ЯКУТИЯ

Б.М. Козьмин

Якутский филиал ГС СО РАН, г. Якутск, b.m.kozmin@diamond.ysn.ru

Система инструментальных наблюдений Якутского филиала ГС СО РАН в 2006 г. включала 19 цифровых сейсмических станций. Две из них («Якутск» и «Тикси») – опорные, участвующие уже более 15 лет в мировой системе наблюдений IRIS (Incorporated Research Institutions for Seismology), координирующей совместные исследования научных институтов США в области сейсмологии. Список действующих станций и их приборная база представлены в табл. 1 и 2, где приведены также данные по новому пункту наблюдений «Нижний Бестях». Необходимость открытия новой станции была продиктована изучением сейсмических условий в районе конечной станции железной дороги, строящейся от Транссиба до Якутска. Это позволило сгруппировать в междуречье Лены и ее правого притока Алдана сеть из пяти сейсмических станций («Якутск», «Нижний Бестях», «Табага», «Усть-Мая» и «Чагда»), способную регистрировать все сейсмические события с $K_P \ge 6$. В целом для региона энергетическая представительность землетрясений K_{min} осталась в 2006 г. на том же уровне, что и в 2005 г. [1].

Как и прежде [1], параметры эпицентров землетрясений Якутии определялись на основе интерпретации цифровых записей местных землетрясений на станциях ЯФ ГС СО РАН в совокупности с данными наблюдений отдельных станций и материалами сводной обработки Байкальского филиала ГС СО РАН (г. Иркутск) и Магаданского филиала ГС РАН (г. Магадан), также привлекались сведения из бюллетеня землетрясений станции «Кировский» Сахалинского филиала ГС РАН (г. Южно-Сахалинск). Координаты эпицентров землетрясений рассчитывались на основе компьютерной программы, созданной в отделе геологии и геофизики Университета штата Мичиган (США) (разработчик – К.Д. Маккей), с использованием времен пробега прямых и преломленных *P*- и *S*-волн.

№	Стан	ция		Начало рабо	оты станции	Ко	Тип ЦСС		
Ē	Название	Код а		аналоговой	цифровой	φ°, Ν	λ°, Ε	<i>h</i> ,	
		межд.	рег.			-		м	
1	Тикси	TIXI	Ткс	02.03.1956	13.08.1995	71.65	128.87	100	IRIS
2	Якутск	YAK	Як	04.10.1957	01.09.1993	62.03	129.68	91	IRIS
					01.09.1999				SDAS
3	Чульман	CLNS	Члн	05.08.1962	25.03.2000	56.84	124.89	747	SDAS
4	Усть-Нера	UNR	Унр	21.11.1962	20.04.2002	64.57	143.23	485	PAR-24B
5	Чагда	CGD	Чгд	04.10.1968	25.07.2004	58.75	130.61	195	SDAS
6	Батагай	BTGS	Бтг	12.03.1975	12.12.2002	67.65	134.63	127	SDAS
7	Мома	MOMR	Мом	05.03.1983	01.11.2002	66.47	143.22	192	PAR-4CH
8	Артык	ATKR	Атк	04.07.1988	25.04.2002	64.18	145.13	700	PAR-24B
9	Алдан	ALDR	Алд		01.09.1999	58.61	125.41	658	SDAS
10	Усть-Мая		Усм		01.09.2000	60.42	134.54	170	SDAS
11	Тында	TNDR	Тыд		20.06.2001	55.15	124.72	530	SDAS
12	Витим		Втм		25.06.2003	59.44	112.58	190	SDAS
13	Табага		Тбг		26.06.2003	61.82	129.64	98	Байкал-11
14	Кангалассы		Кнг		07.07.2003	62.21	129.58	100	Байкал-11
15	Депутатский		Деп		01.09.2003	69.39	139.90	320	PAR-4CH
16	Юктали		Юкл		04.07.2004	56.59	121.65	420	SDAS
17	Иенгра		Иен		10.07.2004	56.22	124.86	860	Байкал-11
18	Хани		Хн		11.12.2005	56.92	119.98	690	Байкал-11
19	Нижний Бестях		Бест		01.07.2006	61.93	129.89	95	SMART-24

Таблица 1. Сейсмические станции Якутии (в хронологии их открытия) в 2006 г.

Название станции	Тип АЦП и сейсмометра	Перечень каналов	Частотный диапазон, Гц	Частота опроса данных, Гц	Разряд- ность АЦП	Чувствительность, велосиграф – отсчет/(<i>м/c</i>), акселерограф – отсчет/(<i>м/c</i> ²)
Тикси	IRIS+STS-1	BH(N, Z, E)v	0.0028-5	20	24	$1.00 \cdot 10^{9}$
		LH (N, Z, E) v	0.0028-0.25	1	24	3.98·10 ⁹
		VH (N, Z, E) v	0.0028-0.025	0.1	24	$1.59 \cdot 10^{10}$
		VM (N, Z, E) a	0-0.0028	0.01	24	$1.21 \cdot 10^{10}$
	IRIS+GS-13	EH (N, Z, E) v	1–25	80	24	$4.08 \cdot 10^9$
		SH (N, Z, E) v	1-10	40	24	$4.08 \cdot 10^9$
Якутск	IRIS+STS-1	BH (N, Z, E) v	0.0028-5	20	24	$1.00 \cdot 10^9$
		LH (N, Z, E) v	0.0028-0.25	1	24	$4.00 \cdot 10^9$
		VH (N, Z, E) v	0.0028-0.025	0.1	24	$1.60 \cdot 10^{10}$
		VM (N, Z, E) a	0-0.0028	0.01	24	$1.20 \cdot 10^{10}$
	IRIS+GS-13	EH (N, Z, E) v	1–25	80	24	$2.08 \cdot 10^9$
		SH (N, Z, E) v	1-10	40	24	$2.08 \cdot 10^9$
	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	16	$8.70 \cdot 10^8$
		BL (N, Z, E) v	0.02-6.7	20	16	$2.18 \cdot 10^8$
Чульман	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	16	5.29·10 ⁸
-		BL(N, Z, E)v	0.02-6.7	20	16	$1.32 \cdot 10^{8}$
Усть-Нера	PAR-24B+CKM-3	SH (N, Z, E) v	0.8-5.0	30	24	$2.47 \cdot 10^{10}$
Чагда	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	24	$3.83 \cdot 10^{98}$
		BL (N, Z, E) v	0.02-6.7	20	24	1.20.10
Батагай	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	24	$1.03 \cdot 10^{9}$
		BL (N, Z, E) v	0.02-6.7	20	24	$2.58 \cdot 10^8$
Мома	PAR-4CH+KS-2000	SH (N, Z, E) v	0.01-50	50	24	9.01·10 ⁸
Артык	PAR-24B+CM-3-KB	SH (N, Z, E) v	0.8–10	30	24	$4.03 \cdot 10^{10}$
Алдан	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	16	$5.32 \cdot 10^8$
		BL (N, Z, E) v	0.02-6.7	20	16	1.36·10 ⁸
Усть-Мая	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	16	$5.26 \cdot 10^8$
		BL (N, Z, E) v	0.02-6.7	20	16	$1.32 \cdot 10^8$
Тында	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	16	9.01·10 ⁸
		BL (N, Z, E) v	0.02-6.7	20	16	$2.25 \cdot 10^8$
Витим	SDAS+CM-3-OC	BH (N, Z, E) v	0.02-6.7	20	24	7.35·10 ⁹
		BL (N, Z, E) v	0.02-6.7	20	24	$2.29 \cdot 10^8$
Табага	Байкал-11+СМ-3-КВ	SH (N, Z, E) v	0.5-2.0	100	20	$2.04 \cdot 10^{10}$
Кангалассы	Байкал-11+СМ-3-КВ	SH (N, Z, E) v	0.5-2.0	100	20	$2.04 \cdot 10^{10}$
Депутатский	PAR-4CH+KS-2000	SH (N, Z, E) v	0.01-50	20	24	8.93·10 ⁸
Юктали	SDAS+CM-3-OC	BH(N, Z, E)v	0.02-6.7	20	24	$3.65 \cdot 10^9$
		BL (N, Z, E) v	0.02-6.7	20	24	$1.14 \cdot 10^{8}$
Иенгра	Байкал-11+СМ-3-КВ	SH (N, Z, E) v	0.05-2.0	50	20	$2.86 \cdot 10^9$
Хани	Байкал-11+СМ-3-КВ	SH (N, Z, E) v	0.5-2.0	100	20	$2.04 \cdot 10^{10}$
Нижний Бестях	SMART-24+KS-2000	SH (N, Z, E) v	0.02-100	100	24	$1.49 \cdot 10^{10}$

Таблица 2. Данные об аппаратуре цифровых станций в 2006 г.

Примечание. Символами «v» и «а» обозначены велосиграф и акселерограф соответственно.

По данным сводной обработки инструментальных сведений, полученных в Якутском регионе и прилегающих соседних сейсмоактивных зонах, были определены параметры эпицентров 2370 близких землетрясений, из них 537 сейсмических событий с $K_P \ge 7.6$ помещены в каталоге [2] на CD в наст. сб. Распределение числа землетрясений по районам и энергетическим классам K_P показано в табл. 3, а их пространственное размещение – на карте эпицентров (рис. 1). Выделившееся количество сейсмической энергии в 2006 г. равно 36.96·10¹² Дж, что значительно ниже энергии в 2005 г. ($\Sigma E = 5.68 \cdot 10^{15} \text{ Дж}$ [1]).

N⁰	Район				N_{Σ}	$\Sigma E, Дж$					
		≤6.5	7	8	9	10	11	12	13	1	777
1	Олёкминский	457	1044	280	84	35	16	6	1	1923	$2.136 \cdot 10^{13}$
2	Становой хребет	57	71	24	2	2		1		157	$5.182 \cdot 10^{11}$
3	Алданское нагорье	36	65	26	5		2			134	$4.077 \cdot 10^{11}$
4	Учурский	1	17	9	6	1				34	$1.241 \cdot 10^{11}$
5	Охотский					1				1	$9.981 \cdot 10^9$
6	Хребет Сетте-Дабан			1						1	$7.946 \cdot 10^{11}$
7	Верхоянский хребет	2	5	1	2		1	1		12	$6.594 \cdot 10^{10}$
8	Яно-Оймяконское нагорье	9	13	1	4					27	$3.195 \cdot 10^9$
9	Хребет Черского	5	31	16	3				1	56	$1.259 \cdot 10^{13}$
10	Приморская низменность			2						2	$1.132 \cdot 10^8$
11	Лаптевский		4	6		4	1	1		16	$1.191 \cdot 10^{12}$
12	Восточная часть Сибирской платформы	2	2	1	1	1				7	5.139·10 ⁹
	Всего	569	1252	367	107	44	20	9	2	2370	$36.955 \cdot 10^{12}$

Таблица 3. Распределение числа землетрясений по энергетическим классам *К*_Р и суммарной сейсмической энергии по районам за 2006 г.

Рис. 1. Карта эпицентров землетрясений Якутии за 2006 г.

1 – энергетический класс K_P ; 2, 3 – сейсмическая станция, опорная и региональная соответственно; 4 – сейсмическая станция соседних регионов; 5 – разлом по [15], установленный (сплошная линия) и предполагаемый (штриховая); 6, 7 – граница района и региона соответственно.

Вновь, как и в 2005 г., высокий уровень сейсмичности фиксировался в Олёкминском районе (\mathbb{N} 1) на юге Якутии, где высвободилось сейсмической энергии $\Sigma E=21.3 \cdot 10^{12} \ Дж$ или около 58% от всей сейсмической энергии, высвободившейся за год (табл. 3).

Это обусловлено активной разрядкой тектонических напряжений в пределах Чаруодинского роя, возникшего в октябре 2005 г. За 2006 г. здесь было зафиксировано более 1700 событий, в том числе один подземный толчок с K_P ÷13, шесть – с K_P ÷12 и шестнадцать – с K_P ÷11 (табл. 3).

Самым крупным (K_P =13.1) событием было землетрясение 26 января в 16^h57^m с координатами φ =57.4°N, λ =120.9°E. Оно произошло в ночное время, поэтому его макросейсмическое воздействие наблюдал лишь бодрствующий обслуживающий персонал на ближайших станциях железнодорожной трассы БАМ.

Интенсивность сотрясений *I*=4 балла отмечена на станции Хани (Δ =60 км) и 3–4 балла – на железнодорожной станции Олёкма (Δ =65 км): слышался глухой гул, подобный грому при грозе, сотрясались стены зданий, скрипели полы и потолки, дребезжали стекла окон. В пос. Юктали (Δ =100 км) толчок проявился с интенсивностью *I*=2 балла. Следует отметить, что в названных населенных пунктах с интенсивностью сотрясений *I*=2–3 балла ощущалась большая часть событий Чаруодинского роя с $K_P \ge 11$.

Анализ распределения числа зарегистрированных землетрясений роя во времени N(t) для каждого месяца 2006 г. (рис. 2) показывает, что сейсмический процесс протекал здесь в импульсном режиме. Выделены четыре максимума (в январе, апреле, августе и ноябре) с интервалом между ними в 3-4 месяца и последующим уменьшением числа событий к концу года. При этом появление каждого максимума было связано с добавлением числа подземных толчков за счет афтершоковых последовательностей, которые фиксировались после сильных роевых событий с К_Р=11-12, наблюдавшихся в этом временном интервале. Это свидетельствует о взаимозависимости местных роевых и афтершоковых процессов.

Чаруодинского роя в течение 2006 г.

Скорее всего, это обусловлено значительной тектонической раздробленностью территории Олёкмо-Чарского нагорья, в том числе блока земной коры, куда тяготеет последовательность Чаруодинского роя 2005–2006 гг. Названный блок разбит многочисленными разнонаправленными разломами [3], образовавшими крупный дизъюнктивный узел, в котором наиболее мобильны были субширотные сбросы. Это подтверждают решения фокальных механизмов, найденные методом момента тензора центроида [4, 5] и по данным распределения знаков первых вступлений продольных сейсмических волн [6]. В табл. 4 для Чаруодинского роя приведены разные решения параметров механизмов очагов четырех землетрясений.

№	Агент-	Дата,	<i>t</i> ₀ ,	h,	Маг	титу	/ды	K _P	O	Оси главных напряжений Нодальные пл					плос	скост	Исто-				
	ство	д м	ч мин с	км	Mw	MS	Ms		Т		T N		N P		NP1		1	NP2		?	чник
									PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	STK	DP	SLIP	
2	HRVD	26.01	16 57 15	16	4.7		4.2	13.1	5	348	1	79	78	233	67	41	-106	268	51	-76	[4, 5]
2	BYKL	26.01	16 57 15						9	348	4	257	80	145	83	36	-84	255	54	-95	[6]
8	BYKL	19.05	22 54 37	10				12.3	8	325	3	60	58	222	24	46	-136	260	60	-53	[6]
10	GCMT	19.10	07 15 37	21	5.2	4.7	4.7	13.1	31	356	5	139	18	254	31	54	170	128	82	361	[4, 5]
	GCMT	20.11	00 07 26	9	4.7		3.9	11.5	3	161	3	25	60	66	224	49	-131	97	55	-53	[4, 5]

Таблица 4. Параметры механизмов очагов землетрясений Якутии в 2006 г.

Примечание. Номера землетрясений с К_Р≥11.6 соответствуют таковым в каталоге [2].

Для них характерны сбросовые подвижки в очаге по плоскостям разрыва субширотного или северо-восточного простирания, что наследует первоначальный тип смещения (сбросы) при образовании роя в 2005 г. [7].

В этом же районе примерно в 100 км к югу от чаруодинских событий на восточном окончании Имангрского разлома (зона влияния Станового шва), пересекающего р. Олёкму в ее среднем течении, отмечено более 50 слабых землетрясений $K_{\rm P}$ =6–10. Их звуковые эффекты (гул) часто слышали жители ближайшей к ним железнодорожной станции БАМ – Юктали (Δ =20–30 км). Эпицентры этих толчков тяготеют к эпицентральной области сильного Тас-Юряхского землетрясения 18.01.1967 г. с $K_{\rm P}$ =17, M=7.0 [8, 9]. Не исключено, что подобный рост активности был спровоцирован соседним Чаруодинским роем.

Следующим по числу землетрясений в табл. З является район Станового хребта (№ 2) в Южной Якутии. К наиболее подвижным участкам относится его западная окраина, где на территории между сейсмическими станциями «Юктали», «Чульман», «Иенгра» и «Тында» произошло несколько ощутимых событий. Одно из них было отмечено 17 октября 2006 г. с K_P=11.9 на южных склонах Станового хребта в Амурской области близ границы с Якутией. Оно ощущалось на небольшой площади в 28 000 км² на крайнем юге Нерюнгринского района Республики Саха (Якутия) и в Тындинском районе на севере Амурской области. Его 5-балльные эффекты проявились в ближайшем населенном пункте Нагорный (20 км к северо-востоку от эпицентра), расположенном на федеральной автотрассе «Лена». В помещении бензозаправки наблюдалось сильное сотрясение: передвигалась мебель, раскачивались электролампочки, скрипели полы и потолочные перекрытия. Был слышен глухой гул. Работники заправки выскочили на улицу из-за боязни, что обвалится потолок. На участке Зорге (25 км к югу) все местные жители почувствовали сильные колебания внутри зданий. Дрожали столы и стулья, колебались висячие предметы, скрипели полы и потолки, звенела посуда и стекла окон. Был слышен сильный гул (4-5 баллов). В г. Тында (74 км к югу от эпицентра) землетрясение ощущалось с интенсивностью *I*=3 балла. В одноэтажном деревянном доме был слышен легкий скрип всей конструкции, слегка звякнула посуда и стекла окон. На верхних этажах 9-этажных зданий имело место мерное раскачивание пола и мебели на нем, во время дрожания домов слышался легкий гул. В пос. Иенгра небольшие 2-3-балльные возмущения отмечены лишь на верхних этажах 3-4-этажных зданий (38 км к северу). Только несколько человек почувствовали слабый отзвук этого события на железнодорожной станции БАМ-Юктали в 215 км к северо-западу от эпицентра.

Менее интенсивным было землетрясение в верховьях р. Чильчи южнее истоков р. Алдан. Его эпицентр локализован в пределах Становой складчатой области и приурочен к зоне влияния Станового структурного шва. Это событие произошло 22 декабря 2006 г. в 17^h37^m (ϕ =56.40°N, λ =122.90°E) с K_P =11.7 при глубине очага h=10 км. Так как момент возникновения землетрясения пришелся на ночное время (02^h37^m местного времени), то его проявления заметили лишь немногие очевидцы. Лучше других с воздействием в 3-4 балла толчок ощутили отдельные жители на железнодорожных станциях БАМ-Чильчи (50 км к юго-западу от эпицентра) и Лопча (71 км к югу), где слышали гул, наблюдалось волновое раскачивание зданий, слегка побрякивала посуда и дребезжали стекла окон (табл. 3). На железнодорожной станции БАМ-Юктали (83 км к северо-западу) и в г. Нерюнгри (110 км к северо-востоку) отмечены макроэффекты в 3 балла. Здесь землетрясение более всего ощущалось на верхних этажах многоэтажных жилых домов. Так, в г. Нерюнгри в одноэтажных деревянных домах наблюдалось лишь легкое трясение диванов и слышался негромкий шум (не более 3 баллов). В то же время здесь отчетливо проявился эффект «этажности», когда на шестых-девятых этажах качались люстры, поскрипывали полы и шевелилась мебель. В одном случае на девятом этаже даже упали с полки книги и горшки с цветами. Перечисленные признаки могут соответствовать не менее 4 баллам по шкале MSK-64 [10]. С интенсивностью *I*=2-3 балла данное событие ощущалось в пос. Чульман (120 км к северо-востоку) и 2 балла – в г. Тынде (∆=226 км к юго-востоку). Приближенно площадь всех сотрясений на юге Нерюнгринского района и севере Тындинского района Амурской области составила около *S*≈48 000 км².

Более слабые проявления сейсмической активности (табл. 3) наблюдались в 2006 г. в районе Алданского нагорья (\mathbb{N} 3). Здесь большая группа землетрясений была зафиксирована в центральной части района, в хр. Суннагин на правобережье р. Тимптон. Энергетический класс этих событий соответствовал интервалу $K_{\rm P}$ =7.0–11.4.

Самая низкая активность, в сравнении с другими мобильными участками территории в Южной Якутии, имела место на востоке в **Учурском районе** (\mathbb{N} 4), где наибольший энергетический класс местных землетрясений в среднем течении р. Учур не превышал $K_P=10$.

№	Пункт	Δ, км	φ°, N	λ°, Ε	N⁰	Пункт	Δ, км	φ°, N	λ°, Ε
	3-4 баллов				4	г. Нерюнгри	110	56.70	124.64
1	пос. Чильчи	50	56.04	122.42		<u>2–3 балла</u>			
	<u>3 балла</u>				5	пос. Чульман	130	56.84	124.89
2	пос. Лопча	71	55.76	122.76		<u>2 балла</u>			
3	пос. Юктали	82	56.59	121.65	6	г. Тында	180	55.15	124.72

Таблица 5. Макросейсмические сведения о землетрясении 22 декабря 2006 г. в 17^h37^m с *K*_P=11.7

В северо-восточных районах региона наибольшая сейсмическая энергия $\Sigma E=12.59\cdot10^{12}$ Дж за год (или 34%) выделилась в 2006 г. в **районе Хребет Черского** (**№** 9). Максимум сейсмичности тяготеет здесь к крупному сейсмогенному разлому Улахан. Он является одним из крупнейших разрывных нарушений, отделяющих Североамериканскую литосферную плиту от Евразийской и Охотоморской плит [8, 11] на северо-востоке России. Его максимальная подвижность фиксируется между реками Индигирка и Колыма на расстоянии более 1500 км. Вдоль разлома наблюдается повсеместное левобоковое смещение русел прито-ков названных рек. Суммарное смещение по разлому со времени установления здесь гидросети (плиоцен, около 6 млн лет назад) достигает 24 км, что соответствует средней скорости горизонтальных движений по разлому около 0.5–0.7 см/год [8, 11]. В зоне влияния разлома Улахан выявлен ряд сейсмодислокаций и стабильно фиксируются ощутимые землетрясения умеренной интенсивности.

Именно к трассе этого тектонического нарушения приурочен подземный толчок, который возник 19 октября 2006 г. в $07^{h}15^{m}$ с K_{P} =13.1 [2], Ms=4.7 [5] (φ =64.09°N, λ =148.87°E) на глубине h=20 км. На рис. 3 приведен фрагмент космического снимка «Ландсат» для территории, где отмечено данное событие, с расшифровкой элементов рельефа и дизъюнктивных структур. На нем границей светлого и темного фототонов отчетливо маркируются два главных разлома – Улахан и Дарпир. Разломы выражены прямыми довольно протяженными линеаментами северо-западного простирания. Они сходятся друг с другом на северо-западе под острым углом в 20–25°, ограничивая поднятый между ними с амплитудой в 450–550 м блок палеозойских пород Омулевского поднятия, развитый среди мезозойских образований [8, 11]. Согласно современным тектоническим представлениям, Омулевский блок представляет собой отдельный «террейн, впаянный в мезозойскую структурную раму» в процессе коллизионных и постколлизионных преобразований структуры Верхояно-Колымских мезозои, господствующих на северо-востоке Азии [11].

Рис. 3. Фрагмент космоснимка «Ландсат» с трассой разлома Улахан северо-западного простирания, ограничивающего блок Омулевского поднятия с северо-востока

Стереограмма показывает местоположение эпицентра землетрясения 19.10.2006 г. и его фокальный механизм (*P* – ось сжатия, *T* – ось растяжения).

Эпицентр землетрясения пришелся на границу Якутского и Магаданского регионов и локализован в безлюдной горно-таежной местности на участке трассы разлома Улахан (рис. 3), где последний пересекает верховья притоков рек Урультун и Омулёвка (бассейн р. Ясачной, левого притока р. Колымы). Наибольшие сотрясения в его эпицентре могли достигать (I_0)=7 баллов. Хотя ближайшие населенные пункты находились от него на расстоянии более 140 км, землетрясение ощущалось их жителями на территории Республики Саха (Якутия) и Магаданской области. Так, 5-балльные сотрясения имели место в пос. Сасыр (Δ =143 км на северо-запад от эпицентра, Якутия) и г. Сусуман (Δ =150 км к югу, Магаданская область), 4-балльные – в пос. Артык (Δ =178 км к западу, Якутия), поселках Сеймчан (Δ =194 км к юговостоку) и Омчак (Δ =260 км к югу) (Магаданская область). С интенсивностью I=3 балла оно проявилось в пос. Усть-Нера (Δ =275 км к западу). И, наконец, на пределе ощутимости (I=2 балла) этот подземный толчок замечен в пос. Стекольный (Δ =445 км) и в г. Магадан (Δ =511 км) к югу от эпицентра (табл. 6).

№	Пункт	φ°, N	λ° , Ε	Δ, км	N⁰	Пункт	φ°, N	λ° , Ε	Δ, км
	5 баллов				5	пос. Омчак	61.665	147.867	260
1	пос. Сасыр	65.16	147.08	143		<u>3 балла</u>			
2	г. Сусуман	62.779	148.167	150	6	пос. Усть-Нера	64.57	143.23	275
	<u>4 балла</u>					<u>2 балла</u>			
3	пос. Артык	64.18	145.13	178	7	пос. Стекольный	60.046	150.730	445
4	пос. Сеймчан	52.933	152.382	194	8	г. Магадан	59.575	150.768	511

Таблица 6. Макросейсмические сведения о землетрясении 19 октября 2006 г. в 07^h15^m с *K*_P=13.1, *Ms*=4.7

Данные по макросейсмике для Магаданского региона заимствованы из [12]. Общая площадь сейсмических воздействий при землетрясении 19 октября 2006 г. в Республике Саха (Якутия) и Магаданской области составила около 220 000 км². После главного толчка к северо-западу от него в зоне разлома Улахан было зафиксировано несколько слабых (K_P≥7) афтершоков.

Сопоставление параметров фокального механизма рассматриваемого события с морфокинематической характеристикой разлома Улахан показывает, что они совпадают. Так, по геолого-структурным данным [8] разлом протягивается в северо-западном направлении по азимуту *AZM*=317°, плоскость его сместителя субвертикальна (угол ее наклона 70–80°), а кинематика соответствует левостороннему сдвигу. С перечисленными элементами структуры разлома хорошо согласуются параметры плоскости разрыва в очаге *NP1* (табл. 4, № 4), где ее азимут простирания равен 308°, угол падения – 82°, а тип подвижки в очаге – левый сдвиг. Эти факты наглядно подтверждаются космоснимком со стереограммой фокального механизма (рис. 3) и позволяют уверенно считать, что смещение в очаге происходило по плоскости разрыва *NP1*.

В целом, территория района хр. Черского характеризуется в 2006 г. рассеянным полем слабых (*K*_P=7–9) землетрясений и сосредоточением их в его юго-восточной части.

Из других сейсмоактивных районов следует отметить **Верхоянский хребет** (№ 7) и Лаптевский (№ 11). В первом – отмечено два заметных землетрясения, произошедших 16 октября в 18^h20^m (ϕ =66.07°N, λ =126.22°E) с K_P =10.8 в его центральной части и 8 мая в 18^h15^m (ϕ =61.87°N, λ =139.40°E) с K_P =11.9 – на его юго-восточном окончании. Во втором – некоторое оживление в виде слабой сейсмичности наблюдалось вокруг сейсмической станции «Тикси», а также на шельфе моря Лаптевых, где 9 июня в 01^h26^m отмечен подземный толчок (ϕ =74.02°N, λ =137.42°E) с K_P =11.2. Остальные районы – Охотский (№ 5), Хребет Сетте-Дабан (№ 6), Яно-Оймяконское нагорье (№ 8) и Восточная часть Сибирской платформы (№ 12) – были слабосейсмичны или асейсмичны.

В итоге, в 2006 г. уровень сейсмической активности по числу землетрясений с N_{Σ} =2370 снизился, по сравнению с таковым в 2005 г. (N_{Σ} =3087 [1]), всего в 1.3 раза, но по уровню вы-

свобожденной энергии снижение намного сильнее – $3.69 \cdot 10^{13} \ Дж$ вместо $5.68 \cdot 10^{15} \ Дж$, т.е. более чем на два порядка, хотя по-прежнему все проявления сейсмичности группировались на северо-востоке Якутии в Арктико-Азиатском сейсмическом поясе и на юге – в Олекмо-Становой зоне, являющейся восточным флангом Байкало-Станового пояса.

Литература

- 1. Козьмин Б.М. Якутия // Землетрясения Северной Евразии, 2005 год. Обнинск: ГС РАН, 2011. С. 234–240.
- 2. Козьмин Б.М., Шибаев С.В. (отв. сост.), Петрова В.Е., Захарова Ж.Г., Каратаева А.С., Москаленко Т.П. Каталог землетрясений (*N*=536) и взрыва (*N*=1) в Якутии за 2006 г. (См. Приложение к наст. сб. на CD).
- 3. Имаева Л.П., Козьмин Б.М., Имаев В.С. Сейсмотектоническая позиция западного фланга Олекмо-Становой зоны (Южная Якутия) // Отечественная геология. – 2007. – № 5. – С. 114–118.
- 4. Internet: // http: // www.globalcmt.org/CMTsearch.html
- 5. Internet: // http:// www.isc.ac.uk/Bulletin/html
- 6. **Иванова Е.И., Мельникова В.И., Лескова Е.В.** Механизмы отдельных землетрясений России // Землетрясения России в 2006 году. Обнинск: ГС РАН, 2009. С. 202–204.
- 7. Механизмы очагов отдельных землетрясений России // Землетрясения России в 2005 году. Обнинск: ГС РАН, 2007. – С. 169–172.
- 8. Имаев В.С., Имаева Л.П., Козьмин Б.М. Сейсмотектоника Якутии. М.: ГЕОС, 2000. 227 с.
- 9. Козьмин Б.М. Сейсмические пояса Якутии и механизм очагов их землетрясений. М.: Наука, 1984. 125 с.
- 10. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интенсивности MSK-64. – М.: МГК АН СССР, 1965. – 11 с.
- Fujita K., Koz'min B.M., Mackey K.G., Riegel S.A., Mclean M.S. and Imaev V.S. Seismotectonics of the Chersky seismic belt, eastern Russia (Yakutia) and Magadan district, Russia // Geology, geophysics and tectonics of Northeastern Russia: a tribute to Leonid Parfenov. Stephan Mueller Spec. Publ. – 2009. – 4. – P. 117–145.
- 12. Гунбина Л.В., Лещук Н.М., Курткин С.В. Северо-Восток России и Чукотка // Землетрясения России в 2006 году. Обнинск: ГС РАН, 2009. С. 38–41.