + (12.53±0.27) при r =0.935 (4)

использовалась в [17] для построения временной зависимости кумулятивного скалярного момента и исследования временного хода сейсмотектонической деформации на Кавказе в целях прогнозирования сильного землетрясения. Однако уравнение (4) было получено без участия слабых землетрясений, происходящих на Северо-Западном Кавказе.

На рис. 4 дан график зависимости $\lg M_0 = f(MS)$, для которого методом ортогональной регрессии получено уравнение вида:

Lg
$$M_0$$
=(1.17±0.12) MS + (17.51±0.58) при r =0.930, (5)

где M_0 измеряется в $\partial H \cdot cM$, а в единицах $H \cdot M$ свободный член уравнения будет равен (10.51±0.58), r – коэффициент корреляции.

Рис. 4. Зависимость lg *M*₀=*f*(*MS*) для землетрясений Северо-Западного Кавказа за 2004–2006 гг.

Установленная зависимость хорошо согласуется с уравнениями:

$$\lg M_0 = 1.07 \, MS + 18.6 \tag{6}$$

$$\lg M_0 = 1.2 MS + 17.7, \tag{7}$$

приведенными в [8] для Крыма и Средней Азии соответственно. Недостатком полученного соотношения (5) является тот факт, что значения магнитуды пересчитаны из класса K_P по общей формуле $MS=(K_P-4)/1.8$ [15]. Для большей убедительности построим зависимость $\lg M_0$ и инструментально полученных значений энергетических классов K_P в табл. 4. Рассчитанное методом ортогональной регрессии уравнение имеет вид:

lg
$$M_0$$
= (0.53±0.004) $K_{\rm P}$ + (17.42±0.05) при r =0.99. (8)

Приведем из [8] аналогичное уравнение для примыкающей с запада Черноморско-Анапской зоны:

lg
$$M_0$$
= (0.51±0.05) $K_{\rm P}$ + (16.4±0.4) при r =0.92. (9)

Как видим, они достаточно близки, что опять же подтверждает корректность выполненных для Северного Кавказа исследований сейсмического момента *M*₀.

Литература

- 1. Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры Пшехского землетрясения в Краснодарском крае // Землетрясения Северной Евразии, 2004 год. Обнинск: ГС РАН, 2010. С. 268–271.
- 2. Габсатарова И.П. Пшехское землетрясение 15 ноября 2004 года с *Мw*=4.6, *MS*=4.6, *I*₀^p=5–6 (Краснодарский край) // Землетрясения Северной Евразии, 2004 год. – Обнинск: ГС РАН, 2010. – С. 386–394.
- 3. Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры землетрясений Северного Кавказа // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 268–271.
- 4. Габсатарова И.П. (отв. за обработку), Селиванова Е.А. (сост.). Сейсмологический каталог (оригинал) землетрясений по региону Северный Кавказ за 2005 г. Обнинск: Фонды ГС РАН, 2007 г. 10 с.
- 5. Bulletin of the International Seismological Centre for 2006. Berkshire: ISC, 2008.
- 6. Аптекман Ж.Я., Дараган С.К., Долгополов В.В., Захарова А.И., Зобин В.М., Коган С.Я., Корчагина О.А., Москвина А.Г., Поликарпова Л.А., Чепкунас Л.С. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Унификация исходных данных и процедуры расчета амплитудных спектров // Вулканология и сейсмология. – 1985. – № 2. – С. 60–70.

- 7. Аптекман Ж.Я., Белавина Ю.Ф., Захарова А.И. и др. Спектры *P*-волн в задаче определения динамических параметров очагов землетрясений. Переход от станционного спектра к очаговому и расчет динамических параметров очага // Вулканология и сейсмология. – 1989. – № 2. – С. 66–79.
- 8. Пустовитенко Б.Г., Пантелеева Т.Г. Спектральные и очаговые параметры землетрясений Крыма. Киев: Наукова думка, 1990. 251 с.
- 9. Пустовитенко Б.Г. Сейсмические процессы в Черноморском регионе и сейсмическая опасность Крыма: Дис. д-ра физ.-мат. наук / ИГ НАНУ. Киев, 2003. 305 с.
- 10. Anderson D.L., Hart R.S. Q of the Earth // J. Geophys. Res. 1978. 83. N B12. P. 5869–5882.
- 11. Павленко О.В. Изучение закономерностей излучения и распространения сейсмических волн в коре и верхней мантии Северного Кавказа по записям сейсмостанций «Сочи» и «Анапа» // Современные методы обработки и интерпретации сейсмологических данных. Материалы Пятой Международной сейсмологической школы, Владикавказ. – Обнинск: ГС РАН, 2010. – С. 138–142.
- 12. Hanks T.S., Kanamori H. A moment magnitude scale // J. Geophys. Res. 1979. 84. N 135. P. 2348-2350.
- 13. Пустовитенко Б.Г., Поречнова Е.И., Калинюк И.В., Сыкчина З.Н. Очаговые параметры землетрясений Крыма// Землетрясения Северной Евразии, 2005 г. – Обнинск: ГС РАН, 2011. – С. 325–330.
- 14. Малянова Л.С., Габсатарова И.П. Спектральные и очаговые параметры землетрясений Северного Кавказа //Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 331–335.
- 15. **Раутиан Т.Г.** Энергия землетрясений // Методы детального изучения сейсмичности. (Труды ИФЗ АН СССР; № 9(176)). М.: ИФЗ АН СССР, 1960. С. 75–114.
- 16. Lutikov A.I., Kuchay M.S. Seismicity time variation in the areas of occurence a number of strong earthquakes in the North Caucasus // J. Earthq. Pred. Res. 1998. 7. N 1. P. 76–82.
- Лутиков А.И. Сейсмологический мониторинг по ходу высвобождения кумулятивного скалярного сейсмического момента на примере Кавказского сейсмоактивного региона // Исследования по сейсмотектонике и современной геодинамике. – М.: ИФЗ РАН, 2006. – С. 78–87.